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Abstract

This paper tackles a task: discourse parsing
for videos, inspired by text discourse parsing
based on Rhetorical Structure Theory (RST).
The task aims to construct an RST tree for a
video to represent its storyline and illustrate
the event relationships. We first construct a
benchmark dataset by identifying events with
their time spans, providing corresponding cap-
tions, and constructing RST trees with events as
leaves. We then evaluate baseline approaches
to video RST parsing: the ‘parsing after cap-
tioning’ framework and parsing via visual fea-
tures. The results show that a parser using gold
captions performed the best, while parsers rely-
ing on generated captions performed the worst;
a parser using visual features provided inter-
mediate performance. However, we observed
that parsing via visual features could be im-
proved by pre-training it with video caption-
ing designed to produce a coherent video story.
Furthermore, we demonstrated that RST trees
obtained from videos contribute to multimodal
summarization consisting of keyframes with
texts.

1 Introduction

Videos often consist of several parts, including
an introduction, development, turn, and conclu-
sion, which together form a coherent plot to effec-
tively convey a story.1 Even shorter videos, such as
consumer-generated videos lasting only a few min-
utes, possess similar story structures. The primitive
units in the video that make up the story structure
are called events,2 which are used to develop and
advance the story (Li et al., 2020a).

*Equal contribution.
1Note that the video story structures addressed in this paper

are not confined to such patterns.
2An event indicates a video span (segment), a kind of

logical story unit (Hanjalic et al., 1999). Recently, there has
been reasonable improvement in segmentation performance,
as demonstrated by Ji et al. (2022).

The recent success of discourse parsing, particu-
larly Rhetorical Structure Theory (RST) style dis-
course parsing, e.g., Kobayashi et al. (2022), in-
spires us to introduce it to help us understand video
stories. Consider the significance of discourse pars-
ing for video summarization tasks. For instance,
the video in Fig. 1 captures the high jump com-
petition at Summer Universiade held in Taipei. It
focuses on three competitors, displaying their at-
tempts at different event spans. Then, it features
the winner of the competition, which is the third
competitor. The first competitor’s event span is
shown between seconds 9.6 and 21.5. The second
competitor’s event span is between seconds 21.6
and 27.9, and the third competitor’s event span is
between seconds 32.1 and 50.7. It is worth noting
that the second competitor also joined the lap of
honor. Consequently, omitting the third competi-
tor’s span in a summary may mislead viewers into
believing that the second competitor is the winner
(see Appendix A). This highlights the requirement
that a summary must maintain the structure of the
story in the original video. That is, we need to
understand how events are related to each other
in order to form a coherent storyline. Discourse
parsing is a promising solution to this issue and can
be helpful in many tasks that depend on video com-
prehension, such as video summarization (Gygli
et al., 2014), video storytelling (Li et al., 2020b),
video QA (Zhong et al., 2022), and other related
tasks.

This paper focuses on discourse parsing for
videos (hereinafter, video RST parsing), drawing
inspiration from RST-style text discourse parsing
approaches. Since this is still a relatively new task,
we begin by building a benchmark dataset. We con-
structed a reliable benchmark dataset for the task,
Video Discourse TreeBank (VDTB), comprising
1,100 videos obtained from YouTube. This dataset
includes annotations of events with time spans and
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Figure 1: Example of annotations for a video

captions.3 Then, we compare ‘parsing after caption-
ing’ using a given text for a video and ‘direct video
parsing’ based on visual features to address the re-
search question of which approach is better suited
for video RST parsing. The results show that while
the former approach is comparable to human perfor-
mance when using gold captions, its performance
is worse when using generated captions. The lat-
ter provided an intermediary performance between
the above two caption-based parsers. We further
observed significant improvement in performance
by pre-training this parser with video captioning
designed to generate the story of the video. These
findings highlight the potential benefits of incorpo-
rating both visual and textual features in video RST
parsing. Furthermore, we provide annotations for
multimodal summarization based on keyframes and
text for the VDTB test set. Then, we highlight that
video RST trees enhance the performance of multi-
modal summarization. We will release our dataset
(annotations for videos) at https://github.com/
titech-nlp/VideoParsing_EMNLP24

2 Preliminary

According to RST, a text is represented as a con-
stituent tree whose leaves are an Elementary Dis-
course Unit (EDU), i.e., a clause-like unit, and
whose intermediate nodes represent the nuclearity
status (nucleus (N) or satellite (S)) of a text span
consisting of EDU(s). Since an RST tree can be rep-
resented as a binary tree, a mono-nuclear relation
(S-N or N-S), such as ‘Elaboration’ and ‘Attribu-
tion,’ or a multi-nuclear relation (N-N), such as
‘List’ and ‘Same-Unit,’ is given as an edge label

3Captions serve as auxiliary information to explore the
upper bound performance of parsing. See Section 5.3 for
more details.

between two sibling intermediate nodes. The set of
rhetorical relations depends on the text domain.

Let us illustrate the annotation for discourse
structures in a video, inspired by RST, by again us-
ing Fig. 1. Time spans for events can be identified
in the video, including the introduction, attempts
by the three competitors, and the winner of the
competition. The relations between the events are
represented by a constituent tree according to the
nature of RST. The event with the blue-colored time
span, the approach of the third competitor from
second 32.1 to 37.6, modifies the event with the
red-colored time span, his jump from second 37.7
to 39.7, using the rhetorical relation ‘Cause.’ The
nuclearity statuses of the events of the blue- and
red-colored time spans are satellite and nucleus, re-
spectively. Then, the event with the brown-colored
time span, the third competitor’s best record from
second 48.3 to 50.7, modifies the event consisting
of the blue- and red-colored time spans using the
rhetorical relation ‘Supplement.’ The nuclearity
status of the event of the brown-colored time span
is satellite, and that of the event consisting of the
blue- and red- colored time spans is nucleus.

3 Related Work

Action parsing is a popular method for identify-
ing local relationships between atomic actions in a
video. This is achieved by identifying temporal ac-
tion segments and determining their corresponding
action labels (Richard et al., 2017a,b). Most stud-
ies on action parsing focus on understanding the
structure within events rather than the overall sto-
ryline for a video (Shao et al., 2020). For example,
a complex action, such as ‘hammer throw’, may be
broken down into smaller atomic actions, such as
‘swing,’ ‘rotate the body,’ and ‘throw.’ Some stud-
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ies, however, delve deeper into the relationships
among atomic actions. Kuehne et al. (2014) repre-
sented an event as a graph with nodes as atomic ac-
tions and edges as the relations between them. Luo
et al. (2021) introduced hypergraphs to represent
the relationships among events. Such structures
are useful for predicting intent (Qi et al., 2018), fu-
ture actions (Pei et al., 2011), and answering ques-
tions (Tu et al., 2013). These studies are similar to
ours in terms of analyzing the structure for videos;
however, our study aims to represent the overall
coherency of the storyline in a video, that involves
long-distance relationships between events.

Watanabe et al. (2000) proposed a method for
RST parsing of news videos with the aim to cap-
ture the overall storyline in the video. Their ap-
proach assumes shots as basic discourse units and
constructs RST structures based on them. Each dis-
course unit in a video corresponds to a transcript,
which is utilized to parse the video’s RST tree using
manually designed rules. Importantly, this method
solely relies on text and does not incorporate any
features from the videos themselves.

In a recent preliminary study, Akula and Song-
Chun (2020) proposed a video discourse parsing ap-
proach based on a ‘parsing after captioning’ frame-
work. This process involves generating a few cap-
tions for a given video, predicting an RST tree
using these captions, and subsequently aligning
the video frames and the captions to construct the
RST tree. It’s important to note that the primitive
discourse units in their approach are video frames.
That is, their approach presents a limitation in han-
dling longer videos because the leaf nodes of their
RST trees correspond to video frames rather than
events. As a result, the dataset mainly includes
very brief videos, with an average duration of mere
19 seconds, and it is accompanied by only a few
captions. Additionally, there are no annotations
for event time spans. Accordingly, due to the lim-
ited number of captions, constructing a meaningful
RST tree seems impractical.

Although both studies tackled the issue of video
discourse parsing, their focus leaned towards us-
ing text discourse parsing instead of purely video
discourse parsing. Nevertheless, they have major
limitations, such as the general lack of high-quality
transcripts or captions that can be used for text
discourse parsing.

4 Constructing a Dataset

We construct Video Discourse TreeBank (VDTB),
a dataset for video discourse parsing, as there are no
existing datasets available for this purpose. From
YouTube, we selected 1,100 videosshowing hu-
man activities of less than a few minutes. We
manually searched for channels on YouTube that
featured news, sports, cooking, DIY, and other
activity-oriented topics. We carefully selected
videos with engaging stories that were free of
sensitive or potentially harmful content. The do-
mains of the videos included news (24%), activities
(13%), sports (13%), instructions (15%), home-
made videos (16%), and misc (19%). Next, we
asked two annotators, with backgrounds in natural
language processing, to identify events. The anno-
tators then generated a concise caption, preferably
using simple sentences with generally one subject
and one verb, for each event to form a story of
the entire video. This guidance aimed to avoid de-
tecting lengthy events consisting of several events.
After that, they built an RST tree for each video
based on the events by following the instructions
for constructing RST Discourse Treebank (RST-
DT) (Carlson et al., 2001).

Note that 50 videos in VDTB, separated as the
test set, have two different annotations by two dif-
ferent annotators to verify the inter-annotator agree-
ment. That is, each of the 50 videos has two differ-
ent sets of events, captions, and RST trees made by
the different annotators. The detailed procedure is
shown in Appendix B.

Since the domains of VDTB and RST-DT are
different from each other, we refined the rhetorical
relations used in RST-DT for our purposes by intro-
ducing new rhetorical relations and omitting other
relations.4 We show our nine rhetorical relations
assigned between two intermediate siblings in Ap-
pendix C. When dealing with new video domains,
we may need to adjust rhetorical relations by in-
troducing new ones or modifying existing ones,
similar to the process in text RST parsing.

5 Inter-annotator Agreement in Event
Detection and Captioning

VDTB provides annotations for both event spans
and their corresponding captions. These annota-
tions are similar to those in ActivityNet Captions

4Since the leaves of our RST tree are events written with a
single caption, we omitted all intra-sentential rhetorical rela-
tions.
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ANC VDTB
A B A B

Duration (sec.) 118.2 105.4
Num. of Events 3.49 3.56 10.4 9.74
Len. of Events (sec.) 40.2 37.7 8.73 9.71
Words/sent. 14.2 12.7 9.78 10.8

Table 1: Statistics of datasets

(Krishna et al., 2017), which is used for dense video
captioning (DVC), with one key distinction: VDTB
does not allow events with temporal overlaps. This
non-overlapping structure, also employed in other
datasets such as YouCook2 (Zhou et al., 2018a), is
particularly well-suited for domains where events
typically occur sequentially

To validate the annotation quality of VDTB, we
compared the inter-annotator agreement for event
detection and caption generation in VDTB with
those in ActivityNet Captions, which also has an-
notations for them.5

5.1 Properties of Datasets

The statistics of VDTB and ActivityNet Captions
are summarized in Table 1. While the table shows
no significant difference in the average duration of
videos between the two datasets, there are signifi-
cant differences in the average number and length
of events. While ActivityNet Captions has 3.6
events per video on average, VDTB has approx-
imately 10 events. Furthermore, there is a signifi-
cant difference in the length of events. While the
average length of events in ActivityNet Captions is
around 40 seconds, that of VDTB is approximately
10 seconds. Since there is no significant difference
in the average number of words per caption be-
tween the two datasets, the above properties imply
a substantial difference in the granularity of events
identified by the annotators.

5.2 Event Detection

To validate the inter-annotator agreement of event
detection, we first tried to find one-to-one matching
between event time spans from different annotators.
We applied SODA (Fujita et al., 2020), which is an
evaluation metric for DVC, to find the one-to-one
matching of events that maximizes the sum of tIoU
(temporal Intersection of Union) between the event
time spans. Here, tIoU is defined as

5The validation set of ActivityNet Captions, consisting of
4,885 videos, has two different annotations for events and their
corresponding captions.

ANC VDTB
A → B B → A A → B B → A

tIoU .413 .422 .621 .666
Match .759 .776 .822 .881

Table 2: Average tIoU and the ratio of matching be-
tween event time spans. A→B indicates the score when
regarding the annotations by annotator A as the refer-
ence and those by B as the hypothesis, with B←A being
vice versa.

tIoU(g, p) =

max

(
0,

min(e(g), e(p))−max(s(g), s(p))
max(e(g), e(p))−min(s(g), s(p))

)
, (1)

where g and p are events, and functions s() and
e() return the start and end times of the events,
respectively. The one-to-one matching can be
found by filling the DP table as follows:
Initialization: Recurrence: (1 ≤ i ≤ |P|, 1 ≤ j ≤
|G|)

S[i][j] = max

{
S[i− 1][j],
S[i− 1][j − 1] + Ci,j ,
S[i][j − 1],

(2)

where G,P is a set of events and Ci,j is tIoU be-
tween the i-th event in G and the j-th event in P .

Table 2 shows the micro-averaged tIoU between
events and the ratio of events for which we could
find a match. From the table, we can see that the
averaged tIoU obtained from VDTB was higher, at
a significant level, than that obtained from Activ-
ityNet Captions. Furthermore, VDTB was supe-
rior to ActivityNet Captions in terms of the ratio
of matched events. These results suggest that the
annotation for event detection in VDTB is more
consistent than that in ActivityNet Captions.

5.3 Caption Generation
Our objective is to create RST-style discourse trees
whose leaves are events from a given video. It is
not a requirement for each event to have a caption;
however, we provided captions for a later compar-
ison of different parsing methods: ‘parsing after
captioning’ and ‘direct parsing with visual features.’
In addition, creating captions for events may ease
annotators in constructing RST trees.

We evaluated each annotator’s captions with au-
tomatic evaluation metrics by employing captions
generated by the other annotator as the reference.
Here, we employed ActivityNet Score (Krishna
et al., 2017), a de facto standard evaluation metric,
and SODA (Fujita et al., 2020), a recently proposed
story-aware evaluation metric.
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ANC VDTB
A→ B B → A A → B B → A

ANetSc 6.00 6.51 18.6 17.8
SODA 5.83 5.23 15.8 16.3

Table 3: ActivityNet Score and SODA using the cap-
tions by one annotator as the reference and those by the
other annotator as the hypothesis

RST-DT VDTB
A B A B

Num. of sent. 22.8 10.4 9.74
Words/sent. 21.3 9.78 10.8
N-S (%) 57.4 59.7 35.2 33.6
S-N (%) 16.6 16.4 47.7 53.0
N-N (%) 26.0 23.9 17.1 13.4

Table 4: Statistics of the parts of two datasets, VDTB
and RST-DT, each having double annotations

Table 3 presents the results. The scores for
VDTB were significantly higher than those of Ac-
tivityNet Captions, with differences of approxi-
mately 10 points for both evaluation metrics. These
results suggest that our annotations, performed by
two annotators, are more consistent than those in
ActivityNet Captions in terms of both event detec-
tion and caption generation.

However, it is important to note that high inter-
annotator agreement may reflect the simplicity of
video interpretation. Our current study primarily
focuses on establishing how well models can parse
easily interpretable videos as an initial step in this
research direction.

6 Inter-annotator Agreement in RST Tree
Construction

In this section, we compare VDTB and RST-DT
for their RST tree qualities.

6.1 Properties of Datasets

As a part of RST-DT, 53 out of 385 documents
have two RST trees6 annotated by different anno-
tators. In Table 4, we show the following statistics
for RST-DT and VDTB: average number of sen-
tences per document, average number of words per
sentence, and distribution of nuclearity labels for
sibling nodes.

From Table 4, the average number of sentences
per document and that of words per sentence in
RST-DT are twice as large as those in VDTB.

6In this paper, we assume that the RST trees of RST-DT
are transformed so that their leaves are sentences in order to
make a fair comparison with the RST trees in VDTB.

Span Nuc. Rel. Full
RST-DT 58.6 43.2 30.2 28.8
VDTB(A):A↔B 68.0 55.7 46.8 46.6
VDTB(B):A↔B 67.5 52.4 47.3 46.7

Table 5: Results of Standard-Parseval (Morey et al.,
2017) for the annotations by one annotator as the refer-
ence and those by the other annotator as the hypothesis.
VDTB (A) and VDTB (B) indicate RST trees based on
events identified by annotators A and B, respectively.

The two datasets’ distributions of nuclearity la-
bels for sibling nodes are also different from each
other. While the majority in RST-DT is N-S, that
in VDTB is S-N. We believe this difference comes
from their writing styles. Since the source text of
RST-DT is a newspaper article, important informa-
tion of the nucleus comes first, and then the details
of the satellite are described. On the other hand,
since captions in VDTB describe events along
a timeline, important information of the nucleus
tends to be presented later. Furthermore, frequent
rhetorical relations in VDTB are also different from
those in RST-DT. We show the detailed distribution
of the rhetorical relations in VDTB and RST-DT in
Appendix D.

6.2 RST Tree Construction

We evaluated one annotator’s RST tree by employ-
ing that of the other annotator as the reference tree.
Since the two different annotators each identified
two separate events for a video, four different RST
trees were constructed for a single video (see Ap-
pendix B). We used micro-averaged F1 scores of
unlabeled spans (Span), those of nuclearity-labeled
spans (Nuc.), those of rhetorical relation-labeled
spans (Rel.), and those of fully-labeled spans (Full)
based on Standard-Parseval (Morey et al., 2017).

Table 5 shows the results. From the table, we
can see that VDTB obtained better scores than RST-
DT. While the scores degraded in the order of Span,
Nuc., Rel., and Full in both datasets, the degra-
dation in VDTB was less sensitive than in RST-
DT. These results demonstrate that the annotation
in VDTB is more consistent than that in RST-DT.
However, we do not believe these results suggest
that RST-DT has low consistency between anno-
tators. Rather, we think the results seem natural
because documents in RST-DT are longer and RST-
DT requires more rhetorical relations for annota-
tion. In fact, the number of relations in RST-DT is
approximately twice as large as in VDTB.
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7 Baseline Parsers

We developed two parsers, the ‘parsing after cap-
tioning’ framework and parsing via visual features,
with the same architecture, except for the feature
extraction module.

7.1 Parsing Model

As our base RST parsing model, we employed
Kobayashi’s transition-based bottom-up parser
(Kobayashi et al., 2022), 7 which is one of the
SOTA parsers for text RST parsing. We chose this
model due to its simplicity and its suitability as a
baseline for video discourse parsing.

Fig. 2 shows the architecture of our parser. In
the figure, a stack stores subtrees, i.e., event spans
that have already been parsed, and a queue contains
incoming events. The parser builds an RST tree
in a bottom-up manner by merging two adjacent
event spans while choosing one of the following ac-
tions: SHIFT: Pop the first event off the queue and
push it onto the stack. REDUCE: Pop two subtrees
from the stack and merge them into a new subtree,
then push it onto the stack. Note that the nucle-
arity status and relation labels are independently
predicted by different classifiers. FFNact, FFNnuc,
and FFNrel are feed-forward neural networks for
predicting an action, nuclearity, and relation labels,
respectively. FFNact solves a binary classification
problem (SHIFT or REDUCE), FFNnuc solves a
three-class classification problem (N-S, N-N, or
S-N), and FFNrel solves a nine-class classification
problem (nine is the number of rhetorical relations):
s∗=FFN∗(Concat(us0 ,us1 ,uq0)), where the func-
tion “Concat” concatenates the vectors received
as the arguments. us0 is the vector representation
of an event span stored in the first position of the
stack, us1 is that in the second position, and uq0 is
that in the first position of the queue. The weight
for each FFN and the encoder used to obtain vec-
tors for event spans are trained by optimizing the
cross-entropy loss of sact, snuc, and srel.

7.2 Vector Representations for Event Spans

We need vector representations for event spans,
us0 , us1 , and uq0 , to parse videos. Two different
encoders are used to obtain vector u. The first ex-
ploits a pre-trained language model to encode a
sequence of tokens for ‘parsing after captioning,’
while the second exploits a pre-trained video en-

7https://github.com/nttcslab-nlp/RSTParser_
EMNLP22

us1 uqus0

FFNactFFNrel

Encoder

tb(i-2) te(i-1) tb(i) te(i)

vb(i-2) ve(i-1)vb(i) ve(i)

tb(i+1) te(i+1)

vb(i+1) ve(i+1)

FFNnuc

fb(i-2) fe(i-1) fb(i) fe(i) fb(i+1) fe(i+1)

Tokens:

Frames:
or

Eventi-2 Eventi-1 Eventi Eventi+1

)

Ave. Ave. Ave.

ReduceS-NCause

Ei-2 Ei-1 Ei

S N
Cause

Concatenation

Ei-2 Ei-1 Ei Ei+1 Ei+2

Stack Queue

Figure 2: Bottom-up parsing model

coder to encode a sequence of video frames for
direct video parsing.

For ‘parsing after captioning,’ we transform
captions for a video into a sequence of sub-
words, {t1, t2, . . . , tn}. Then, we obtain vector
representations for the subwords as a sequence
{v1,v2, . . . ,vn} by using a language model, De-
BERTa v3 (He et al., 2021). Next, a vector for an
event span ui:j , consisting of the i-th event to the
j-th event, is obtained by averaging the vectors for
two edge subwords, i.e., ui:j = (vb(i) + ve(j))/2,
where b(i) returns the index of the leftmost sub-
word in the i-th event and e(j) returns that of the
rightmost subword in the j-th event.

For direct video parsing, we use Temporally-
Sensitive Pre-training (TSP) (Alwassel et al., 2020)
to directly transform event spans into vectors.8 TSP
was trained with two tasks: classifying an action
type for a clip and classifying whether a clip is
inside or outside an action. TSP has been widely
applied in temporal action localization and dense
video captioning. To obtain vector representations
for frames, we applied TSP to an entire video and
obtained vector v using a two-layer transformer
(Vaswani et al., 2017) encoder. A vector for an
event span, ui:j , was obtained by averaging the
vectors for two edge frames, as done for textual
features.9 More implementation details are given

8While our experiments began by using gold event spans,
using automatic event identification is crucial for future work.

9We might consider employing a combination of both vi-
sual and textual features. For example, a simple concatenation
of vectors obtained by the above two models or their fusion by
the gate mechanism might be effective; however, as described
in Section 8.3, since parsing performances with automatically
generated captions are rather low, such a combination would
not work well. Therefore, we do not consider combinations of
visual and textual features in this paper.
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in Appendix E.

8 Experiments

8.1 Dataset

We used VDTB for training and evaluating the base-
line parsers. We split VDTB into 1,000, 50, and
50 videos for training, validation, and test sets, re-
spectively. Since the 50 videos in the test set have
two different events, captions, and RST trees by the
different annotators, we regarded the two annota-
tions as different data and assumed that the test set
consists of 100 data.10 We also offer annotations
for multimodal summarization for the VDTB test
set. Two annotators generated summaries using the
following process: first, an annotator creates a text
summary for a video and then selects video frames
(keyframes) that illustrate the content of the text
summary. The average number of keyframes in a
summary is 5.52, with an average of 52.5 words.

8.2 Evaluation Metrics

As the first step in video RST parsing, we used
ground truth events in the evaluation experiments.
While it would be more realistic to include event
detection in the evaluation process, it poses a signif-
icant challenge to evaluate RST trees with automat-
ically detected events. We evaluated an RST tree
from the baseline parsers by adopting a manually
created RST tree as the reference tree. Similar to
the evaluation of the inter-annotator agreement in
Section 5, we used micro-averaged F1 scores of
unlabeled spans (Span), those of nuclearity-labeled
spans (Nuc.), those of rhetorical relation-labeled
spans (Rel.), and those of fully-labeled spans (Full)
based on Standard-Parseval.

We assessed multimodal summaries using the
Event Agreement rate and F1 scores of ROUGE-1,
-2, and -L.11 The Event Agreement rate indicates
the percentage of matched events between the gold
and predicted summaries. Since the video frames
are timestamped, we aligned the two events based
on the timestamps. In other words, we regarded a
video frame as an event that contains it, and then
evaluated the agreement of the events.

10We employed two self-contained annotations by each an-
notator, where an annotator annotated an RST tree for her/his
own events and captions.

11The option used for ROUGE-1 is -s -m -n 1 -A, and
the one used for ROUGE-2 and -L is -m -n 2 -A.

Span Nuc. Rel. Full
Visual Features 38.3 25.4 19.8 18.8

Parsing after captioning
w/ Gold Caption 64.7 49.0 43.6 42.3
w/ SwinBERT 37.7 14.2 11.2 9.42
w/ Video Captioning 35.8 15.1 11.2 10.3
w/ Video Description 32.6 13.0 10.2 9.41

Left Branching 19.3 7.48 2.86 2.86
Right Branching 33.1 19.0 7.26 7.26

Human 67.8 54.1 47.1 46.6

Table 6: Evaluation results of video RST parsing on
VDTB test set. Scores are the average of five trials with
different seeds.

8.3 Experimental Results on Parsing

Table 6 shows our results. We include the results
for the simple baseline methods of Left and Right
Branching. The former indicates left-heavy bina-
rized RST trees with the most frequent labels, i.e.,
S-N and ‘Preparation’ for nuclearity status and
rhetorical relation labels, respectively. The latter
indicates right-heavy binarized RST trees with the
same most frequent labels. Human indicates man-
ual parsing by humans. In Section 5, we evaluated
RST trees from one annotator by regarding the RST
trees from the other annotator as the reference for
determining inter-annotator agreement. Human is
the average of these two agreement scores in Ta-
ble 5. We evaluated the ‘parsing after captioning’
framework using both gold captions and captions
generated by SOTA captioning models, SwinBERT
(Lin et al., 2022), Video Captioning (Zhou et al.,
2018b), and Video Description (Zhu et al., 2022).
The details of the automatic captioning methods
and the performance evaluations can be found in
the Appendix F.

From the table, we can see that Gold Caption
completely outperformed Visual Features. Its per-
formance is comparable to Human. We believe that
the results rely on the quality of vector representa-
tions for event spans. Specifically, the vectors from
visual features are less suitable than those from
gold captions for classifying specific actions into
either shift or reduce, since the vectors from visual
features are similar to each other.

On the other hand, when employing automati-
cally generated, we found significant performance
degradation. All methods with automatically gen-
erated captions were outperformed by Visual Fea-
tures. In particular, the differences in Nuc. Rel.,
and Full were remarkable. As mentioned above,
since the event spans are similar in terms of visual
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features, the generated captions are also similar
to each other, which indicates that the generated
captions are also not suitable for classifying the
parsing actions; while the average BLEU score be-
tween two adjacent captions in the gold captions
is around 9, that in the generated captions is 40.
Additionally, the results may be influenced by the
challenge of producing discourse cues, such as con-
junctions, that indicate the relationship between
events (see Appendix G). This can be difficult for
captioning techniques. We believe that the ‘pars-
ing after captioning’ framework may offer certain
advantages. However, such findings lead us to con-
clude that this approach is not a viable option due
to the unavailability of human-level captions.

Right Branching achieved remarkable scores for
both Span and Nuclearity, while Left Branching ob-
tained significantly lower scores. The performance
of Right Branching is superior to that of Video Cap-
tioning and Description methods. Since the story
of a video is formed by events along a timeline, the
left spans tend to depend on the right spans. Thus,
it might seem natural that the right-heavy binarized
RST tree would obtain good scores for both Span
and Nuc.

The results suggest that we should concentrate
our efforts on enhancing parsers by leveraging vi-
sual features. Low-quality captions that signifi-
cantly degrade parsing performance come from
errors that accumulate in both the encoder and
decoder. However, the vector output generated
by the encoder could still effectively link knowl-
edge between video and text without being af-
fected by decoding errors. Notably, the parser’s
encoder and the video captioning model’s encoder
can share the same architecture; they are both trans-
former encoders with TSP. Consequently, we can
improve the parser by pre-training its encoder with
the video captioning task, effectively incorporating
text knowledge in the encoder. We performed pre-
training of the parser’s encoder through Video Cap-
tioning and Video Description. The ActivityNet
Captions dataset was used for the pre-training, and
the results are shown in Table 7. When using Video
Description, parsing performances improved for
Span, Nuc., and Rel.; however, no improvement
was observed for Full. When employing Video
Captioning, no improvement was observed. These
results imply that the parser’s encoder trained with
Video Description potentially encodes knowledge
regarding the relations between events. This is
because it learns to generate captions that result

Span Nuc. Rel. Full
Visual Features 38.3 25.4 19.8 18.8
+ Pre-train. w/ VC 38.0 24.1 18.4 17.1
+ Pre-train. w/ VD 40.5 26.4 20.2 18.7

Table 7: Evaluation results using pre-training with video
captioning. Scores are the average of five trials with
different seeds.

Tree Cap. EA R-1 R-2 R-L

Random − G .489 .345 .147 .290
P .126 .0360 .161

Lead − G .521 .373 .165 .301
P .111 .0360 .157

Tail − G .492 .312 .131 .260
P .127 .0354 .159

Even − G .515 .322 .133 .282
P .125 .0364 .161

DFS
G G .585 .381 .161 .300

P .135 .0383 .163
P G .513 .356 .151 .297

P .129 .0378 .162

BFS
G G .558 .356 .143 .290

P .121 .0355 .162
P G .487 .322 .138 .276

P .130 .0367 .161

Table 8: Evaluation results of multimodal summariza-
tion. G represents gold and P represents predicted
tree/captions. The predicted trees were obtained from
Visual Features + Pre-train w/ VD, and the predicted
captions were obtained from the VD model.

in a coherent storyline for a video, as opposed
to individual captions. Our findings suggest that
this approach is promising for transferring textual
knowledge that generates coherent stories into the
parser’s vision encoder.

8.4 Experimental Results on Summarization

We compared simple rule-based summarization
methods to demonstrate the effectiveness of video
RST trees for multimodal summarization. Table 8
shows the results. Random generates a summary
by randomly selecting events of the same number
in the reference summary (denoted as N events)
and extracting the corresponding captions. Lead
selects the first N events, Tail selects the last N
events, and Even selects N events at even intervals.
On the other hand, DFS and BFS select N events
using the video RST tree. DFS selects events in
a depth-first manner, while BFS selects events in
a breadth-first manner. These methods are simple
rule-based tree-trimming techniques that utilize the
structure of the RST tree to consider relationships
between events. Note that the video RST trees are
transformed into a dependency format to represent
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parent-child relationships between events by using
rules in (Hirao et al., 2013) (see Appendix H).

From the table, we can see that, when using gold
trees, DFS and BFS achieve higher Event Agree-
ment rates than the other methods. Although the
performance degrades when using predicted trees,
DFS still outperforms Random and Tail, and per-
forms comparably to Even. When employing gold
captions, DFS with gold trees achieves the high-
est ROUGE-1 score, while BFS with gold trees
obtains the best ROUGE-L score. Notably, even
with predicted trees, DFS achieves the second-best
ROUGE-1 score. Despite the significant degrada-
tion in ROUGE scores when using predicted cap-
tions, DFS and BFS consistently outperform the
other methods with both gold and predicted RST
trees. Lead and Tail might be effective when the
crucial information is concentrated at the beginning
or end of the video. However, DFS and BFS have
the advantage of extracting frames/captions based
on the tree structure that represents the video’s
main themes and flow, without assuming a bias in
the position of important information. This advan-
tage allows DFS and BFS to surpass both Lead and
Tail in most cases. Moreover, the fact that they
also outperform Even highlights the importance
of considering the relationships between events in
the video. These findings provide strong evidence
that video RST trees play a crucial role in video
understanding, just as text RST trees are essential
for text understanding.

9 Conclusion

This paper introduced a new task, video discourse
parsing, to build an RST tree whose leaf nodes
correspond to events in a video. We constructed
a dataset, VDTB, consisting of 1,100 videos with
high-quality annotations for events, captions, and
RST trees, as demonstrated by the comparison with
ActivityNet Captions and RST-DT. The evaluation
of baseline parsers suggested that improving the
parser with visual features and transferring textual
knowledge to the vision encoder are promising ap-
proaches. Finally, we demonstrated that video RST
trees enhance multimodal summarization perfor-
mance. By employing DFS or BFS to traverse
the dependency format of the RST tree and ex-
tract keyframes and captions, we achieved better
Event Agreement rate and ROUGE scores than
other methods, even when using predicted trees.
These results highlight the potential of leveraging

discourse structures in videos for various down-
stream tasks that require video understanding.

Limitations

Our dataset comprises only 1,100 annotated videos,
which may be insufficient to train neural models
effectively. VDTB is smaller than ActivityNet Cap-
tions due to the complexity of annotating RST trees,
which requires annotators with NLP expertise. The
laborious costs associated with such specialized an-
notation make it challenging to scale to ActivityNet
Captions’ size.

We also recognize the importance of extending
this research to less structured videos. For such
cases, alternative discourse parsing approaches like
PDTB-style parsing (Prasad et al., 2008), which
identifies partial discourse structures, might be
more suitable.

In our experiments, we employed gold-standard
segmentation to identify event spans. Although
it is preferable to automatically identify the event
spans for given videos in real-world applications,
this poses a critical problem: the leaf nodes of the
predicted RST tree may not align with those of
the correct RST tree. This misalignment makes
Standard-Parseval, a widely used evaluation metric
for text RST parsing, unavailable for video RST
parsing. To address this issue, we need to develop
a new evaluation metric specifically designed for
video RST parsing that can handle the misalign-
ment between the predicted and correct RST trees.
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A Video Summarization Using RST Trees

Fig. 3 shows example summaries. Summary (a)
does not retain the story of the original video, while
summary (b) maintains it. Summary (a) illustrates
two competitors who performed in the high jump
and a lap of honor; one of them was the second
competitor. However, it is misleading as it implies
that the second competitor won the competition,
which is not true. On the other hand, summary (b)
shows attempts by three competitors and a lap of
honor by the second and third competitors. It can
be inferred that the third competitor won the com-
petition, as evidenced by the audience’s applause
after his attempt.

B Dataset Construction with Two
Annotators

We show the procedure for constructing the dataset
with two annotators for examining the inter-
annotator agreement in Fig. 4.

C Rhetorical Relations

In the following, we show our nine rhetorical re-
lations assigned between two intermediate sibling
nodes (see Fig. 5):
BACKGROUND (mono-nuclear relation) is as-
signed between two intermediate sibling nodes
when an event span12 represents the background of
the other event span. An example from ID=174:
Satellite [Students with bouquets and soldiers gather at

the airport arrival area.]S1

Nucleus [The students and the soldiers wait in a line
with bouquets and wreaths.]S2 [Vice Premier Ro
Tu Chol and Vice Minister of Sport Kim Jong Su
also wait in a line.]S3

CAUSE (mono-nuclear relation) is assigned when
an event span causes the other unexpected event
span, which frequently appears in videos about
activities. An example from ID=1064:
Satellite [In a room, a girl walks toward a dog with a

leash to take the dog out of the house.]S1

Nucleus [However, the dog walks away from the girl.]S2

COMPARISON (multi-nuclear relation) is assigned
when event spans are compared with each other
at equal significance. For example, the relation is
used to distinguish winners from losers in sports or
games. An example from ID=489:

12An event span consists of single or multiple events, and it
is dominated by an intermediate node in an RST tree.

Nucleus [Canadian curlers show calm faces.]S8

Nucleus [On the other hand, American curlers show
frowning faces.]S9

PREPARATION (mono-nuclear relation) is as-
signed when one event span is in a procedural rela-
tion with another event span, such as instructional
guidance for a given procedure. An example from
ID=025:

Satellite [Next, he locates the car’s coolant reservoir.]S2

[And then, he opens the cap of the coolant
reservoir.]S3

Nucleus [He inserts a funnel into the reservoir.]S4

RESULT (mono-nuclear relation) is assigned when
an event span leads to the other event span without
strong causality, such as the results of instructions
and temporal changes in events. An example from
ID=1061:

Satellite [The actor talks about his previous experience
to the homeless man.]S11 [Then, the actor gives
money to the homeless man.]S12

Nucleus [The actor says goodbye to the homeless
man.]S13

SUPPLEMENT (mono-nuclear relation) is assigned
when an event span supplements the other event
span. This relation usually appears in human-edited
videos to emphasize significant events. An example
from ID=001:

Nucleus [Surrounded by audience at a square,
the spokesperson of the protesters makes a
speech.]S4

Satellite [Some of the audience applaud him.]S5

LIST (multi-nuclear relation) is assigned when
event spans are listed at the same significance, such
as simultaneous events. An example from ID=670:

Nucleus [A Buddhist monk walks in front of a temple at
sunrise]S1

Nucleus [Another Buddhist monk cleans a street.]S2

SUMMARY (mono-nuclear relation) is assigned
when an event span summarizes the other event
span. A typical example is a digest scene in videos.
An example from ID=728:

Satellite [A digest of the video plays.]S1

Nucleus [The bartender talks about the Moscow
Mule.]S2 . . . [The drink is garnished with a slice
of lime and the Moscow Mule is finished.]S8
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Summary (a)

Summary (b)

Figure 3: An incoherent summary (a) and a coherent summary (b)
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Figure 4: Procedure for dataset construction

RESTATEMENT (mono-nuclear relation) is as-
signed when an event span represents the repetition
of the another event span. A typical example is a
replay scene in videos. An example from ID=427:

Satellite [The girls show some painted pictures.]S3

Nucleus [The instructor lays a drawing on a canvas.]S4

. . . [They show their finished paintings.]S8

D Distribution of Rhetorical Relations

Table 9 shows the distribution of rhetorical rela-
tions in VDTB and RST-DT.

E Implementation Details

We implemented all models based on Py-
Torch (Paszke et al., 2019) with PyTorch Light-
ning (Falcon et al., 2019) and used language mod-
els from HuggingFace’s Transformers (Wolf et al.,
2020). The dimension of hidden layers in FFNs
was set to 512, and the dropout rate was set to 0.2.
The video transformer encoder had 512 embedding
dimensions, 8 heads for multi-head attention, 1024
dimensions for the feed-forward layer, and 0.2 for

Rank VDTB RST-DT
1 Preparatin (40.8%) Elaboration (42.9%)
2 Supplement (26.7%) Joint (13.4%)
3 List (9.81%) Explanation (8.29%)
4 Cause (8.45%) Contrast (6.92%)
5 Background (8.37%) Evaluation (5.33%)
6 Result (2.53%) Background (4.54%)
7 Summary (1.83%) Cause (3.31%)
8 Comparison (0.89%) Topic-Change (2.44%)
9 Restatement (0.61%) Temporal (2.18%)
10 − Attribution (1.92%)
11 − Textual-ogranization (1.92%)
12 − Comparison (1.51%)
13 − Topic-Comment (1.43%)
14 − Summary (1.40%)
15 − Same-unit (0.92%)
16 − Enablement (0.80%)
17 − Condition (0.67%)
18 − Manner-Means (0.44%)

Table 9: Distribution of rhetorical relations in VDTB
and RST-DT

the dropout rate. The batch size was set to 5 actions
for text/video RST parsing and 256 captions for
Video Captioning and Description. We optimized
all models with the AdamW (Loshchilov and Hut-
ter, 2017) optimizer. The learning rate was chosen
from {1e-2,1e-3,1e-4,1e-5} using the validation
set. Learning rates of 1e-5 and 1e-4 were used
for text and video RST parsing, respectively. 1e-3
was used for Video Captioning and Description.
We scheduled the learning rate by linear warm-up,
which increases the learning rate linearly during
the first epoch and then decreases it linearly to 0
until the final epoch. We trained the model for up
to 20 epochs and chose the best model based on the
evaluation metrics13 using the validation set. The
other hyperparameters used in our experiments are
shown in Table 10.

13We used the micro-averaged F1 score of Full for the video
RST parsing tasks and the BLEU score for the captioning
tasks.
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Figure 5: Examples of rhetorical relations in videos

GPU GeForce RTX 3090
Number of training epochs 20
Batch size (Number of ac-
tions)

5

Text encoder DeBERTa-v3-base
Video encoder Transformer with TSP (8

heads, 2 layers, 1024 dim’s
FFN)

FFN’s hidden size 512
Dropout 0.2
Learning rate scheduler Linear warm-up
Optimizer AdamW
Learning rate 1e-2,1e-3,1e-4,1e-5
Weight decay 0.01
Gradient clipping 1.0
Validation criteria Standard-Parseval: Full

Table 10: Parameter search space in our text/video RST
parsing experiments

BLEU-4 ROUGE-L METEOR CIDEr
SwinBERT 0.422 13.1 7.10 19.0
Video Captioning 0.124 11.9 5.23 11.8
Video Description 0.194 14.5 5.23 14.2

Table 11: Evaluation results of automatic captioning
on the test set of VDTB. Scores represent the average
of five trials with different seeds and are presented as
percentages.

F Automatic Video Captioning

To investigate the impact of the caption quality on
the ‘parsing after captioning’ approach for video
RST parsing, we first evaluated the performance of
the following three captioning methods by compar-
ing their captions with the gold captions:
SwinBERT (Lin et al., 2022) is one of the SOTA
video captioning models, trained with VATEX

(Wang et al., 2019).
Video Captioning is a transformer-based caption-
ing model trained with ActivityNet Captions (Kr-
ishna et al., 2017) originated from (Zhou et al.,
2018b), whose objective function is designed to
generate a caption for an event.
Video Description is a transformer-based video
story generation model trained with ActivityNet
Captions, a simplified variant of (Zhu et al., 2022),
whose objective function is designed to generate a
story for an entire video rather than a single event.
Fig. 6 shows the architectures of the Video Cap-
tioning and Video Description models used in our
experiments. The upper part of Fig. 6 indicates
Video Captioning trained to generate a caption for
an event. The lower part indicates Video Descrip-
tion trained to generate a sequence of captions for
an entire video.

Table 11 shows BLEU-4 (Papineni et al., 2002),
ROUGE-L (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015)
scores14 for each method on the test set of VDTB.
From the table, SwinBERT performed the best ex-
cept for ROUGE-L, with significant gains. Video
Description surpassed Video Captioning, though
marginally.

14Note that METEOR scores are identical to SODA scores
when using ground truth events.
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Figure 6: Two video captioning models. The upper and lower parts of the figure show Video Captioning and
Description, respectively.

G Example RST Trees

Fig. 7 shows a source video, corresponding cap-
tions, and corresponding RST trees. The cap-
tions generated by the Video Description model
are pretty similar to each other, resulting in the
RST tree (b), having multiple nucleus structures
representing ‘List.’ Unfortunately, this tree was far
from the ground truth (a) and had a Span score of
0. On the other hand, the RST tree (c), obtained
from visual features, had fewer multiple nucleus
structures, but it was still distinct from the ground
truth, with a Span score of 28.5. However, apply-
ing transfer learning to the visual feature parser
significantly improved the output, resulting in the
RST tree (d), with several subtrees matching those
of the ground truth RST tree. This enhancement
led to a Span score of 71.4.

H Conversion from RST Trees to
Dependency Trees

Fig. 8 shows an example RST tree obtained from
a video and its corresponding dependency format.
We can convert RST trees into dependency trees by
using the following procedure: (1) For any given
event, find the nearest satellite (S) among its an-
cestors. (2) From the sibling nucleus (N) of the
nearest satellite, follow only the rightmost nuclei
downward in the tree until reaching an event. (3)
Assign the event found in step (2) as the parent
of the event from step (1). Note that if no satel-
lite is found among the ancestors of an event, the
event reached by following only nuclei from the
root node is assigned as its parent. Furthermore,
if the assigned parent of an event is the event it-
self, then that event becomes the root node of the
dependency tree.

In the figure, we can see that the parent of Event3
is Event5, which is determined by applying this
procedure. Additionally, if we consider Event4,
since it has no satellite ancestor, its parent would
be Event5, the event reached by following only
nuclei starting from the root node. Finally, Event5
is the root node of the dependency tree because its
assigned parent is itself.

DFS and BFS traverse the dependency trees in
a depth-first and breadth-first manner, respectively,
to choose events. When we set N to three, i.e.,
we select three events from a video, DFS extracts
Event2, Event3, and Event5, while BFS extracts
Event3, Event4, and Events5.
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Event1 Event2 Event3 Event4 Event5 Event6 Event7 Event8

Gold Captions Captions by Video Description model
Event1 At a police training center, British Prime Minister Boris Johnson is making a speech in front of a rostrum. A man in a black shirt is standing in front of a crowd.
Event2 When Prime Minister Johnson looks back, one of the police trainees standing behind him sits down 

because of illness.
A man in a red shirt is standing behind him.

Event3 He then concludes his speech by expressing his gratitude to the police trainees. A man in a black shirt is standing behind him.
Event4 He walks away from the rostrum. A man in a black shirt is standing in front of a large crowd.
Event5 However, he immediately comes back to the trainee who sat down. A man in a black shirt is standing in front of a crowd.
Event6 He talks to her. A man in a black shirt is standing in front of a large crowd.
Event7 Then, he talks with other trainees. A man in a black shirt walks away.
Event8 After that, he walks away from them. The man in the red shirt walks away.
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Figure 7: A source video, corresponding captions, corresponding RST trees obtained from different parsing models
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Figure 8: An RST tree and corresponding dependency tree
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