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Abstract

Complex logical reasoning over knowledge
graphs lies at the heart of many semantic down-
stream applications and thus has been exten-
sively explored in recent years. However,
nearly all of them overlook the rich semantics
of numerical entities (e.g., magnitude, unit, and
distribution) and are simply treated as com-
mon entities, or even directly removed. It
may severely hinder the performance of an-
swering queries involving numerical compari-
son or numerical computation. To address this
issue, we propose the Complex Number and
Entity Query model (CNEQ), which comprises
a Number-Entity Predictor and an Entity Fil-
ter. The Number-Entity Predictor can indepen-
dently learn the structural and semantic fea-
tures of entities and numerical values, thereby
enabling better prediction of entities as well as
numerical values. The Entity Filter can com-
pare or calculate numerical values to filter out
entities that meet certain numerical constraints.
To evaluate our model, we generated a variety
of multi-hop complex logical queries including
numerical values on three widely-used Knowl-
edge Graphs: FB15K, DB15K, and YAGO15K.
Experimental results demonstrate that CNEQ
achieves state-of-the-art results.

1 Introduction

Complex query answering (CQA), which has
emerged as a significant task in recent years,
and its primary objective is to perform reason-
ing over knowledge graphs (KGs) and to solve
complex logical queries based on the structured
knowledge. In CQA, natural language queries
are initially converted into a subset of first-order
logic (FOL) queries, incorporating disjunctions
(∨), conjunctions(∧), and existential(∃) quanti-
fiers. For example, in Figure 1 (A), the nat-
ural language query "Where did Canadian citi-
zens with Turing Award graduate?" is first con-
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Figure 1: 4 types of complex queries: (A) represents
complex queries with multi-entity answers; (B) repre-
sents complex queries with multiple numerical value
answers; (C) represents complex queries with numer-
ical statistic answers; (D) represents complex queries
containing numerical constraints.

verted into the corresponding logical query q,
the query can be represented as directed acyclic
graphs (DAGs). Although many query (or DAG)
embedding-based methods can effectively solve
complex queries where the answers are entities
(Hamilton et al., 2018; Ren et al., 2020; Guo and
Kok, 2021; Ren and Leskovec, 2020; Wang et al.,
2023; Huang et al., 2024a), they still have limi-
tations when it comes to numerical value reason-
ing. On one hand, numerical values’ representa-
tion has always been a challenging problem in the
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field of natural language processing, especially for
structured knowledge graphs (García-Durán and
Niepert, 2017;Thawani et al., 2021;Spithourakis
and Riedel, 2018;Spokoyny and Berg-Kirkpatrick,
2020). This is because numbers are often repre-
sented as discrete nodes in KGs, which contradicts
the inherent continuous nature of numbers, lead-
ing to poor reasoning performance. On the other
hand, these methods overlook the features of nu-
merical values, such as magnitude, distribution,
range, and units. These features are crucial for rea-
soning from entities to numbers, as well as for com-
paring and computing between numbers. Above
reasons makes these methods face challenges in
complex numerical reasoning tasks.

However, complex queries involving numerical
values come in various types, making the problem
more difficult. For example, the query in Figure 1
(B) has answers consisting of multiple numerical
values. To answer such queries, the model needs
to have both multi-hop reasoning capabilities and
strong modeling abilities for attribute values. Some
link prediction models based on regression meth-
ods (Chung et al., 2023,Kristiadi et al., 2019,Tay
et al., 2017) do consider attribute values, but they
are limited as they can only perform one-hop pre-
dictions. Additionally, the query in Figure 1 (C)
requires answering mean of the entire set of nu-
merical answers. This necessitates the model to
learn features such as the distribution and range
of all numerical answer sets, so it is insufficient to
merely learn the magnitude of individual numbers.
Some complex queries also include numerical con-
straints, such as the query in Figure 1 (D), where
"larger than" is the constraint and "the average area
of American cities" is the value of the numerical
constraint. To answer such complex queries, the
model needs to predict statistic (eg: average area),
predict individual entity attributes (eg: city’s area),
and compare numerical values to filter out entities
that meet the constraints.

Therefore, to improve complex query tasks, we
propose CNEQ, a framework designed for solving
various types of queries including numerical val-
ues and entities, as illustrated in Figure 1. CNEQ
comprises two modules: a Number-Entity Predic-
tor and an Entity Filter. The Number-Entity Pre-
dictor not only uses a more reasonable method
to encode continuous numerical values, thereby
learning the semantic information of the numbers,
such as magnitude and units. It also models the
range and distribution of numerical answers sets,

to capture more macro-level features. The Entity
Filter can predict the attribute values of entities
and filter out those that meet the conditions based
on the constraints. To evaluate the performance
of CNEQ in answering complex queries, we con-
structed a benchmark dataset for validation. Ulti-
mately, our model achieved state-of-the-art results
on the dataset. Further experimental results in-
dicate that our approach to modeling numerical
values is necessary.

Our contributions mainly include: (1) We pro-
pose a method called CNEQ to solve complex
queries which explicitly models the semantic in-
formation of numerical values, and outperforms
previous models in various reasoning tasks involv-
ing both numbers and entities. (2) Based on the
modeling of numerical distributions, CNEQ can
be used for statistics query answering. (3) We in-
troduce a new task called "complex queries with
numerical constraints" and solve such problems
using CNEQ. (4) We create new benchmarks on
three knowledge graphs—Freebase, Dbpedia, and
YAGO—to evaluate the model’s performance in
answering the aforementioned types of queries.

2 Background and Preliminaries

A knowledge graph (or heterogeneous networks)
can be define as G = {(h, r, t)} ⊂ (V ×R×V)∪
(V×A×R) ,where v ∈ V represents an entity node,
R and A denote entity relation set and attribution
set respectively. r ∈ R : V × V 7→ {true, false}
and a ∈ A : V × R 7→ {true, false} can be seen
as binary predicates, indicating whether the relation
or attribution holds between the two elements.

For an arbitrary Existential Positive First-order
(EPFO) logical queries, it can be represented by
∨,∧, and ∃. There is a concrete example in Fig-
ure 1(B), the natural language question What are
the areas of American cities? can be represented
as (1 )

q = C?.∃V : City(USA, V )∧Area(V,C?) (1)

where USA represents non-variable anchor entity,
V represents existentially quantified bound vari-
able, and C? represents the target variable.

In a knowledge graph containing numerical val-
ues, We mainly discuss three types of complex
queries: (1) queries where the result is multiple
entities or multiple numerical values, as shown in
Figure 1(A) and (B); (2) queries where the result
is a statistic of all numerical answers, as shown in
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Figure 1(C); (3) queries where the result is a set
of entities that meet a certain numerical constraint,
as shown in Figure 1(D). Next, we will formally
define each type of the logical queries.

2.1 Queries with multiple entity or number
answers

We define an EPFO query on incomplete knowl-
edge graph whose answers are multiple entities or
multiple numerical values as

q = V? or C?. ∃V1 . . . Vk : e1 ∧ e2 ∧ . . .∧ en (2)

where

-ei = r (v, V ) , ei = r
(
V, V ′) or ei = a

(
V, V ′)

-V, V ′ ∈ {V?, C?, V1, . . . , Vk} ,
-V ̸= V ′, r ∈ R, a ∈ A, v ∈ V

In Equation (2), V? or C? denotes the target vari-
able of the query, which means the answer can be
multi-numbers or multi-entities. v is non-variable
anchor entity, it indicates the entity has been men-
tioned in the query, V1 . . . Vk are existentially quan-
tified bound variables. And the answer set of query
q can be represent as JqK ⊆ V ∪ R, the goal of
this query is to find out all answers v ∈ JqK on the
incomplete graph including missing answers.

2.2 Queries with statistic answers

For queries where the result is a statistic of all
numerical answers,we define the EPFO query as

statistic(C?). ∃V1 . . . Vk : e1∧ e2∧ . . .∧ en (3)

where

-ei = r (v, V ) , ei = r
(
V, V ′) or ei = a

(
V, V ′)

-V, V ′ ∈ {C?, V1, . . . , Vk} ,
-V ̸= V ′, r ∈ R, a ∈ A, v ∈ V

In Equation (3), statistic is an operator which can
calculate certain statistic for the whole number an-
swer set on the incomplete graph.

2.3 Queries with numerical constraint

For queries which have numerical constrains, We
divide the query into two parts, as shown in Equa-
tion (4). The first sub-query calculate the number
of the numerical constraint, and the second sub-
query filters the entities on the knowledge graph
based on the numerical constraints and the attribute

values of the entities, to obtain a set of entities that
meet the constraint.

statistic(C?). ∃V1 . . . Vk : e1 ∧ e2 ∧ . . . ∧ en

q = V?.∃C : a(V?, C) ∧ con(C, statistic(C?))
(4)

where

-ei = r (v, V ) , ei = r
(
V, V ′) or ei = a

(
V, V ′)

-V, V ′ ∈ {C?, V1, . . . , Vk} ,
-V ̸= V ′, r ∈ R, a ∈ A, v ∈ V, C ∈ R

Specifically, con : R× R 7→ {true, false} de-
notes an attribute filter function conless (less than),
congreater (greater than), or conequal (equal to), if
the two number satisfy the constrain, it return true.

3 Complex Number and Entity Query
model

To answer complex queries that include numeri-
cal values and entities as discussed in Section 2,
we propose CNEQ to tackle such complex queries,
which primarily consists of two components: the
Number-Entity Predictor and the Entity Filter. The
Number-Entity Predictor is responsible for reason-
ing numerical values, entities, or statistic of certain
sub-query. For example, to answer the query illus-
trated in Figure 2 (A), the Number-Entity Predictor
is used to resolve the subquery in (1) to compute
the number of numerical constraints. After that, the
Entity Filter is employed to resolve the subquery
in (2), filtering out the entities on the knowledge
graph that satisfy the constraint. In the following
parts, we will provide a detailed explanation of
them.

3.1 Number-Entity Predictor
In the specific reasoning process, it involves the
transformation from entity to entity or from entity
to number, which introduced in Figure 2 (B). One
of the Number-Entity Predictor’s tasks is to model
these two processes, and another task is to learn
the features of numerical values. Since numerical
values inherently have magnitudes, and the multi-
ple attribute values form a distribution. Therefore,
we model attribute values along two dimensions:
magnitude and distribution, to prevent the loss of
critical attribute information.

3.1.1 From entity to entity
For a query that involves mapping from one entity
set to another entity set, such as City(V1, V2), sup-
pose that at step i, the embedding of the current
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Figure 2: Illustration of our proposed CNEQ model. (A) represents the computation graph of complex queries.
The Number-Entity Predictor starts from the anchor entities and iteratively execute operators to infer the statistics.
The Entity Filter then find the entities that meet the numerical constraints based on these statistics. In (B), it
describes the detailed process from entity to entity (1 ⇒ 2) and from entity to number (2 ⇒ 3). Based on the
distribution information of numerical values, the statistics can be obtained. In (C), the workflow of the Entity Filter
is demonstrated. After obtaining the statistics (mean), the Filter Function will filter out the entities that meet the
numerical constraints based on the predicted entity’s attribute values.

sub-query is qi. By applying a relational projection
P , a logical Intersection I , or a logical Union U
(defined below), the embedding of the logical query
at step i+1 is qi+1. Specifically, at the initial stage,
the query embedding q0 is the embedding of the
anchor entity zv1 , . . . , zvn .
Relational projection operator P: Given a sub-
query qi and a relation between entities r ∈ R,
if the answer set of qi is JqiK, after the projection
qi+1 = Pr(qi), the answer set of qi+1 will be rep-
resented as Jqi+1K = {v ∈ V | u ∈ JqiK, r(u, v) =
true}.
Logical intersection operator I: Given a set of
sub-queries {q1i , . . . , qni }, after the logical intersec-
tion operation qi+1 = I({q1i , . . . , qni }), the answer
set will be represented as Jqi+1K = ∩j=1,...nJqji K.
Logical union operator U : Given a set of sub-
queries {q1i , . . . , qni }, after the logical union oper-
ation qi+1 = U({q1i , . . . , qni }), the answer set will
be represented as Jqi+1K = ∪j=1,...nJqji K.

In the implementation process, we can use dif-
ferent types of query embedding models to learn P ,
I, and U , which will be regarded as the backbone
of the Number-Entity Predictor.

3.1.2 From entity to number
For mapping from entities to their attribute val-
ues in the complex queries, such as Area(V,C),
suppose that at step i, the current node is entity,

and we represent the current sub-query’s embed-
ding as qi, the entity’s attribute as a ∈ A. There-
fore, the attribute mapping can be represented as
qi+1 = fattr(qi, a), where qi and qi+1 are input
and output of this attribute mapping. Specifically,
fattr(qi, a) is a trainable MLP, which is used to
learn information related to attributes.

After obtaining qi+1 at step i + 1, since these
numerical attributes have characteristics of both
magnitude and distribution, we model each aspect
as follows:
Modeling the property of magnitude. We use
a deterministic, independent embeddings called
DICE (Sundararaman et al., 2020) to effectively
capture magnitude properties. This method project
the real number in R to D-dimensional space RD,
and representing the distance between numerical
values as cosine similarity between their vectors.
Therefore, for any numerical value, we can directly
generate its numerical representation without train-
ing. To embed number si, i = 1...n, , we employ
a linear mapping to map si ∈ [0, |a− b|] to angles
θ ∈ [0, π]:

θ (si) =
si
|a− b|π (5)

where [a, b] ⊂ R is the range of all observed num-
bers. Then we generate vectors in RD by applying
a Polar-to-Cartesian transformation in D dimen-
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sions:

zdi =

{
[sin(θ)]d−1 cos(θ), 1 ≤ d < D

[sin(θ)]D, d = D
(6)

zi is the embedding of si, where d of zdi indicates
the coordinate in zi. Therefore, this method can en-
code any continuous numerical values’ magnitude.
Modeling the property of distribution. Since
the current sub-query qi+1 may be an intersection
or union of multiple attribute value sets, we model
the distribution of them using a Gaussian Mixture
Model (GMM). This model assumes that numbers
are sampled from a weighted mixture of K inde-
pendent Gaussians, and we optimize the marginal
log-likelihood objective by summing over the mix-
tures. We define two MLPs πu, πσto predict the
mean and variance of this mixture model. Addi-
tionally, we use the sigmoid function to constrain
the mean within the range [0, 1]. The distribution’s
generation process (7) and training objective (8)
can be represented as follows:

u = πu(qi+1, a)

σ = πσ(qi+1, a)

u = [u1, u2, ...uk], σ = [σ1, σ2, ...σk]

y′ ∼ N[0,1](u, σ)

(7)

logP (y|qi+1) = log
K∑

k=1

[pk ·
C

σk
exp(−(y − uk

σk
)2)]

(8)
Here, qi+1 is the embedding of the query, y is a
ground truth of this query, and pk is the weight
of the k-th Gaussian distribution. The larger the
training objective logP , the closer it is to the true
distribution.

3.1.3 Training objective of Numerical-Entity
Predictor

Our goal is to learn entity and operators’ (P, I,U )
embeddings as well as the parameters of distribu-
tion (πu, πσ). Therefore, given a training set of
queries and their answers, we optimize the model
using the loss function defined in equation (9).

L = − 1

N

N∑

k=1

log(ϕ(qk, vk) + logP · IR(vk))

(9)
where (qk, vk) is one of N positive query-answer
pairs. IR(vk) is an indicator function, which equals
to 1 when vk is number, and 0 when vk is entity.

logP is defined in equation (8). And ϕ can output
the the probability of the correct answer among all
candidates, using softmax to compute the result of
the scoring function score.

ϕ(qk, vk) = softmax(score(qk, vk)) (10)

In (10), the specific form of the scoring function
score is determined by the backbone model (Sec-
tion 3.1).

3.2 Entity Filter
After using the Number-Entity Predictor to predict
numerical constraints, the Entity Filter will be used
to predict the attributes of all entities in the knowl-
edge graph and filter out the entities that meet the
constraints. For example, in Figure 2 (C), in this
process, the Entity Filter first uses a pre-trained link
predictor to predict the missing attribute values of
entities, and then scores the entities according to
the Filter function.

3.2.1 Attribute link predictor
Since the prediction of entity’s attribute value is a
one-hop link prediction, we trained a link predic-
tor f(v, a) using TransEA (Wu and Wang, 2018)
to predict attribute values. Specifically, TransEA
trains entity triples ⟨h, r, t⟩ and attribute triples
⟨v, a, c⟩ separately. When given an entity embed-
ding e and an attribute embedding a, the link pre-
dictor f(v, a) will output the predicted attribute
value ĉ.

3.2.2 Filter function
The filter function is used to compare the number
obtained from the subquery (e.g., c = mean(C?))
with the predicted attribute value ĉ which obtained
from ĉ = f(v, a), thereby selecting the set of
entities that meet the restriction con. Inspired by
Demir et al. 2023, we use 3 kinds of filter functions
: greater than, equal to, and less than, and we
define them as follows:
Equal to.

conequal,a(ĉ, c) :=
1

exp(|ĉ− c|/σa)
· τa(v) (11)

where σa denotes the standard deviation of
Ca := {c ∈ R|a(v, c) = true, v ∈ V}, which
means all numerical values of attribute a on
knowledge graph. And τa(v) represents the
probability that entity v has attribute a, which will
be introduced later. In equation (11), dividing by
the standard deviation σa is a method to normalize
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the difference |ĉ − c|, and we constrain the value
of conequal,a(ĉ, c) within [0,1], representing the
likelihood that the entity satisfies this constraint.
As the difference between c and ĉ , denoted as
|ĉ− c| , approaches 0, conequal,a(ĉ, c) gets closer
to 1.
Less than.

conless,a(ĉ, c) :=
1

1 + exp((ĉ− c)/σa)
· τa(v)

(12)
In equation (12), conless,a(ĉ, c) represent the

likelihood that the entity’s attribute value ĉ is
less than c, so when (ĉ − c) approaches −∞,
conless,a(ĉ, c) approaches 1.
Greater than.

congreater,a(ĉ, c) := 1− conless,a(ĉ, c) (13)

Similar to less than, we define the greater than
constraint using (13)

Among the three filter functions mentioned
above, since entity v may not necessarily have at-
tribute a, we use τ(e) to calculate the probability
that entity e has attribute a. To achieve this, we add
a virtual node vvirtual to the knowledge graph. If
entity v has attribute a, we add a(v, vvirtual). Conse-
quently, after training the link predictor, predicting
the existence of an attribute can be transformed
into predicting the presence of a link between two
nodes.

4 Experiments

In this section, we will demonstrate CNEQ’s ef-
fectiveness to answer complex logical queries con-
taining numerical values. Following the settings
of Ren et al., 2020, our evaluation primarily fo-
cuses on queries in incomplete knowledge graphs.
We recommend readers to refer to Appendix A for
understanding the evaluation protocol.

4.1 Knowledge graph and query generation

In the experimental section, we use three widely
used knowledge graphs: FB15K, DB15K, and
YAGO15K. Detailed information about these
knowledge graphs will be provided in Appendix B.

To verify our model’s prediction capabilities for
entities and numerical values, we generated 8 types
of query with entity answers and 9 types of query
with numerical answers. Also, we create 9 types of
constrained queries, each of them have 3 constrains.
The detailed structures of these queries are shown

in Figure 3. And the specific generation process
will be described in Appendix C.

4.2 Baseline models
In the experimental section, we compare our pro-
posed model with two query encoding-based mod-
els, GQE and Q2B:

• GQE (Hamilton et al., 2018): GQE embeds a
query into a single vector and models different
operators as translations and deep sets (Zaheer
et al., 2017).

• Q2B (Ren et al., 2020): Q2B encodes queries
into hyper-rectangles and represents differ-
ent operators as interactions between hyper-
rectangles.

Since we made some modifications to the base-
line models in different experiments, we will pro-
vide a detailed introduction to the specific forms of
the baselines in the following sections.

4.3 Main results
Performance on Numerical Queries. In numer-
ical queries and the following entity queries, we
use GQE and Q2B as baselines, while also using
these two models respectively as the backbone for
CNEQ’s Number-Entity Predictor. In Table 1, we
evaluate the performance using mean reciprocal
rank (MRR) (Hits@10 in Table 6). The results indi-
cate that CNEQ achieves more accurate results than
GQE and Q2B in predicting queries with multiple
numerical answers, especially when using Q2B
as the backbone, where the relative improvement
is more significant. In addition, for more complex
query types (e.g., n_2p, n_3p), the relative improve-
ment of CNEQ is greater (average 3.3 and 3.28),
indicating that our model has a stronger ability to
mitigate the incompletion in multi-hop numerical
queries. Overall, CNEQ outperforms the two base-
line models across all three datasets.
Performance on Entity Queries. Additionally,
we compared 8 types of complex queries with en-
tity answers. We found that after considering the
numerical attributes of entities, the model’s abil-
ity to predict entity answers also improved. The
tables in Appendix D show that CNEQ’s predic-
tion performance for entity answers also surpasses
that of the two baseline models. This indicates that
the numerical attributes of entities can enhance the
model’s predictive ability for entities as additional
information.
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Figure 3: Illustration of 8 types of entity queries, 9 types of numerical queries and 9 types of constrained queries.
The "subquery" of constrained queries can be replaced with various types of numerical queries. In each query type,
"i" indicates intersection, "u" indicates union, and "p" indicates projection.

NumberDataset Backbone Method
n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp number_all

Baseline 2.68 13.16 3.75 21.27 26.47 0.73 0.74 9.15 6.35 9.72
GQE

CNEQ 2.98 17.47 9.47 21.94 26.23 0.83 0.80 9.79 6.73 10.95
Baseline 2.58 15.61 3.06 23.32 29.02 0.89 0.67 13.88 11.25 11.65

FB15K
Q2B

CNEQ 2.70 21.17 9.69 28.56 32.47 0.94 0.77 21.93 20.19 16.21
Baseline 1.83 6.46 2.38 10.23 19.63 0.60 0.45 3.13 2.27 5.09

GQE
CNEQ 1.87 9.34 3.9 13.88 21.77 0.69 0.58 3.65 2.62 6.19

Baseline 1.62 6.89 2.18 15.27 23.97 0.63 0.53 2.37 3.40 6.21
DB15K

Q2B
CNEQ 1.76 9.08 3.92 19.9 25.74 0.70 0.56 5.34 3.46 7.56

Baseline 1.29 10.15 2.59 21.33 31.28 0.30 0.21 4.47 2.59 8.54
GQE

CNEQ 0.76 11.83 4.50 22.89 32.88 0.35 0.25 4.95 2.87 9.11
Baseline 0.78 13.82 2.33 30.72 41.21 0.27 0.18 7.27 5.05 11.82

YAGO15K
Q2B

CNEQ 0.68 17.02 4.81 36.67 44.99 0.32 0.17 9.80 5.71 13.90

Table 1: MRR results of numerical queries on the FB15K, DB15K, and YAGO15K datasets. "Backbone" of CNEQ
refers to the backbone model used in the Number-Entity Predictor. "Baseline" represents the results predicted using
this backbone model. "number_all" represents the average performance of all queries.

Performance of Statistical Predictions Section
3.1 introduces that the Number-Entity Predictor can
model the distribution of numerical values, thus it
can be used to predict the statistics by using distri-
bution’s characteristics. Therefore, we predicted
the statistics in 9 types of numerical queries. It
is worth noting that the model is trained only on
entity queries and numberical queries shown in Fig-
ure 3, without requiring additional training in this
process. For a simple comparison, we employed
two baselines: (1) attribute mean: following Demir
et al., 2023, we used a model that always predicts
the mean value 1

|Ca|
∑

c∈Ca of attribute a. (2) Q2B
(top_k): Since the Q2B model can only score and
sort all numerical values but cannot determine how
many answers it has, so we sampled the top k an-
swers to compute their statistics, where k is a hy-
perparameter, and we set it to the average number
of answers. In Table 2, it can be observed that our
CNEQ model outperforms the two baseline models
on FB15K dataset.
Performance of Constrained Queries To valid

CNEQ’s ability to answer complex queries with nu-
merical constraints, we conducted tests on a gener-
ated dataset that includes three types of constraints:
"equal to", "greater than", and "less than". As a sim-
ple comparison, we replaced our Number-Entity
Predictor with Q2B(top_k), while keeping the En-
tity Filter unchanged. The results in Table 3 show
that CNEQ achieves better performance across
all types of complex queries, indicating that our
Number-Entity Predictor has stronger predictive
capabilities for numerical constraints compared
to Q2B(top_k). Also, with the aid of the Entity
Filter, CNEQ is able to effectively answer these
queries with constraints. Among these, CNEQ
shows the most significant improvement for "equal
to" type queries, with an average increase of 3.72
(Hits@10). This is because "equal to" requires a
higher predictive capability for numerical values,
and CNEQ, with its stronger numerical prediction
ability, is better equipped to handle such queries.
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Method n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp all
MAE ↓

Attribution mean 0.3616 0.3520 0.3477 0.3474 0.3464 0.3370 0.3332 0.3457 0.3457 0.3443
Q2B(top_k) 0.0617 0.0468 0.0402 0.0567 0.0594 0.0535 0.0481 0.0241 0.0170 0.0434

CNEQ 0.0334 0.0156 0.0173 0.0183 0.0166 0.0219 0.0176 0.0150 0.0126 0.0173
MSE ↓

Attribution mean 0.1528 0.1469 0.1427 0.1428 0.1423 0.1388 0.1364 0.1415 0.141 0.1415
Q2B(top_k) 0.0099 0.0056 0.0044 0.0076 0.0079 0.0056 0.0041 0.0022 0.0011 0.0049

CNEQ 0.0049 0.0010 0.0015 0.0012 0.0011 0.0018 0.0012 0.0007 0.0006 0.0012

Table 2: MRR results of predicting the mean of numerical answers.

Constrain Model n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp

Equal to
Q2B(top_k)+ Entity filter 11.48 10.84 10.70 11.45 11.87 11.67 11.45 12.22 12.50

CNEQ 15.94 16.29 14.09 16.50 16.17 14.84 14.28 15.10 14.43

Greater than
Q2B(top_k)+ Entity filter 9.57 10.78 11.48 11.05 10.40 11.42 12.05 11.04 12.26

CNEQ 10.34 11.86 12.09 11.54 11.84 12.02 12.73 11.85 12.43

Less than
Q2B(top_k)+ Entity filter 7.03 7.68 8.72 8.24 8.24 8.63 9.48 9.15 9.51

CNEQ 7.93 8.70 9.32 8.86 9.34 9.22 11.50 9.39 9.78

Table 3: Hits@10 results of answering constrained queries.

Method n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp
CNEQ(w/o both) 2.58 15.61 3.07 23.32 29.02 0.89 0.67 13.88 11.25

CNEQ(w/o magnitude) 2.55 19.88 8.99 27.78 31.39 0.86 0.62 20.51 19.43
CNEQ(w/o distribution) 2.68 19.75 9.11 26.98 31.78 0.82 0.88 20.48 19.08

CNEQ 2.70 21.17 9.69 28.56 32.47 0.94 0.77 21.93 20.19

Table 4: MRR results of the ablation study. To demonstrate the importance of value’s characteristics, We removed
the "distribution" and "magnitude" modules of the numerical values.

4.4 Ablation study
Table 4 presents the results of the ablation study.
"magnitude" and "distribution" represent the two
modules mentioned in Section 3.1.2. It can be ob-
served that the prediction performance decreases
after removing either the distribution or magnitude
components. Particularly, when both components
are removed, there is a significant drop in perfor-
mance, indicating that our modeling of numeri-
cal features greatly enhances the prediction perfor-
mance of numerical attributes.

5 Related Work

Our work builds upon a wealth of previous research
in knowledge graph reasoning, numerical repre-
sentation, etc. The methods most relevant to our
work are about complex reasoning over knowledge
graphs. These methods often use different struc-
tures to encode complex queries. For example,
Hamilton et al., 2018 encode queries into a vector,
and Ren et al., 2020 encode queries into hyper-
rectangles. In addition, Ren and Leskovec, 2020,
Yang et al., 2022, Long et al., 2022, and Choudhary
et al., 2021 use different types of distributions to

represent complex queries. Xu et al., 2023 encode
diverse complex queries into a unified triple, and
Bai et al., 2022 encode each query into multiple
vectors, named particle embeddings. These differ-
ent modeling approaches are used to solve different
problems when answering queries.

Second line of related work is learning numerical
values. Due to the importance of numerical values,
many works have focused on improving model’s
ability to learn numerical values (Spokoyny and
Berg-Kirkpatrick, 2020; Geva et al., 2020; Zhang
et al., 2020; Huang et al., 2024b), thereby enhanc-
ing the model’s performance on downstream tasks.
It is same in Knowledge Graph, García-Durán and
Niepert, 2017,Chung et al., 2023, Tay et al., 2017
have learned the attributes of entities. Lin et al.,
2016 propose a knowledge representation model
which can learn entity, relation, and attribute si-
multaneously. Kotnis and García-Durán, 2018 pre-
dicting numerical values by leveraging global and
local information to fill in missing numerical at-
tributes. And Bai et al., 2023 addressed numerical
comparison by adding edges between attribute val-
ues. These works all attempt to utilize numerical
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information on knowledge graphs.

6 Conclusion

We propose CNEQ, designed to address complex
queries involving numerical values. Additionally,
CNEQ effectively handles complex queries related
to statistics and queries with numerical constraints.
We also construct benchmarks for various types of
complex queries, which facilitates further research
on complex queries over knowledge graphs. Our
results demonstrate that CNEQ outperformes sev-
eral query embedding models, and achieves SOTA
performance.

7 Limitations

This paper has some limitations. For the rela-
tionships between numerical values, in addition
to greater than, less than, and equal to, there should
also be multiplication and division relationships.
However, we have not designed experiments or val-
idations for these relationships. We will complete
the relevant validations in our future work.
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A Evaluation Protocol

For any query q, assume that its answer sets ob-
tained using subgraph matching on Gtrain, Gvalid,
and Gtest are JqKtrain, JqKvalid, and JqKtest, re-
spectively. We train using q with its answers
JqKtrain, and during evaluation, we test only on
JqKvalid \ JqKtrain (JqKtest \ JqKvalid), which means
the answers found in Gvalid but not in Gtrain (sim-
ilarly for JqKtest \ JqKvalid). Therefore, we focus
solely on non-trivial answers that require inferring
at least one edge to find the answer. Given a test
query q, for each of its non-trivial answers v, we
rank v among all non-answer sets V \ JqKtest as r.

The evaluation metrics can be Mean Reciprocal
Rank (MRR): 1

r or Hits at K (H@K): 1[r ≤ K] for
predicting entities or numerical values. And when
predicting the statistics, we use Mean Absolute
Error (MAE) and Mean Square Error (MSE) to
evaluate.

B Statistics of Knowledge Graphs

Dataset Split Ent_nodes Num_nodes Rel edges Att edges

YAGO
train 15351 17596 196616 21847
valid 15386 18270 221194 22807
test 15404 18770 245772 23520

DB15K
train 12766 20540 145120 33129
valid 12811 22876 161868 37270
test 12842 25159 178394 41411

FB15K
train 14940 12310 947540 20248
valid 14949 13518 1065982 22779
test 14951 14689 1184426 25311

Table 5: The information of the three knowledge graphs
which we used to generate queries

In Table 5, we present detailed data on the
three knowledge graphs: FB15K (Bordes et al.,
2013), DB15K (Bizer et al., 2009), and YAGO15K
(Suchanek et al., 2007). For a given knowledge
graph G, we first split its edges into training edges,
validation edges, and test edges in a ratio of 8:1:1.
Then, we partition these three types of edges to
form the training graph Gtrain, validation graph
Gvalid, and test graph Gtest, respectively. Their
edges consist of: training edges, training edges +
validation edges, and training edges + validation
edges + test edges.

Among them, Ent_nodes represents the number
of entity nodes, Num_nodes represents the num-
ber of numerical nodes, Rel_edges represents the
triples between entities, and Att_edges represents
the triples between entities and numerical values.

Algorithm 1: Query generate algorithm

1 Input:
2 G: Knowledge Graph
3 T : Template of the query
4 Output:
5 q: query has been generated
6 ans: answers of query q
7 t← answer_type(T )
8 if t is entity then
9 vroot ← sample({v|v ∈ V})

10 q ← sample_query(vroot, T ,G)
11 ans← find_answers(q,G)
12 end
13 else if t is number then
14 vroot ← sample({c|c ∈ C})
15 q ← sample_query(vroot, T ,G)
16 ans← find_answers(q,G)
17 end
18 return q, ans

C Query generation

In this section, we will introduce the process of
generating different queries. For example, in Al-
gorithm 1, given a knowledge graph G and a query
template T , the model first determines the an-
swer’s type based on the template. For example, if
the answer’s type is entity, it samples an entity v
from the entity set V as the root node of the DAG,
which is the target node of the query. The function
sample_query starts from the root node v and it-
eratively gets the previous operator according to
the DAG’s topological structure. If the operator is
P , it instantiates P as p and samples a node v′ that
satisfies p(v, v′); if the operator is I or U , it instan-
tiates multiple p and samples nodes v′ that satisfies
p(v, v′) separately. This process is recursively exe-
cuted until reach leaf node, thereby generating the
query q. After that, the function find_answers
can start from the leaf nodes (anchor entities) in
q and search for answers on the knowledge graph,
finally obtaining the answer set ans.

For queries that answer is statistic, it is only
necessary to calculate the statistics of all answer
numbers in ans for the query q. Additionally,
for queries that include numerical constraints, af-
ter obtaining the number c of the constrain, we
find the entity set {v|a(v, c′) = true, con(c, c′) =
true, v ∈ V} on the knowledge graph whose at-
tribute value c′ satisfy con(c, c′) = true, which
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serves as the answer to the query. Specifically, the
answer entities in the test set only exist in Gtrain
but not in Gtest, as discussed in Section A.

Table 9 illustrates all types of complex queries
we generated. For "Entity queries" and "Num-
ber queries," we sampled across three knowledge
graphs. For any given knowledge graph G, we gen-
erated training queries, validation queries, and test
queries on Gtrain, Gvalid, and Gtest, respectively.
Additionally, for "Constrained queries," We gen-
erated queries for the three types of constraints:
"equal to," "greater than," and "less than". since no
training is required, we only generated test queries.

D More information about performance
of entity queries

In Tables 7 and 8, we present the MRR and
Hits@10 results of entity queries on the FB15K,
DB15K, and YAGO15K. It can be observed that
for entity queries, CNEQ, whether using GQE or
Q2B as the backbone, outperforms the baseline.
This may be because CNEQ takes into account
the attribute information of entities, enriching the
representation of entity nodes both in terms of spa-
tial structure and semantic information, thereby en-
hancing the prediction performance of entity. Par-
ticularly, when Q2B is used as the backbone, the
overall performance of improves more, with in-
creases of 1.97%, 2.85%, and 4.82% (MRR) on
the three datasets, respectively. This is because
Q2B has a stronger learning capability for entity’s
features compared to GQE, making the promotion
of numerical attributes more evident.
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NumberDataset Backbone Method n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp number_all
Baseline 5.04 24.09 7.97 34.14 42.45 1.38 1.48 17.55 12.73 16.83

GQE
CNEQ 5.54 28.55 16.37 34.82 42.21 1.63 1.63 18.10 13.18 18.45

Baseline 4.74 26.66 6.31 37.31 45.51 1.66 1.30 23.66 20.17 19.36
FB15K

Q2B
CNEQ 5.04 31.64 17.16 41.27 47.81 1.71 1.49 29.20 26.85 23.51

Baseline 2.74 12.49 4.70 20.25 35.33 1.02 0.92 6.15 4.59 9.58
GQE

CNEQ 2.96 16.33 7.48 25.33 37.67 1.14 0.98 6.76 5.06 11.14
Baseline 2.87 13.33 4.43 27.47 40.15 1.12 0.99 6.74 4.69 11.05

DB15K
Q2B

CNEQ 2.93 16.31 7.60 32.60 41.97 1.23 0.74 9.54 5.43 12.79
Baseline 2.01 20.1 5.86 36.75 52.36 0.48 0.32 9.32 5.29 15.13

GQE
CNEQ 1.78 23.83 8.97 38.89 51.39 0.48 0.35 10.44 5.85 16.01

Baseline 1.92 26.16 5.14 48.29 60.03 0.53 0.30 15.51 10.39 19.22
YAGO15K

Q2B
CNEQ 1.33 32.09 9.88 52.62 62.78 0.43 0.29 17.49 10.46 21.18

Table 6: Hits@10 results of numerical queries on the FB15K, DB15K, and YAGO15K datasets

EntityDataset Backbone Method e_1p e_2p e_2i e_3i e_ip e_pi e_2u e_up entity_all
Baseline 30.91 9.81 38.04 43.03 15.97 26.52 8.76 10.98 22.35

GQE
CNEQ 30.99 11.10 38.63 43.47 16.07 27.32 11.48 9.45 22.88

Baseline 38.36 8.69 37.00 41.50 13.64 27.08 17.27 8.10 22.88
FB15K

Q2B
CNEQ 38.29 9.94 37.09 42.57 14.35 27.00 17.32 8.40 23.33

Baseline 11.95 3.14 26.17 41.23 4.45 11.47 3.19 2.79 11.94
GQE

CNEQ 12.63 3.20 26.41 41.15 4.75 11.61 3.29 3.05 11.96
Baseline 13.82 2.76 27.61 41.21 4.43 12.70 3.42 2.86 12.27

DB15K
Q2B

CNEQ 14.10 2.98 29.25 42.52 4.53 12.85 3.57 2.93 12.62
Baseline 12.34 2.58 31.88 39.96 3.71 12.48 3.93 2.40 13.24

GQE
CNEQ 12.89 2.84 32.64 41.41 3.97 12.75 4.42 2.37 13.41

Baseline 19.40 2.01 39.67 48.56 4.10 14.12 6.96 2.17 16.19
YAGO15K

Q2B
CNEQ 22.95 2.65 40.83 50.10 4.53 15.10 7.21 2.47 16.97

Table 7: MRR results of entity queries on the FB15K, DB15K, and YAGO15K datasets

Dataset Backbone Method Entity
e_1p e_2p e_2i e_3i e_ip e_pi e_2u e_up entity_all

FB15K
GQE

Baseline 55.76 20.30 62.63 70.15 26.95 45.72 23.00 17.08 38.96
CNEQ 56.41 20.30 63.54 70.48 27.56 46.28 24.09 17.88 39.58

Q2B
Baseline 64.41 17.61 63.12 69.65 24.47 47.53 33.79 15.73 40.37
CNEQ 65.26 18.8 63.78 70.46 24.63 47.68 33.84 15.83 40.84

DB15K
GQE

Baseline 24.63 6.31 49.71 68.29 9.08 22.88 7.03 5.45 21.84
CNEQ 26.54 6.57 50.24 68.62 9.72 23.11 7.13 6.06 22.18

Q2B
Baseline 29.26 5.80 52.41 69.77 8.60 25.06 7.87 5.71 22.89
CNEQ 30.56 6.06 52.70 70.06 8.68 25.20 8.23 5.74 22.95

YAGO15K
GQE

Baseline 26.27 5.93 51.37 61.44 7.36 23.76 9.07 4.57 22.66
CNEQ 27.85 6.38 52.71 62.26 8.05 24.11 10.32 4.94 23.16

Q2B
Baseline 36.24 4.36 58.41 67.33 8.54 27.65 17.53 4.44 26.29
CNEQ 40.39 5.82 59.39 67.90 9.20 28.65 17.55 5.19 27.17

Table 8: Hits@10 results of entity queries on the FB15K, DB15K, and YAGO15K datasets
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Entity queries
KG Splid e_1p e_2p e_2i e_3i e_ip e_pi e_2u e_up

train 16135 48284 65810 87240 87769 83246 80350 89367
valid 2292 8468 7233 9486 9907 9737 9473 9918YAGO15K
test 2348 8437 7274 9498 9896 9736 9447 9912
train 25053 60102 71806 87282 88412 85824 82157 89337
valid 2505 8570 5930 7756 9898 9656 9366 9910DB15K
test 2435 8524 6003 8077 9907 9687 9359 9913
train 38373 78663 81348 88354 88611 88353 87621 88739
valid 4828 9524 9047 9738 9798 9788 9778 9798FB15K
test 4845 9506 9013 9765 9793 9791 9766 9797

Number queries
KG Splid n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp

train 19586 22130 59521 70071 87918 89926 90000 80268 89476
valid 894 2849 8834 7578 9619 9921 9936 9438 9920YAGO15K
test 679 2803 8813 7605 9597 9925 9936 9466 9920
train 23008 37294 78431 77418 88352 89785 90000 82180 89230
valid 2759 3697 9361 7016 8810 9923 9936 9454 9908DB15K
test 2701 3755 9411 7145 8932 9928 9936 9411 9893
train 16815 38490 80923 80830 88355 88524 88750 85209 88712
valid 2037 4880 9565 9008 9759 9790 9798 9701 9798FB15K
test 2004 4931 9578 9105 9754 9785 9798 9699 9797

Constrained queries
KG Constrain n_1p n_2p n_3p n_i2pp n_i3pp n_u2p n_u3p n_u2pp n_u3pp

Equal to 4518 17227 45982 41407 49151 49813 49968 48486 49956
Greater than 4504 17280 45985 41214 49123 49816 49968 48441 49959FB15K

Less than 4535 17221 46040 41419 49148 49801 49968 48381 49956

Table 9: The statistics of 3 types of queries sampled from FB15k, DB15k, and YAGO15k.
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