StraGo: Harnessing Strategic Guidance for Prompt Optimization
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Abstract

Prompt engineering is pivotal for harness-
ing the capabilities of large language models
(LLMs) across diverse applications. While ex-
isting prompt optimization methods improve
prompt effectiveness, they often lead to prompt
drifting, wherein newly generated prompts can
adversely impact previously successful cases
while addressing failures. Furthermore, these
methods tend to rely heavily on LLMS’ intrinsic
capabilities for prompt optimization tasks. In
this paper, we introduce STRAGO (Strategic-
Guided Optimization), a novel approach de-
signed to mitigate prompt drifting by leverag-
ing insights from both successful and failed
cases to identify critical factors for achieving
optimization objectives. STRAGO employs a
how-to-do methodology, integrating in-context
learning to formulate specific, actionable strate-
gies that provide detailed, step-by-step guid-
ance for prompt optimization. Extensive ex-
periments conducted across a range of tasks,
including reasoning, natural language under-
standing, domain-specific knowledge, and in-
dustrial applications, demonstrate STRAGO’s
superior performance. It establishes a new state-
of-the-art in prompt optimization, showcasing
its ability to deliver stable and effective prompt
improvements.

1 Introduction

Recent advancements in large language models
(LLMs), such as ChatGPT and GPT-4, have signif-
icantly enhanced their analytical, reasoning, and
contextual understanding capabilities (Yue et al.,
2024; Chang et al., 2023; Xu et al., 2024). LLMs
are employed in various applications, such as Mi-
crosoft Copilot and New Bing, where users interact
with the models through prompts. These prompts
play a crucial role in guiding the LLMs’ responses,
ensuring outputs are accurate, relevant, and use-
ful. However, the performance of LLMs heavily
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depends on prompt quality, and crafting effective
prompts remains a complex, labor-intensive task
that requires considerable expertise.

To overcome the challenge of crafting effective
prompts, recent research has focused on creating
and optimizing prompts automatically. Early ap-
proaches utilized reinforcement learning (Deng
et al., 2022) or gradient-based methods (Shin et al.,
2020), though these techniques often require ad-
ditional training or depend on the model’s inter-
nal state, limiting their applicability for API-based
LLMs like ChatGPT and GPT-4. Recent studies
have leveraged LL.Ms themselves as prompt gener-
ators (Zhou et al., 2022) or optimizers (Yang et al.,
2023). Advanced search algorithms, such as Monte
Carlo Tree Search (MCTS) (Wang et al., 2023)
and evolutionary algorithms (Guo et al., 2023; Fer-
nando et al., 2023), have also been applied to dis-
cover effective prompts. Additionally, some re-
search has exploited the reflective capabilities of
LLMs (Shinn et al., 2023; Chen et al., 2023), op-
timizing prompts by using erroneous examples
to guide refinement, either explicitly or implic-
itly (Pryzant et al., 2023; Yang et al., 2023; Hu
et al., 2023; Tang et al., 2024). These LLM-based
optimization methods have demonstrated effective-
ness across various tasks and hold promise for im-
proving prompt quality.

However, search-based algorithms often suffer
from inefficiency in prompt optimization due to the
absence of a clear optimization direction at each
step. Reflection-oriented methods aim to accelerate
convergence by focusing on iteratively analyzing
and correcting erroneous cases. However, concen-
trating on failure cases can sometimes negatively
affect correct ones, especially when the errors ex-
hibit outlier characteristics. Both search-based and
reflection-oriented approaches can result in prompt
drift, where a newly generated prompt resolves cer-
tain failures but inadvertently disrupts previously
successful cases.
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Additionally, these methods typically provide
the LLM with a task description and context with-
out offering specific guidance on how to achieve
the desired outcomes, relying solely on the LLM’s
inherent capabilities. For example, OPRO (Yang
et al., 2023) supplies historical prompts with cor-
responding scores and task-specific data, expect-
ing the LLM to generate more effective prompts.
EvoPrompt (Guo et al., 2023) asks the LLM to
merge two prompts into a new one without any
instructions or strategy for doing so. Similarly,
APO (Pryzant et al., 2023) presents erroneous
cases and asks the LLM to correct them with new
prompts, but without providing actionable guid-
ance. This heavy reliance on the LLM’s intrinsic
abilities can be problematic for complex tasks, as
the model may lack the necessary skills, leading to
suboptimal prompt generation.

In this paper, we introduce STRAGO (Strategic-
Guided Optimization), a novel reflection-based
prompt optimization method designed to overcome
the limitations of existing approaches. Unlike
prior methods, STRAGO avoids bias towards fail-
ure cases by analyzing both successful and failed
outcomes in each iteration, identifying key factors
necessary for task success and understanding the
causes of failures. Using this analysis, STRAGO
employs in-context learning to develop specific, ac-
tionable strategies that offer detailed, step-by-step
guidance for prompt refinement. These strategies,
combined with the analysis results, are used to opti-
mize the prompt. Our extensive experiments across
reasoning, natural language understanding, domain
knowledge, and industrial applications demonstrate
that this approach effectively corrects failures while
minimizing adverse effects on successful cases.
This unbiased iterative process, coupled with de-
tailed guidance, achieves the best overall accu-
racy improvements post-optimization, setting a new
state-of-the-art in prompt optimization.

Our major contributions are as follows:

1. Unbiased Reflective Optimization:
STRAGO mitigates prompt drifting by
incorporating both successful and failed cases
in the optimization process, resulting in more
stable and reliable prompt refinement.

2. Actionable Strategy Development:
STRAGO leverages in-context learning to
craft step-by-step, actionable strategies that
guide prompt optimization, unlocking LLMs’

potential in tasks where they initially lack
sufficient expertise.

3. Broad Validation Across Diverse Tasks:
We extensively evaluate STRAGO across var-
ious tasks, including reasoning, language
understanding, domain-specific knowledge,
and industrial applications, demonstrating
that STRAGO achieves state-of-the-art perfor-
mance in prompt optimization.

2 Methodology

2.1 Preliminaries
2.1.1 Task Formulation

Given a task dataset D, our objective is to find the
optimal prompt p* that enables an LLM to gener-
ate responses closely matching the desired outputs.
This problem can be formalized as follows:

> loss(LLM(p*,z),), (1)

(z,y)eD

min  J(p) =
p

where x and y represent the input and its corre-
sponding desired output from the task dataset D,
and p* is the optimal prompt that minimizes the
loss between the LLM’s output and the desired
output for all input-output pairs in D.

2.1.2 Assessment Metrics

Accuracy is the primary metric for evaluating the
effectiveness of a prompt in solving a task using
an LLM. However, during iterative prompt opti-
mization, it is equally important to assess how
new prompts affect both previously successful and
failed cases. To capture this, we introduce two ad-
ditional metrics: Adverse Correction Rate (ACR)
and Beneficial Correction Rate (BCR):

> i1 1(ppre (i) = Yi A Ppost(w:) # i)
>ic1 l(ppre(xi) = yz)

ACR =

(2)
Z?:l 1(ppre($i) 7é Yi N\ ppost(xi) = yz)
>ic1 l(ppre(l‘i) # yz)

BCR =

3)

where ppre(2;) and ppost(z;) represent the
model’s predictions before and after optimization,
respectively, for each input x; and its ground truth
Yi-

ACR measures the negative impact of optimiza-
tion by capturing the proportion of correct predic-
tions that become incorrect after applying the new
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prompt. In contrast, BCR quantifies the positive
impact by measuring the proportion of previously
incorrect predictions that are corrected. Together
with accuracy, these metrics offer a comprehensive
evaluation of the new prompt’s overall effective-
ness, highlighting both its potential drawbacks and
improvements.

2.2 STRAGO

In each optimization iteration, STRAGO samples
both successful and failed cases to identify key fac-
tors for achieving task objectives and to understand
why the current prompt leads the LLM to succeed
or fail (Analyzer). Based on this analysis, it gener-
ates executable strategies that offer detailed, step-
by-step guidance for optimization (Refiner). These
strategies are then combined with the analysis re-
sults to optimize the prompt (Optimizer). Figure 1
illustrates the three main steps of STRAGO, using
the TREC task (Voorhees and Tice, 2000) as an
example. Each module is discussed in detail in the
following subsections. All meta prompts used in
STRAGO are provided in Appendix D.

2.2.1 Analyzer

STRAGO differs from previous reflection-based
methods by equally prioritizing the analysis of
both correct and incorrect examples. Given a
dataset D = (x1,y1), (x2,¥2),- -, (Tn,Yn), the
model partitions it into two subsets after evalua-
tion: D orrect for correctly predicted samples and
Dincorrect for incorrectly predicted samples. From
each subset, K examples are selected for deep anal-
ysis. The Analyzer examines these selected ex-
amples to uncover the factors driving success in
Dorrect and the reasons for failures in D;ycorrect-
These insights, termed positive experiences and
negative experiences, guide LLMs by highlighting
key actions to take and common errors to avoid.
In our implementation, each example generates
M positive or negative experiences, depending on
whether it belongs to Dcorrect OF Dipcorrect-

2.2.2 Refiner

According to cognitive science principles (Swan-
born, 2010), humans typically approach problem-
solving through three dimensions: identification
(What it is), causation (Why it is), and method
(How to do it). In this context, experiences relate
to the identification dimension. While LLMs are
generally capable of handling straightforward tasks,
they may struggle with more complex challenges

that require specific context or domain knowledge,
as illustrated in Figure 1(a), where the prompt lacks
specific context or topic. To improve LLM perfor-
mance in such cases, the Refiner adopts a two-step
process: strategy formulation and strategy selec-
tion.

Strategy formulation: As noted by Ma et al.
(2024), LLLM-generated errors tend to follow spe-
cific patterns. For instance, miscalculations com-
monly occur in mathematical tasks, while misun-
derstandings or lack of contextual comprehension
are frequent issues in language tasks. These pat-
terns necessitate tailored strategies, making them
ideal in-context learning demos. We focus on three
prevalent error types: calculation errors in math
tasks, misunderstandings in language tasks, and
logical inference errors in reasoning tasks. We de-
velop corresponding strategies for each error type
and use them as in-context learning demos to help
the LLM generate strategies that improve prompts
based on both positive and negative experiences.

For each aforementioned error type, we select
one or more representative examples. The LLM
first generates an experience for each example and
proposes a specific, actionable strategy to address
it, which is then refined through manual revision.
These examples, along with their associated expe-
riences and strategies, serve as in-context learning
demos, guiding the LLM in formulating detailed,
step-by-step execution plans for both successful ex-
amples (positive experiences) and failed examples
(negative experiences). In our implementation, we
generate N strategies for each example based on
its experience. Figure 1(b) illustrates three distinct
strategies generated by the Refiner for N = 3 to
address a negative experience from a failed exam-
ple.

Strategy selection: For the N strategies gener-
ated by the Refiner for each example and its corre-
sponding experience, we use an LLLM to evaluate
and score them based on criteria such as alignment,
clarity, and feasibility. The strategy with the high-
est score is then selected to address the experience.

We assess the strategies across several dimen-
sions: Match with Experience, which evaluates
how well the strategy addresses the identified is-
sues; Clarity of Strategy, which determines whether
the strategy is clear and detailed; and Effectiveness
in Addressing the Issue, which measures the like-
lihood that the strategy will efficiently resolve the
problem. To mitigate potential self-enhancement
bias during evaluation (Zheng et al., 2024), we use
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Figure 1: Flowchart of STRAGO

a different LLM (Claude) for scoring. Additionally,
following the scoring method used in Thomas et al.
(2023), we conduct five assessments with the LLM
and average their scores for enhanced stability and
reliability. Figure 1(b) presents the averaged score
for each of the three strategies addressing a neg-
ative experience from a failed example, with the
highest-scoring strategy (shown in the middle) be-
ing selected.

2.3 Optimizer

Although LLMs can process long text inputs, they
often struggle to thoroughly consider every detail
when handling both positive and negative experi-
ences, along with their associated strategies. To
mitigate this issue, we implement an optimization
method that processes these experiences separately
and then combines them through a crossover pro-
cedure. The optimizer operates in three main steps:
Optimize, Crossover, and Paraphrase.

Optimize: For each selected successful or failed
example, the Analyzer generates M positive or
negative experiences. The Refiner then generates a
strategy for each experience, and the Optimizer cre-
ates a revised prompt based on the strategy. These
revised prompts are divided into two sets: one for
prompts derived from positive experiences and the

other for those based on negative experiences.
Crossover: Following the approach of Guo
et al. (2023), which shows that combining LLMs
with evolutionary algorithms can improve prompt
fusion (similar to genetic algorithms), we select
two prompts, one from each set, and perform a
crossover operation to produce a hybrid prompt.
Paraphrase: A cache is maintained to store
the top n prompts and their corresponding scores
from previous evaluations on a validation set. Each
hybrid prompt is paraphrased using the prompts
in the cache, and both the paraphrased and hybrid
prompts are evaluated as candidate prompts. The
best prompt is either selected for the next iteration
of optimization if the stopping condition has not
been met or output as the optimized prompt. The
cache is then updated with the evaluation results.

3 Experiments

3.1 Evaluation Tasks

We select five relatively challenging tasks from
BBH (Suzgun et al., 2022), chosen for their his-
torically low performance scores, though they are
among the simpler tasks included in our evaluation.

In addition to these tasks, we incorporate two
well-known natural language understanding (NLU)
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tasks: SST-5 (Socher et al., 2013), a sentiment
classification task based on movie reviews, and
TREC (Voorhees and Tice, 2000), which identifies
types of responses. We also include MedQA (Jin
et al., 2021) and MedMCQA (Pal et al., 2022) to
evaluate our method’s effectiveness in tasks related
to medical and pharmacological knowledge.

To evaluate the effectiveness of our method in
industrial scenarios, we select an internal personal-
ized search task named Personalized Intent Query.
This task uses anonymized search data to determine
whether non-personalized search results should be
reordered based on user-specific information such
as location, language, and search history. The
task involves step-by-step initial prompts typical
of complex industrial tasks and diverse, extensive
data content that often includes redundant infor-
mation. These characteristics represent common
challenges in industrial-level prompt optimization.
For detailed data specifications, please refer to Ap-
pendix A.1.

3.2 Baselines

The following prompt optimization methods serve
as baselines for comparison with our method:

* CoT: CoT (Wei et al., 2022; Kojima et al.,
2022) is a popular baseline in many studied.
In our setup, CoT is initiated by appending
the phrase "Let’s think step by step." after the
question without utilizing any examples.

* APO: APO (Pryzant et al., 2023) generates
natural language-level gradients from incor-
rect examples and uses these gradients to
reverse-edit the prompt. APO represents ex-
plicit feedback methods.

* OPRO: OPRO (Yang et al., 2023) utilizes
implicit feedback by tracking a historical tra-
jectory of previous prompts and their asso-
ciated scores. During prompt optimization,
OPRO leverages these trajectories to guide the
LLM in generating prompts aimed at achiev-
ing higher scores.

EvoPrompt: EvoPrompt (Guo et al., 2023)
applies evolutionary algorithms, such as ge-
netic algorithms and differential evolution, to
generate prompts that optimize performance
on validation sets. It serves as a represen-
tative method for search-based optimization
techniques.

3.3 Experimental Details

We conduct extensive experiments using GPT-
4 (Achiam et al., 2023) to evaluate the effective-
ness of STRAGO and the baseline methods. APO,
OPRO, and STRAGO all start with the same ini-
tial prompt, while EvoPrompt uses 14 additional
variations.

A subset of the test set is selected as the valida-
tion set for prompt optimization. In each iteration,
the validation set is used to assess prompt qual-
ity. During the final testing phase, the remaining
test samples are used to evaluate the optimized
prompts. For each method, we select the top 5 op-
timized prompts with the highest validation scores
and evaluate them on the test samples, reporting the
performance of the best-performing prompt. For
STRAGO, we set K, M and N to 3. To ensure
consistent evaluation, the temperature is set to 0.
As outlined by Ma et al. (2024), all methods per-
form approximately the same number of prompt
searches. Detailed parameter settings are provided
in Appendix A.3.

3.4 Main Results

The experimental results are reported in Table 1,
where STRAGO consistently outperforms all base-
lines across the six tasks, showcasing the effective-
ness of our approach.

Performance on BBH and NLU tasks.
STRAGO achieves 79.77% accuracy on BBH,
56.34% on SST-5, and 87.21% on TREC, surpass-
ing previous state-of-the-art (SOTA) methods by
2.37%, 0.82%, and 2.31%, respectively. These
results demonstrate STRAGO’s strong performance
on relatively straightforward tasks. In contrast,
EvoPrompt shows smaller improvements than
APO and OPRO on BBH and TREC, suggesting
that search-based methods like EvoPrompt may
face challenges in rapid convergence. This
highlights the importance of precise and targeted
optimization strategies for rapid convergence in
iterative prompt optimization.

Performance on Domain-specific Tasks. A no-
table trend is that on domain-specific tasks like
MedQA and MedMCQA, all baselines show lim-
ited improvements, with none exceeding 1%. Some
methods, particularly EvoPrompt, even exhibit per-
formance declines, likely because they don’t lever-
age feedback from the data. In domain-specific
tasks, relying solely on LLMSs’ intrinsic capabili-
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Method BBH SST-5 TREC MedQA MedMCQA Per. Query
MI (Manual Instructions) - 5448 71.10 77.83 65.87 67.97
CoT (Wei et al., 2022) 69.43 53.86 64.40 49.10 59.07 -
APO (Pryzant et al., 2023)  76.50 55.52 84.90 77.41 65.93 67.10
OPRO (Yang et al., 2023)  77.40 55.31 83.10 76.56 66.00 -
EvoPrompt (Guo et al., 2023) 75.48 55.15 81.65 77.15 65.47 -
STRAGO (Ours) 79.77 56.34 87.21  80.05 67.20 69.26

Table 1: Performance across six tasks using GPT-4 as the evaluator with Q_END zero-shot evaluation results. The
initial instruction is CoT for BBH and the manual instructions for the other tasks. Bold text indicates the best

performance achieved.

ties often fails to yield prompts well-suited to the
data’s characteristics. In contrast, STRAGO demon-
strates improvement, with a 1.22% gain on MedQA
and a 1.33% gain on MedMCQA. This suggests
that STRAGO’s step-by-step prompt-revising strat-
egy is more effective at inducing relevant domain
knowledge and generating prompts tailored to the
specific expertise required for these tasks.

Performance on Industrial Scenario Tasks. In
the Personalized Intent Query task, we compare
STRAGO only with APO due to the unique char-
acteristics of its data. As shown in Table 1, APO
experiences performance degradation when pro-
cessing step-by-step instructions, likely because it
struggles to accurately identify the specific steps
that require editing in lengthy directives. In con-
trast, STRAGO achieves a 2.16% performance im-
provement, demonstrating that its approach of in-
crementally integrating experiences while formu-
lating step-by-step strategies provides valuable con-
textual information for optimization.

In summary, STRAGO proves effective not only
for simple prompts but also for addressing complex
tasks, including those encountered in industrial sce-
narios.

4 Analysis

4.1 Data Analysis

To validate the importance of maintaining correctly
predicted samples while correcting mispredicted
ones during prompt optimization, we analyze the
prompt drifting effect of each optimization method.
Specifically, we compare the final prompts gener-
ated by various methods with the initial prompts, as-
sessing how many new errors an optimized prompt
introduces while correcting existing ones. The re-

sults are reported in Table 2!

As shown in Table 2, STRAGO exhibits the low-
est ACR and the highest BCR for four of the six
tasks, indicating that its optimized prompts correct
more erroneous samples while adversely affecting
fewer correctly predicted samples than the base-
line methods. This demonstrates STRAGO’s supe-
rior performance compared to the baselines. The
impact of maintaining correct samples is particu-
larly significant in tasks with high-quality initial
prompts. For instance, in MedQA, where the ac-
curacy is 77.83%, although APO corrects more
errors than STRAGO (34.62% or 90 erroneous sam-
ples compared to 26.92% or 70 erroneous sam-
ples), it also adversely affects more correct samples
(10.41% or 95 correct samples compared to 4.49%
or 41 correct samples). This results in a decline in
performance for APO compared to STRAGO, as
shown in Table 1. We attribute this to STRAGO’s
integration of correct examples and positive expe-
riences during prompt optimization, which helps
avoid significant deviations from overall task objec-
tives, especially when the initial prompt is already
effective.

4.2 Ablation Study

We conduct an in-depth analysis on two tasks:
the readily optimized TREC task and the domain
knowledge-intensive MedMCQA task. In this
study, we systematically remove both positive and
negative experiences from the Analyzer, as well
as strategies from the Refiner. The experimental
results are presented in Table 3.

The Impact of Experience. The results in Ta-
ble 3 indicate that removing positive experiences
significantly increases ACR, leading to perfor-

'Note that the denominators for calculating ACR and BCR
differ.
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BBH SST-5 TREC MedQA MedMCQA Per. Query
Method
ACR BCR ACR BCR ACR BCR ACR BCR ACR BCR ACR BCR
APO 7.77 40.57 848 1242 356 56.5 1041 34.62 5.16 996 637 10.81
OPRO 7.53 4159 9.11 1273 457 5375 887 2538 536 1074 - -
EvoPrompt 8.72 37.29 8.10 11.21 5.08 50.00 9.30 24.61 4.66 7.81 - -
STRAGO 4.59 4998 7.47 13.03 386 6525 449 2692 435 123 3.82 1212

Table 2: ACR and BCR values for different optimization methods. The results for BBH represent the average across
the five subtasks. Underlined values indicate the smallest (best) ACR, while bold values denote the largest (best)

BcCR.

mance declines for STRAGO across both tasks.
This underscores the critical role of positive experi-
ences in maintaining correctly predicted samples
and enhancing overall task performance. Addition-
ally, comparisons with Table 1 reveal that STRAGO,
when utilizing only positive experiences and strate-
gies, can effectively optimize performance, consis-
tently outperforming all baseline methods in the
TREC task. Conversely, eliminating negative ex-
periences results in a reduction in BCR, indicating
that these experiences provide vital information for
correcting erroneous samples and adapting to the
subset of mispredicted data. Their absence impairs
the Optimizer’s ability to modify the prompt effec-
tively, hindering the incorporation of pivotal text
relevant to this data subset.

The Impact of Strategies. Analysis of Table 3 re-
veals that STRAGO maintains robust performance
in simpler tasks even without explicit strategies.
However, the omission of strategies significantly
diminishes STRAGO’s effectiveness in tasks re-
quiring domain knowledge. This disparity may
arise from the fact that, in simpler tasks, LLMs
can leverage their inherent capabilities to extract
useful knowledge for prompt optimization. In con-
trast, these capabilities are often insufficient for
knowledge-intensive tasks. By integrating explicit
execution strategies, STRAGO enhances the LLMs’
ability to engage in deeper analytical thinking, un-
covering more domain-specific insights and provid-
ing valuable guidance for the Optimizer.

4.3 Convergence Analysis

We analyze the convergence of STRAGO in com-
parison to the three baseline methods on the TREC
task, with results shown in Figure 2. Notably,
STRAGO converges significantly faster than the
baseline methods. For example, to achieve a test

Task Method ACR BCR Acc.
Ours 3.86 6525 8721

w/o. pos. 4.67 56.75 84.18

TREC w/o. neg. 4.17 61.5 85.62
w/o. strat.  4.27 59.25 85.19

Ours 435 123 67.20

w/o. pos.  8.10 16.02 66.00

MedMCQA o e, 415 996 6653
w/o. strat.  5.06 9.18 65.67

Table 3: Results of the ablation study on TREC and
MedMCQA tasks: Impact of omitting positive experi-
ences (w/o pos.), negative experiences (w/o neg.), and
all strategies (w/o strat.) on STRAGO.

set score above 80%, STRAGO requires the explo-
ration of only 10 prompts, whereas methods like
APO need over 90 prompts. This rapid conver-
gence is likely due to STRAGO providing more
valuable reference information than its counter-
parts. In a single optimization cycle, the Optimizer
not only utilizes positive and negative experiences
but also incorporates corresponding strategies. This
approach allows the Optimizer to access more com-
prehensive information and generate prompts with
enhanced generalization capabilities.

4.4 Cost Analysis

We compare the resource consumption of STRAGO
with that of baseline methods by estimating the
number of API calls and total token usage (see Ap-
pendix B for detailed estimation methods). The re-
sults for the TREC dataset are presented in Table 4.
As shown, APO requires the fewest API calls, fol-
lowed closely by STRAGO. Unlike OPRO and Evo-
Prompt, both of these methods leverage the UCBan-
dit algorithm to filter out many candidate prompts,
thus reducing evaluation costs on the validation set.
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Figure 2: Convergence curves for the TREC task: Com-
parison of test set scores for the optimal prompt across
different search sizes and various prompt optimization
methods.

In terms of token consumption, EvoPrompt and
STRAGO exhibit the highest usage. EvoPrompt’s
elevated consumption arises from the need to eval-
uate numerous candidate prompts on the validation
set, while STRAGO’s higher usage is due to the
longer length of its optimized prompts compared
to other methods. However, given STRAGO’s sig-
nificant performance improvement (from 84.90%
to 87.21%) over the other methods, this resource
expenditure is considered justified.

API Tokens Search Size Score

APO  18.4K 3.31M 315 84.90
OPRO 933K 4.11M 310 83.10
EvoPrompt 61.3K 5.46M 300 81.65
STRAGO 23.8K 5.46M 310 87.21

Table 4: Cost comparison on TREC Task.

4.5 Performance Using Different Models

We evaluate STRAGO and baseline methods us-
ing GPT-3.5-turbo and GPT-4 as evaluators (the
task models used to assess prompt performance),
with GPT-4 also serving as the optimizer (the
model used to enhance the prompt). The exper-
imental results are reported in Table 6. STRAGO
achieves a performance improvement of 5.45%
on GPT-3.5-turbo and 10.34% on GPT-4. Addi-
tionally, STRAGO outperforms the best baseline
by 1.86% on GPT-3.5-turbo and 2.37% on GPT-
4. This suggests that STRAGO performs better
with more advanced models. The superior perfor-
mance observed with GPT-4 may be attributed to
its improved adherence to instructions compared
to GPT-3.5-turbo, which appears to struggle with
capturing specific instructional nuances, even with

a finely tuned strategic prompt. This phenomenon
has been noted in other studies (Zeng et al., 2023;
Ma et al., 2024). Detailed results can be found in
Appendix C.

5 Case Study

This section provides an in-depth examination of
the strategies developed by the Refiner and the op-
timization processes undertaken by the Optimizer,
as illustrated through tow cases detailed in Table 5.

The first case pertains to a movie recommenda-
tion task. In this scenario, the Analyzer identifies
the prompt’s failure, attributing it to the absence
of a clear similarity criterion. To rectify this, the
Refiner develops a strategy focusing on identify-
ing such criteria, particularly by scrutinizing out-
lier data. Subsequently, the Optimizer refines the
prompt by addressing this diagnosed error and in-
tegrating the strategic insights.

The second case involves the Snarks task, where
the Analyzer underscores the importance of focus-
ing on contextual clues, such as specific words or
phrases. The Refiner then crafts a strategy that
not only incorporates these basic experiential in-
sights but also emphasizes the analysis of sentence
tone, specifically to discern exaggeration or over-
statement. These additional insights are pivotal in
determining the ironic intent of a sentence.

6 Related Work

6.1 Automatic Prompt Engineering

Prompt optimization aims to discover the most ef-
fective prompts for specific tasks (Sahoo et al.,
2024; Liu et al., 2023). Initially, this optimiza-
tion relied heavily on manually crafted templates
designed by experts (White et al., 2023), which is
labor-intensive, especially for complex tasks. To
address this, researchers have developed various
automated optimization techniques, broadly cate-
gorized into discrete and continuous methods (Li
and Liang, 2021; Zhang et al., 2021). Discrete op-
timization modifies the prompt text by adjusting
specific tokens. For instance, a prompt like "Let’s
think step by step" could be modified to "Take
a deep breath and work on this problem step-by-
step" (Yang et al., 2023). Continuous optimization,
in contrast, manipulates prompt embeddings by
appending a latent space vector to the start of the
embedding (Lester et al., 2021; Wen et al., 2023).
Our approach, STRAGO, focuses on editing dis-
crete text without requiring additional training.
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Task Experience and Corresponding Strategy

Negative Experience: Ambiguity in the similarity criterion: The prompt asks to find a movie similar to a given set
of movies without specifying the basis of similarity ...

Strategy: ... 3. Recognize Outliers: Also pay attention to the odd ones out, or the movies that don’t share the above
listed common factors. This could potentially give hints on what the "similarity’ criterion could be ...

Movie

Recommendation

Refined Prompt: Let’s carefully analyze each step. Given a set of movies,

. Remember, in the absence of clear instructions or when

there are multiple potential correct answers, it might be necessary to make an educated guess. Let’s begin.

Positive Experience: Contextual Clues: Notice words or phrases that may indicate sarcasm. This can be a
circumstance or expectation that sounds out of ordinary, such as losing money for winning in example.

Strategy: ... 2. Look for any words or phrases that contradict usual or expected situations ... 3. Pay special attention

Snarks

to the tone of the statement ... 4. Locate any exaggeration or hyperbole in the statement ...

Refined Prompt: Please identify the sarcastic statement from the given options.

The context of

the statement can also help you understand its sarcastic nature.

Table 5: Two cases illustrating the strategy and optimization of STRAGO. Note that the refined prompts displayed

do not represent the best optimization result.

GPT-3.5-turbo GPT-4

CoT 56.37 69.43
APO 59.96 76.50
OPRO 59.78 77.40
EvoPrompt 59.67 75.48
STRAGO 61.82 79.77

Table 6: Performance of GPT-3.5-turbo and GPT-4 on
BBH Task.

6.2 LLM-based Prompt Optimization

Recent studies increasingly utilize LLMs for
prompt optimization (Zhou et al., 2022). Ad-
vanced search techniques, such as Monte Carlo
Tree Search (MCTS) (Wang et al., 2023) and evo-
lutionary algorithms (Guo et al., 2023; Fernando
et al., 2023), are employed to iteratively refine and
integrate potential candidate prompts, enhancing
their effectiveness. Additionally, some research
leverages the self-reflective capabilities of LLMs,
generating prompts that preemptively avoid errors
by analyzing incorrect examples and their underly-
ing causes (Pryzant et al., 2023; Yang et al., 2023;
Ye et al., 2023; Tang et al., 2024). This reflective
approach allows models to learn from past mis-
takes, improving both the accuracy and relevance
of future prompts.

7 Conclusion

In this paper, we introduce STRAGO, a strategy-
guided, reflective-based optimization method that
utilizes balanced iterations to analyze both suc-

cessful and failed cases. This innovative ap-
proach identifies critical factors for achieving ob-
jectives while providing insights into the reasons
for failures. By leveraging in-context learning,
STRAGO delivers detailed, step-by-step guidance
for prompt optimization. Experiments conducted
across diverse tasks—ranging from simple scenar-
ios to domain-specific and complex industrial con-
texts—demonstrate that STRAGO significantly out-
performs existing prompt optimization methods,
establishing a new state-of-the-art in the field.

8 Limitations
Our limitations are outlined as follows:

Fairness of Comparison: To ensure fair com-
parisons, we adjust certain parameters in the offi-
cial code of baseline methods, aligning the number
of searches across all methods to approximately
300-315. While slight variations in the number of
searches may exist between methods, these differ-
ences are minimal and within an acceptable range
to maintain the fairness of the comparison results.
However, it is important to note that for specific
tasks, we cannot guarantee that methods like OPRO
will not exhibit significant performance improve-
ments after exceeding 1600 searches. Given that
the primary objective of prompt optimization is to
efficiently identify the optimal prompt, we consider
a search limit of 300-315 sufficient for evaluating
the overall performance of each method.

Model Selection: In our experiments, we uti-
lized GPT-3.5-turbo and GPT-4 as our task mod-
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els. While proprietary models like these may un-
dergo upgrades or discontinuation, potentially pos-
ing challenges for reproducibility, our results indi-
cate that STRAGO performs more effectively with
more advanced models. Therefore, we anticipate
that STRAGO will remain competitive as newer and
more sophisticated models become available.
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A More Experiment Details

A.1 Data Details

For the BBH task, we roughly randomly select 50
pieces of data as training data and use the remain-
ing data as the test set. During the experiment,
the first 50 pieces of the test set are used as vali-
dation data. For natural language understanding
tasks and Domain Knowledge tasks, the test set
contains more than 1000 pieces of data. We sample
300 or 400 pieces as validation data using strati-
fied sampling. The detailed data division is shown
in Table 7. For the Industry application task, we
choose internal search data. The data part includes:
user’s location, language, query keywords, some
non-personalized query results (including URL, ti-
tle, and rich text), search history (including query
keywords, query time, whether clicked, URL, title,
and rich text). The task goal is to measure the ex-
tent to which search history supports the reordering
of non-personalized queries (1-5), with 1 repre-
senting "no help" and 5 representing "Extremely
helpful". The detailed data distribution is shown in
Figure 3

A.2 Prompt Initialization

In this paper, all prompts are formulated in the
Q_END format, meaning instructions are added af-
ter the original question. For example, in the BBH
tasks, we append "Let’s think step by step” after
the question. Table 8 lists the initial prompts for all
tasks (for EvoPrompt, we use LLMs to randomly
generate several synonymous variants).

A.3 Experiment Settings

To fairly compare the performance of different
methods, we make appropriate modifications to the
official code to ensure that the number of prompt
searches for each method is roughly the same.
Specifically, for the APO method, we set the can-
didate set size to 5, with each prompt generating 5
improved versions and 10 synonymous variants per
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Task Train Eval Test
Big-Bench Hard
Logical deduction five objects 50 50 200
Movie recommendation 50 50 200
Causal judgement 50 50 137
Snarks 50 50 128
Salient translation error detection 50 50 200
General NLU
SST-5 100 400 1450
TREC 100 300 1384
Domain Knowledge
MEDQA 100 300 1173
MEDMCQA 100 400 1500
Industry Application
Personal Query Intent 50 50 231
Table 7: Data splits.

Task Initial Prompt

BBH Let’s think step by step.

SST-5 Select the most accurate emo-
tion description from the op-
tions.

Trec Select the most appropriate
type of answer from options.
MedQA / MedMCQA  Please use your domain knowl-

edge in medical area to solve
the questions.

Table 8: Initial prompts.

iteration. For OPRO, we set the expansion size to
10. For EvoPrompt, the initial setting is 15 prompts,
generating 30 prompts per iteration. To reduce API
usage, we use the UCB Bandits algorithm for pre-
liminary screening and retain the top 15 offspring
with the highest evaluation scores. This part of
the code references the official implementations
of Pryzant et al. (2023) 2, Yang et al. (2023)? and
Guo et al. (2023)*. STRAGO generates 5 prompts
per round and creates 1 synonymous variant for
each memory-based prompt. Detailed parameter
configurations are provided in Table 9.

B Cost Estimate

We refer to the method of Guo et al. (2023) for cost
estimation. Overall, we divide the entire frame-
work into three stages: generation, filtering, and
evaluation. For the estimation of API calls, taking
STRAGO as an example, the generation stage in-
cludes operations such as analyzing experiences,
formulating strategies, strategy scoring, strategy op-

Zhttps://github.com/microsoft/LMOps/tree/main/
prompt_optimization

3https ://github.com/google-deepmind/opro

*https://github.com/beeevita/EvoPrompt

timization, and cross-rewriting. In this stage, each
prompt requires about 14 API calls. When using
the UCB bandits algorithm for filtering, the number
of API calls is P x R x |S|, where P is the number
of prompts generated in each round, R is the num-
ber of evaluation rounds, and | S| is the number of
samples. In the evaluation stage, each candidate
prompt needs to be tested on the validation set, so
the total number of calls is C' x |E|, where C' is
the number of candidate prompts retained in each
round, and |E| is the size of the validation set.

For the estimation of token consumption, we
calculate the average length of each meta prompt,
optimized prompt, generated strategy, and task data,
and use these values to estimate the total number
of tokens L required to generate one prompt in the
generation stage. Therefore, the token consumption
in the generation stage is L x N, where [V is the
total search size. In the filtering and evaluation
stages, all operations are tested based on task data,
so the token consumption of these steps is (P x
R x |S]) x (Lprompt + Ldata)- By determining the
total number of steps, we can estimate the total
token consumption in the filtering and evaluation
stages.

C Detailed Results of BBH

Table 10 presents the overall performance compar-
ison of all methods on GPT-3.5-turbo and GPT-4.
This table clearly demonstrates that STRAGO out-
performs other methods across all tasks. Table 11
details the modifications each method underwent
in 5 BBH tasks, where both ACR and BCR are cal-
culated based on CoT. The data reveal that in 4/5
tasks, STRAGO not only corrected the most errors
but also made the fewest incorrect changes. Al-
though STRAGO’s performance slightly declines
on GPT-3.5-turbo, its highest BCR or lowest ACR
on this model still underscores STRAGO’s superior
performance.

D Meta Prompts

We present all meta prompts used in STRAGO in
Tables 12 to 18

E Prompt Optimization Results

We present all prompt optimized by STRAGO on
Table 19 and 20.
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Official Search Strategy Prompt Updating Our Experiments Settings
Methods . . . s . .
Initial | Expansion | Candidates | Total Initial | Expansion | Candidates | Total | Total
. . R Method Type . . R
size size per step | size per step Steps size size per step | size per step Steps | Search
APO 1 |Pi—q| x 12 4 6 Explicit Reflection 1 |Pi—1| x 15 5 5 315
OPRO 1 8 — 200 Implicit Reflection 1 10 — 31 310
EvoPrompt 10 10 10 10 Evolution Algorithm 15 30 15 10 300
StraGo - - - - Explicit Reflection 1 |Pi—1| x 10 5 7 310
Table 9: Detailed parameter settings.
Test
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Figure 3: Left side: Distribution of data length in the training and test sets; Right side: Number of data entries in
each length interval for the training and test sets.

Method Logic Dec. Movie Rec. Casual Jud. Snarks Salient Trans. Avg.

CoT 39.50 58.5 61.31 76.56 46.00 56.37

GPT3.5 APO 50.50 60.00 64.96 77.34 47.00 59.96
turbo OPRO 48.5 61.50 63.50 78.90 46.50 59.78
EvoPrompt  47.50 61.00 64.23 78.12 47.50 59.67
STRAGO 52.00 62.5 66.42 79.69 48.50 61.82

CoT 70.00 70.50 69.34 82.81 54.50 69.43

APO 81.50 78.50 70.07 85.94 66.50 76.50

GPT-4  OPRO 82.00 78.50 72.26 86.72 67.50 77.40
EvoPrompt  80.00 76.00 70.80 83.59 67.00 75.48
STRAGO 83.00 81.00 74.45 91.41 69.00 79.77

Table 10: The results of GPT-3.5-turbo and GPT-4 on 5 tasks from BBH, with the highest accuracy results highlighted
in bold.
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Logic Dec. = Movie Rec.  Casual Jud. Snarks Salient Trans.

Model Method
ACR BCR ACR BCR ACR BCR ACR BCR ACR BCR

APO 3291 39.67 1197 20.48 26.19 50.94 13.27 46.67 1522 14.81

GPT-3.5 OPRO 3544 37.19 12.82 2530 20.24 37.74 1531 60.00 10.87 10.19
-turbo EvoPrompt 37.97 38.02 10.26 20.48 23.81 4528 14.29 5333 1522 15.74
STRAGO 26.58 38.02 11.11 25.30 21.43 47.17 1224 5333 14.13 16.67

APO 12.14 66.67 2.84 3390 11.58 2857 283 31.82 5.50 34.07
OPRO 13.57 71.67 3.55 3559 10.53 3333 283 3636 734 34.07
EvoPrompt 12.86 55.88 496 30.51 13.68 35.71 4.72 2727 734 3297
STRAGO 10.00 66.67 142 3898 5.26 2857 1.89 59.09 550 42.86

GPT-4

Table 11: Comparative performance of different optimization methods on 5 BBH tasks, measured in terms of ACR
and BCR. A single underline denotes the lowest ACR, while a double underline indicates the highest BCR.

As alogician, you are good at breaking down the internal logic of the problem step by step.

<prompt>{ { prompt} } </prompt>
<examples>{{examples} } </examples>

I have provided you with a prompt and several examples that include triples of questions, actual answers,
and reference answers. Your task is to summarize the { {num}} most valuable key points to improve your
accuracy in solving this type of task.

Table 12: Collect positive experiences.

As a logician, you are good at breaking down the internal logic of the problem step by step.

<prompt>{ { prompt} } </prompt>
<examples>{ {examples} }</examples>

I have provided you with a prompt and several examples that include triples of questions, wrong answers,
and reference answers. Your task is to identify {{num}} primary reasons why the prompt causes these
wrong answers.

Table 13: Collect negative experiences.
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As an experienced prompt engineering expert, your task is to evaluate a proposed strategy based on a
specific experience. Rate the strategy for its appropriateness, clarity, and effectiveness in addressing the
experience.

# Experience
<experience>{ { experience} } </experience>

# Strategy

<strategy>{ { strategy } } </strategy>

# Rating Criteria

1. Match with Experience(M): The strategy should be directly aimed at mitigating the issue described in
the experience. A perfect alignment where the strategy completely addresses the experience issue scores
100 points, whereas a poor match scores lower, depending on how well it addresses the problem.

2. Clarity of Strategy(C): The strategy must be explained clearly and in detail. A strategy that is easy to
understand and can be practically implemented by any teacher scores 100 points, while a strategy that is
poorly described scores less or 0.

3. Effectiveness in Addressing the Issue(E): Consider how comprehensively the strategy deals with
preventing errors and promoting understanding in steps. A strategy that effectively addresses both what
should do and what should avoid to minimize errors scores 100 points. A strategy that partially addresses
these aspects scores less.

We asked 5 experts to rate the strategy. Each expert evaluate the strategy independently.
# Output Format: [{"M’: 78, ’C’: 85, ’E’: 90}, {"M’:45,...]

# Output [{

Table 14: Score.

# Instruction-Score
{{instruction_score} }

Mutate the following instruction reference [# Instruction-Score] and generate a better instruction.
{{instruction}}

New instruction:

Table 15: Paraphrase.
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As an expert in prompt engineer, your task is to create a step-by-step strategy guide on how to use specific
experience based on provided prompt.

# Begin Demos
<demo>
<prompt>read the given paragraph and identify the most logical answer among the options.</prompt>

<example>

question: The following paragraphs each describe a set of five objects arranged in a fixed order. The
statements are logically consistent within each paragraph. In a golf tournament, there were five golfers:
Eve, Amy, Ada, Rob, and Joe. Amy finished second-to-last. Rob finished below Eve. Ada finished above
Joe. Joe finished second.

Options:

(A) Eve finished last

(B) Amy finished last

(C) Ada finished last

(D) Rob finished last

(E) Joe finished last

Answer: (B) Amy finished last

Target: (D) Rob finished last

</example>

<experience> One primary reason mistakes occur in this task is due to misunderstanding or
misinterpretation of the logical order and relationships presented in the paragraphs </experience>

<strategy>

Here is a strategy guide how to achieve "understanding or interpretation of the logical order and
relationships":

1. Carefully read the entire paragraph to understand the context and the objects or individuals involved.
2. Identify the logical relationships or orderings described in the paragraph.

3. Create a visual aid such as a list or a diagram. Place the objects or individuals from left to right based
on the logical relationships. The leftmost object or individual would be the first in the order and the
rightmost would be the last.

4. As you read each relationship, adjust the positions of the objects or individuals in your visual aid
accordingly.

5. Once all relationships have been considered, your visual aid should represent the correct order of the
objects or individuals.

</strategy>

</demo>

{additional demos}
# End Demos

My current prompt is:
<prompt>{ {prompt} }</prompt>

And here is the task data:
<example>{ {example} } </example>

Through comprehensive analysis of the data, I’ve gained an experience that can improve the prompt:
<experience>{ { experience} } </experience>

Based on my current prompt, please generate a stygggyg to address the above experience.
The strategy is:

Table 16: Generate strategy.



My current instruction is:
<prompt>{ { prompt} } </prompt>

And Here are some task data:
<example>{ {example} } </example>

Through comprehensive analysis of the data, I get a experience and corresponding strategy:

# Experience
<experience>experience</experience>
# Strategy

<strategy>{ {strategy } } </strategy>

Based on my current prompt, refer to this experience and the strategy, write 1 different improved prompt.
The improved prompt is:

Table 17: Optimize.

As an experienced instruction writer, your task is to carefully analyze the provided task cases and
instructions in order to generate an improved instruction that will guide an Al system to solve the task
more effectively.

# Task Cases

The task cases and instructions can be found below:
{{examples} }

# Instruction 1

{{prompt1}}
# Instruction 2

{{prompt2}}

Please use the following step-by-step process:

- Step 1: Review the task cases to understand the key objectives and requirements that the instruction
needs to address.

- Step 2: Analyze Instruction 1 and identify its strengths and weaknesses in terms of guiding the Al
system to solve the task.

- Step 3: Perform the same analysis on Instruction 2.

- Step 4: Determine how to best combine the strengths of the two instructions while addressing their
individual weaknesses.

- Step 5: Write an improved, combined instruction that incorporates the insights from the previous steps.
The instruction should provide clear guidance for the Al system to solve the task based on the given task
cases.

- Step 6: Output the improved instruction surrounded by XML tags as follows:

<instruction>

Your improved instruction goes here.

</instruction>

Table 18: Crossover.
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Table 19: Results on GPT-4.

Task

Prompt

logical_deduction_five_objects

Lets approach this problem logically and systematically. Begin by reading the question and the provided statements
carefully to understand the order of the objects. Identify the crucial information from each statement, such as the
age or position of each object relative to the others. Use this information to construct a preliminary sequence. Then,
refine this sequence based on the given relationships. Ensure the final sequence is in line with all the statements.
Finally, use this order to answer the question and review your answer to ensure it is logical and consistent with the
given information. Let§ proceed step by step to avoid any mistakes.

movie_recommendation

Begin by thoroughly understanding the question and the list of movies it provides. Look for common factors like
themes, genres, actors, directors, or the time period they were made in. Proceed to meticulously evaluate each
option in light of these common elements. Make a well-informed choice and pick the movie that most closely
matches these elements.

casual_judgement

Let$ dissect the situation in a systematic manner, identifying crucial actions and their subsequent effects, to
comprehend the causation and arrive at a logical conclusion.

snarks

Start by meticulously reading the question and all the options to fully comprehend the context. Bear in mind that
sarcasm typically involves irony or exaggeration and often presents a situation that contradicts common expectations.
Hence, examine the tone and the implicit meaning of each statement. Search for any overstatements or unlikely
scenarios in the statements. The statement that seems to convey the opposite of what is logically expected or appears
exaggerated is most likely the sarcastic one. Compare all the options, and choose the one that best embodies sarcasm.
After selecting, take a moment to reassess your choice to ensure it accurately pinpoints the sarcastic statement.
Remember, a good understanding of the subject matter can significantly assist in identifying sarcasm, so take into
account the topic context while making your decision.

salient_translation_error_detection

Begin by gaining a thorough understanding of each error category: named entities, numerical values, modifiers
or adjectives, negation or antonyms, factual errors, and dropped content. Next, meticulously read the source and
translated text, comparing them to identify any discrepancies. Focus on differences in named entities, numerical
values, modifiers or adjectives, negation or antonyms, and facts. Based on these discrepancies, identify the type
of error and select the corresponding option from the given choices. Remember, the key to accurately identifying
the error lies in the details, so be thorough in your examination of each element of the text. After identifying the
error, review the content again to ensure no other errors have been missed. If a mistake is found, take the time to
understand why it occurred and use this knowledge to avoid similar errors in the future. Repeat this process for each
question to ensure consistent accuracy and improvement in task performance.

SST-5

Start by thoroughly examining the given text, keeping a keen eye on the overall tone and context, as well as specific
language or expressions that suggest sentiment. Recognize positive sentiment through the presence of words or
phrases that indicate approval, satisfaction, or happiness; identify negative sentiment through signs of criticism,
unhappiness, or disapproval; and discern neutral sentiment through impartial or unemotional language. Evaluate the
intensity of the sentiment, noting that words like ’extremely’, "highly’, or ‘remarkably’ can amplify the sentiment.
Be mindful of cultural nuances and language subtleties that could influence the sentiment. After your detailed
analysis, select the sentiment description from the provided options that most accurately matches your assessment.
Ensure to maintain objectivity and make sure your choice accurately reflects the sentiment present in the text. Once
chosen, reassess the text and your selection to confirm there’s no misinterpretation or overlooked details.

TREC

For each question presented, your task is to dissect it and identify the type of answer it demands. You should
categorize the expected answer into one of these six classifications: (A) Description and abstract concept, (B) Entity,
(C) Abbreviation, (D) Human being, (E) Location, or (F) Numeric value. To do this, clarify the main point of the
question, focus on its keywords or key phrases, and judiciously examine what kind of response it seeks. Each
category signifies a specific nature of response. For clarification, (A) Description and abstract concept refers to
explanations, meanings or theories; (B) Entity pertains to organizations, objects or events; (C) Abbreviation denotes
acronyms or initials; (D) Human being means names of individuals; (E) Location signifies places; and (F) Numeric
value is for numbers, dates or quantities. Your categorization should be based on the type of answer that would
optimally satisfy the query. Elaborate on your observation skills and understanding of the question along with the
categories to get the correct answer.

MedQA

Firstly, read the question carefully to understand the patient’s medical scenario, paying attention to the patient’s
medical history, symptoms, and test results. Secondly, apply logical analysis to eliminate options that clearly
do not align with the given scenario. Thirdly, use your comprehensive understanding of medical terminologies,
procedures, and protocols to interpret the medical information provided in the question. Fourthly, employ your
medical knowledge and critical thinking to further narrow down the options, considering less obvious connections
between symptoms and diseases. Finally, compare the details in the question with the options provided and select
the most appropriate answer that represents the best course of action or the most likely diagnosis or treatment based
on the comparison. Output the selected answer.

MedMcQA

As a medical professional, your deep comprehension of medical terminologies and principles is paramount for this
task. You will come across several multiple-choice questions related to different medical conditions and scenarios.
To answer these questions correctly, you need to scrutinize each question and every option carefully, using your
medical knowledge to identify and eliminate incorrect options. In cases where you encounter unfamiliar medical
terms or situations, rigorous research is advisable. Keep in mind that the devil is in the details and often, medical
questions may contain very specific or nuanced details that could be easily overlooked. As part of a continuous
learning approach, remember to learn from your past mistakes and apply the lessons to future, unseen medical
situations. Regular practice and consistent review of both the mistakes and successful attempts will aid your
understanding of medical terminologies and principles drastically. To reduce the scope of errors, take a moment to
re-check your answers against any established medical guidelines and principles before submitting them
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Table 20: Results on GPT-3.5-turbo.

Task

Prompt

logical_deduction_five_objects

Begin by thoroughly examining the problem statement, paying attention to the context and the involved parties.
Identify any relationships or sequences mentioned and document them. Use a diagram or list to help visualize and
structure this data, arranging the parties in the order provided. Once the correct sequence is established, examine
each alternative in relation to your determined order or relationships. Select the alternative that best aligns with the
given information. Finally, confirm your solution by reviewing your logic and work, making sure no details have
been overlooked or mistakes made.

movie_recommendation

Initiate the process by performing an exhaustive examination of the movies given in the task, identifying shared
features like genre, themes, directorial approach, cast, and time of release. Use these noted commonalities as a
yardstick for evaluating your choices. If you find any options that you’re not well-acquainted with, take a moment
to briefly research these movies to grasp their genre, theme, and other vital characteristics. Choose the film that
aligns most closely with the shared elements identified in the provided movies. Having a comprehensive knowledge
of a vast range of films and the film industry will prove beneficial in this task. Conclude by revisiting your chosen
answer to ascertain that it logically corresponds with the detected shared features from the initial list of movies.

casual_judgement

Begin by thoroughly analyzing the scenario provided in the question, paying close attention to the actions of the
individuals involved. Identify the action or event that is being questioned as the potential cause and the subsequent
event or result as the effect. Trace the sequence of actions that led to this outcome and evaluate if these actions
directly resulted in the outcome. Assess if the identified cause is both necessary and sufficient for the effect to occur.
Based on your comprehensive analysis, select the option that accurately answers the question.

snarks

Thoroughly examine the question and the given statements, grasping the context and searching for any inconsistency
or contradiction. Assess the tone of each statement, keeping in mind that sarcasm typically exhibits a mocking,
ironic, or overstated tone. Contrast the options and utilize these observations to judiciously determine which
statement is sarcastic.

salient_translation_error_detection

Begin by gaining a thorough understanding of each error category: named entities, numerical values, modifiers
or adjectives, negation or antonyms, factual errors, and dropped content. Next, meticulously read the source and
translated text, comparing them to identify any discrepancies. Focus on differences in named entities, numerical
values, modifiers or adjectives, negation or antonyms, and facts. Based on these discrepancies, identify the type of
error and select the corresponding option from the given choices.
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