Change Is the Only Constant: Dynamic LLM Slicing based on Layer
Redundancy

Razvan-Gabriel Dumitru', Paul-Ioan Clotan?, Vikas Yadav®, Darius Peteleaza*,
Mihai Surdeanu!
'University of Arizona, >Universita di Bologna, *ServiceNow Al,
#University Lucian Blaga of Sibiu

Correspondence: razvandumm @ gmail.com

Abstract

This paper introduces a novel model compres-
sion approach through dynamic layer-specific
pruning in Large Language Models (LLMs),
enhancing the traditional methodology
established by SliceGPT. By transitioning from
constant to dynamic slicing, our method lever-
ages the newly proposed Layer Redundancy
(LR) score, which assesses how much change
each layer changes its input by measuring the
cosine similarity of the input to the output of
the layer. We use this score to prune parts of
individual layers based on redundancy in such
a way that the average pruned percentage for all
layers is a fixed value. We conducted extensive
experiments using models like Llama3-8B and
Mistral-7B on multiple datasets, evaluating
different slicing bases and percentages to
determine optimal configurations that balance
efficiency and performance. Our findings
show that our dynamic slicing approach not
only maintains but, in many cases, enhances
model performance compared to the baseline
established by constant slicing methods. For
instance, in several settings, we see perfor-
mance improvements of up to 5% over the
SliceGPT baseline. Additionally, a perplexity
decrease by as much as 7% was observed
across multiple benchmarks, validating the
effectiveness of our method. The code, model
weights, and datasets are open-sourced at
https://github.com/RazvanDu/DynamicSlicing.

1 Introduction

Large Language Models (LLMs), characterized by
their massive scale, often consist of billions to tril-
lions of parameters, enabling them to perform a
wide range of complex tasks with remarkable pro-
ficiency (Kevian et al., 2024; Touvron et al., 2023;
Team et al., 2023; Jiang et al., 2023). However,
the deployment of these models poses significant
challenges, primarily due to the extensive computa-
tional resources requirements. As the scale of these
models grows, so does the urgency to develop more

efficient methods for their deployment. This has
led to increased interest in model compression tech-
niques that aim to reduce the computational bur-
den without substantially sacrificing performance.
Techniques such as knowledge distillation, quanti-
zation, or pruning variants have emerged as viable
solutions (Wan et al., 2023), each offering a dif-
ferent approach to streamlining model architecture
and operations (Wang et al., 2024).

In this paper, we improve the work on model
pruning introduced by SliceGPT (Ashkboos et al.,
2024), a pruning technique via a constant slicing
percentage of each layer. While this approach re-
duces computational demands and maintains a level
of performance, it does not account for the vary-
ing significance of different layers within the net-
work. We propose a more nuanced, dynamic prun-
ing method that adapts the degree of pruning based
on the individual characteristics and contributions
of each layer. Our method aims to optimize both
the efficiency and the efficacy of the pruning pro-
cess by preserving more functionality in critical
areas of the model, leading to better performance
and less degradation in tasks.

More specifically, we develop a new metric,
namely Layer Redundancy (LR) score, to quantify
the impact of each layer on the model’s overall per-
formance. This evaluation is essential, as it guides
the order in which layers are pruned, ensuring that
the most influential layers are preserved while less
critical layers are removed. Our approach involves
generating slicing functions tailored to the impor-
tance of each layer, allowing for a dynamic and
informed pruning strategy. Our results from the
extensive empirical studies across various datasets
and base models show a substantial improvement
in model accuracy across all datasets tested, ac-
companied by a notable reduction in perplexity. In
order to thoroughly evaluate the effectiveness of
our proposed dynamic slicing pattern, we also an-
alyzed the median accuracy and perplexity across

9912

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 9912-9920
November 12-16, 2024 ©2024 Association for Computational Linguistics

razvandumm@gmail.com
https://github.com/RazvanDu/DynamicSlicing

a range of models. The results consistently show
the superiority of our method over conventional
constant slicing techniques.

The main contributions of our paper are:

* We showed that dynamic, adaptive layer pruning
can significantly improve computational efficiency
without compromising model performance.

* The introduction of the Layer Redundancy score,
a new metric to evaluate and guide the dynamic
pruning of layers in LLMs.

» Extensive empirical validation shows that our
method outperforms static pruning techniques in
terms of both accuracy and perplexity across vari-
ous settings.

2 Related Work

Recent advancements in model compression tech-
niques (Hoefler et al., 2021; Zhu et al., 2023) have
markedly improved the efficiency of deploying
LLMs while striving to retain their performance.
The field has seen a variety of approaches including
knowledge distillation (Hinton et al., 2015; Hsieh
et al., 2023), quantization (Ma et al., 2024), prun-
ing (Ma et al., 2023; Yang et al., 2024), low-rank
adaptation (Hu et al., 2021) or hybrid variants (Xu
et al., 2023; Dettmers et al., 2024), each designed
to address the growing computational and memory
requirements of these models.

Innovative approaches such as LLM-Pruner (Ma
etal., 2023) and LaCo (Layer Collapse) (Yang et al.,
2024) offer novel perspectives on model pruning.
LLM-Pruner focuses on structured pruning by iden-
tifying and removing dependency groups within
the model, aiming to minimize dependency on the
original training corpus while preserving linguistic
capabilities. Similarly, LaCo presents a layer-wise
pruning strategy where subsequent layers collapse
into preceding ones, achieving notable size reduc-
tion while maintaining good performance. A third
approach (Gromov et al., 2024) explores the po-
tential of simple layer-pruning strategies combined
with parameter-efficient finetuning (PEFT), demon-
strating minimal performance loss even when half
of the model’s layers are removed.

Among the innovative strategies in LLM op-
timization, SliceGPT (Ashkboos et al., 2024)
emerges as a significant breakthrough in model
compression. Developed to address the intensive
computational and memory demands of deploying
LLMs, SliceGPT employs a unique post-training

sparsification technique. Although effective in prac-
tice, previous research has illustrated that the or-
der in which layers are removed plays a critical
role in model performance (Gromov et al., 2024;
Men et al., 2024). This insight led us to explore
variable slicing percentages across different layers,
challenging the constant slice for all layers. Initial
attempts by the creators of SliceGPT to implement
this through spectral analysis of layers did not yield
a reliable method for determining the optimal per-
centage to be removed from each layer, as spectral
analysis only tells part of the story and doesn’t cor-
relate with how much can be sliced out of a layer.

3 Method
3.1 LR score

Building on concepts introduced in a recent, un-
published study (Men et al., 2024), we propose a
novel metric for assessing layer usefulness. This
metric quantifies the extent to which each layer
modifies its input by measuring the cosine similar-
ity between the input and output. Specifically, we
define this as the Layer Redundancy (LR) score:

Li LY

LR(L;) = ——~—
L) = Loy

ey

InEql LiI refers to the input of layer;, while
LiO refers to the output of layer;. Intuitively, the
higher cosine similarity between inputs and outputs
leads to higher LR score, implying that the layer
is more redundant. To evaluate the score for all
layers, we use the full validation set of the PG-19
data set (Rae et al., 2019), we pass the data as con-
text through the LLMs and we sum up how much
each layer processed its input according to the co-
sine similarity score. At the end we normalize the
values linearly so that the min(LR(L;)) = 0 and
max(LR(L;)) = 1, guaranteeing that they range
from O to 1. Intuitively, a LR score closer to 0
corresponds to lesser redundancy while higher LR
score (close to 1) would mean high redundancy.
To the best of our knowledge, our work is the first
one to use a per layer importance/redundancy score
to prune variable parts of layers out (explained in
the following section), instead of removing whole
layers or removing a fixed constant portion of the
layer (Men et al., 2024).

3.2 Defining a per-layer percentage

Our goal is to have a function that slices variable
sized parts of each layers based on their LR score

9913

LR score 10

o
o

0.

<]

o

0. .6

o

4

o

0

EN

0

N

Layer Index

Average = 73%

SLR score

0.0° (7250507 8 s onizisisisiersieozzzasazsasarasasion 0.0° (7253567 8 s wonizisaisien s zzasezsaczraszsion 0.0° $T253567 8 s onusaisiiriainonzzaszeasaearaszssoss

Layer Ind]ex

Average = 20%

10 FS score

0.8
0.6

—

0

Layer lnd‘ex

Average = 30%

Figure 1: Example of the Layer Redundancy (LR) score as well as the transformations used to achieve a slice
percentage of 30% (Sp = 0.3) with a base slice for all layers of 10% (S = 0.1). The example is shown for the 32

layers of 1lama3-8B.

while keeping the overall average of sliced out parts
acorss all layers to be a fixed percentage of the
LLM parameters specified by the user. For exam-
ple, layers with higher LR values (or redundancy)
can be sliced more compared to layers with lower
LR score (or redundancy). To achieve this, we
applied several transformations on the previously
defined LR score such that we have control over
how big of an impact we want the redundancy to
have on the sliced percentage.

The first step is to control the average of the
LR score so that we can then control the average
pruned percentage of the LLM. Concretely, we de-
note the average desired slicing percentage as Sp
(Slice Percentage). In order to investigate what hap-
pens as we go further away from a constant slice
for each layer, we will also define S (Slice Base)
to be a fixed constant value that will be guaranteed
to be sliced from each layer such that Sg <= Sp.
As Sp = Sp, the slicing becomes constant as pre-
sented by Ashkboos et al. (2024). We experimented
with different values of S to see the effect of layer
redundancy on the LLM’s performance. The next
step is to scale the L R function so that its average
is Sp — Sp, thus once we add the base percent-
age for each layer (Sp) the total average will be
Sp—Sp+Sp = Sp. This can be achieved by mul-
tiplying each L R; value by the ratio of Sp — Sp
divided by the mean of the function. This is de-
noted as Slice per Layer Redundancy (S'LR) and
shown in Eq 2.

Sp—Sg
%Z?:lLRi

At the end, the Final Slice (F'S) for the layer L;,
is the sum of SLR and Sp as shown in Eq 3.

SLR(L;) = LR; - (2)

FS(L;) = SLR(L;) + Sp 3)

Average of F'S for all n layers of a LLM is equal
to Sp as shown in eq. (4).

T FS(L
Zz—lns():SP (4)

3.3 Slicing parts of layers

The methodology in SliceGPT utilizes a special-
ized version of Principal Component Analysis
(PCA) (Abdi and Williams, 2010) for efficient data
reduction. It projects the data matrix X onto a
lower-dimensional subspace using the eigenvec-
tors (and a deletion matrix D. The reduced ma-
trix Z is computed as X Q D, where D selectively
omits certain components from (), resulting in a
compressed representation Z. The approximate
reconstruction X is obtained by ZDTQT, mini-
mizing the reconstruction error || X — X||2. Unlike
SliceGPT, we control the dimension of the matrix
D on a per-layer basis to achieve our dynamic slice.

4 Experiments

The first step of the process is to evaluate how
redundant each one of the layers is using the pro-
cedure described above. We have done this for
Llama3-8B and Mistral-7B (Jiang et al., 2023) us-
ing the full validation split of the pg-19 data-set
(Rae et al., 2019). This will give us a LR score
for each layer that we then need to process into a
slicing pattern. Figure 1 shows an example of a
slicing pattern evaluation process for Llama3-8B
having a target Sp of 30% and a S of 10%.
Furthermore, we evaluate Llama3-8B and
Mistral-7B using different Slice Base (Sp) values
in increments of 2%. Intuitively as we decrease the
base percentage of the layers we have more extreme
slicing patterns. In all our experiments we compare
with the constant slice as a baseline. We experi-
ment with Slice Percentages (Sp) of 30%, 35%,

9914

Model Technique Pruned Piga Hellaswag Winogrande Arc Easy Wikitextv2 Average
Acc. (1) Acc. (1) Acc. (1) Acc. (1) Perplexity (}) Acc. (1)
30% 59.3% 37.2% 56.4% 42.9% 13.37 49.0%
5? SliceGPT 35% 57.7% 34.1% 54.3% 39.3% 16.58 46.4%
2 40% 57.0% 32.4% 51.8% 35.9% 20.69 44.3%
E 30% 60.4% 38.4% 58.0% 42.4% 12.96 49.8 %
= Dynamic Slicing 35% 58.4% 36.3% 57.2% 39.3% 15.64 47.8%
40% 58.1% 34.0% 54.4% 36.8% 19.11 45.8%
30% 62.6% 38.0% 59.7% 51.1% 8.87 52.9%
g SliceGPT 35% 58.5% 35.9% 57.6% 42.8% 10.80 48.7%
= 40% 57.1% 33.6% 54.1% 38.2% 13.33 45.8%
St
z 30% 63.1% 38.6% 60.2 % 51.7 % 8.76 53.4%
= Dynamic Slicing 35% 58.5% 34.9% 55.7% 45.8% 10.38 48.8%
40% 57.9% 31.9% 54.1% 40.1% 12.62 46.0%

Table 1: Comparison of our technique in the smallest perplexity setting against the constant slicing proposed by

SliceGPT, bold means higher value in comparison

Piga Hellaswag

Winogrande

Arc Easy Wikitextv2

59.0
58.8
58.5
K582
>
@ 58.0
5
557.8
<
57.5
57.2

-~ sliceGPT baseline ~=- SliceGPT baseline

56.0

v
“u
o

[
>
o

Accuracy (%)
Accuracy (%)

v
w
o

[
N
o

57.04 == SliceGPT baseline

~== SliceGPT baseline
20.6

20.4
37.5 20.2
z
% 20.0
<
219.8
&
19.6
19.4

--- SliceGPT baseline

Accuracy (%)

19.2

'\1 .

57.0

4 30 20 10 0 4 30 20 10 0 40 30
Slice Base (%) Slice Base (%)

Slice Base (%)

20 10 0 40 30 20 10 0 40 30 20 10 0

Slice Base (%) Slice Base (%)

Figure 2: Llama3-8B with 40% of the network sliced on average, the red line is the baseline accuracy achieved by

SliceGPT with a constant 40% slice.

40%, these representing the percentage of the LLM
that we prune. For evaluations, we use: Piqa (Bisk
etal., 2019), Hellaswag (Zellers et al., 2019), Wino-
grande (Sakaguchi et al., 2019), Arc Easy (Clark
et al., 2018), and Wikitextv2 (Merity et al., 2016)
within the library Im-evaluation-harness (Gao et al.,
2023). For more experimental details, please refer
to Section A.1 in the Appendix.

5 Results

We will first explore how the accuracy is affected
by our dynamic slicing. Figure 2 (presented above),
and Figures 3, 4, 5, 6, 7 (presented in Appendix)
show the behaviors of Llama3-8b and Mistral-7b
on 30%, 35%, 40% pruned percentage with respect
to the accuracy on four data sets and perplexity
on Wikitextv2. As observed in Figure 2, for the
Llama3-8B model, the accuracy is improved across
all of the 5 evaluated datasets, and the perplexity
decreases by as much as 1.4 while pruning the
exact same amount from the model. We also see
huge accuracy improvements from 52% to 57%
on Winogrande which has a baseline accuracy of

50%. An important finding in all cases is that the
perplexity decreases and task accuracy (mostly)
increases when we started to decrease the S (until
a certain point) showcasing LLMs benefit more
from dynamic slicing as proposed in our work.

To estimate a good Sp in our proposed dynamic
slicing method, we evaluated the accuracy at the
Sp point that achieves the minimum perplexity
on Wikitextv2, thus using it as a calibration data
set. The results shown in Table 1 indicate that
our method outperforms SliceGPT on average for
all pruning ratios and models explored. We also
show even better results using the median accuracy
over all Sp values (Table 3) and mean accuracy
values (Table 4), leading us to believe that there are
even better ways to choose an Sp value than the
minimum perplexity.

5.1 Analyses

To highlight strengths of pruning with our dy-
namic slicing, we also show comparison with Short-
GPT (Men et al., 2024) where entire set of layers
are pruned or removed. Please note that techniques
such as ShortGPT that have shown to be effective,

9915

Model Technique Pruned Piqa Hellaswag Winogrande Arc Easy Wikitextv2 Average
Acc. (1) Acc. (1) Acc. (1) Acc. (1) Perplexity () Acc. (1)

28.1% 62.0% 32.5% 57.5% 39.4% 2.2 x10* 47.9%

% ShortGPT 34.3% 61.2% 34.3% 55.8% 38.1% 4.9 x10* 47.4%
'; 37.5% 60.0% 34.1% 54.8% 37.5% 1.1 x10° 46.6 %
E 30% 60.4% 38.4% 58.0% 42.4% 1.3 x10! 49.8 %
- Dynamic Slicing 35% 58.4% 36.3% 57.2% 39.3% 1.5 x10* 47.8%
40% 58.1% 34.0% 54.4% 36.8% 1.9 x10* 45.8%

28.1% 65.0% 39.8% 63.3% 46.6% 1.6 x10? 53.9%

g8 ShortGPT 34.3% 57.2% 28.6% 56.1% 30.3% 1.1 x10* 43.1%
E 37.5% 55.6% 29.3% 56.7% 30.0% 2.4 x10* 42.9%
% 30% 63.1% 38.6% 60.2% 51.7% 8.7 x10° 53.4%
Dynamic Slicing 35% 58.5% 34.9% 55.7% 45.8% 1.0 x10* 48.8%

40% 57.9% 31.9% 54.1% 40.1% 1.2 x10! 46.0%

Table 2: Comparison of our technique with ShortGPT. For each of the pruning rations of our technique, the closest
pruning ratio of ShortGPT is reported. Please note that removing 9, 11, and 12 layers completely as in ShortGPT
results in 28.1%, 34.3%, and 37.5% pruned ratio respectively. Bold means higher value in comparison.

often provide lesser flexibility in pruning ratio as
entire set of layers are removed. For example, re-
moving 9 (least important) layers out of 32 layers
results in a pruning ratio of 28.1% as shown in
Table 2.

As shown in Table 2, our dynamic slicing with
SliceGPT outperforms ShortGPT in majority of the
cases even with higher pruning ration i.e., 28.1%
vs. 30%, 34.3% vs. 35%, and 37.5% vs. 40%. Es-
pecially for higher pruning ratio (i.e., 35% or 40%),
our dynamic slicing based SliceGPT approach out-
performs ShortGPT with a larger margin across
the four classification datasets shown in Table 2.
Importantly, removing set of layers completely as
in ShortGPT lead to very high perplexity values
suggesting high degradation in text generation qual-
ity. On the other hand, our proposed dynamic slic-
ing technique with SliceGPT results in exponen-
tially better perplexity score highlighting benefits
of pruning only parts of LLM layers instead of
removing entire layers.

Additionally, our variable slicing scaled from
layer importance can be easily extended and
merged with techniques like ShortGPT by simply
removing the least important layers completely and
slicing moderately important layers using our pro-
posed approach. This hybrid method leveraging
the strengths of both techniques, could potentially
enhance model efficiency and performance. We
leave this for exploration in future work.

6 Conclusions

In conclusion, we propose a novel dynamic slicing
strategy that shows considerable improvements in

accuracy when compared against a fixed slicing
method that prunes the same amount of parameters
on average. We also show that layer redundancy is
a powerful metric when removing percentages of
layers, and also that there is room for improvement,
leading to possible future work in the field.

Limitations

While our study introduces significant advance-
ments in the dynamic pruning of Large Language
Models, there are several limitations that are worth
discussing:

* The effectiveness of our method has been
demonstrated predominantly on the Llama3-
8B and Mistral-7B models. However, its per-
formance may vary with other architectures,
especially those with different layer configu-
rations or learning dynamics.

* We only experiment with one method to
choose the Sp value (that gives lowest per-
plixity) and there can be other methods for
estimating Sp which we leave it to more fo-
cused future works.

* Limited computational resources have con-
strained our ability to test on larger models.
We believe that exploring the efficacy of our
dynamic pruning method on more extensive
architectures could provide valuable insights
into its scalability and performance.

9916

Ethical Considerations

Ethical considerations are central to our develop-
ment of a dynamic pruning method for large lan-
guage models. Our research strives to reduce the
computational costs and environmental impact of
deploying large-scale models, aligning with the eth-
ical responsibility to promote environmental sus-
tainability and minimize negative consequences
such as excessive energy consumption. This not
only makes LLMs more accessible but also sup-
ports broader societal needs by enabling more ef-
ficient processing solutions that respect both indi-
vidual rights and community values. By enhancing
the efficiency of these models, we may enable pop-
ulations with limited computational resources to
harness the power of advanced NLP tools.

Furthermore, our methodology emphasizes the
importance of using data sets that are free from
harmful content. By using data sets that do not
contain harmful data, we aim to ensure that the
resulting models avoid biased outputs or content
that could reduce their utility in practical applica-
tions. Ensuring the integrity and appropriateness of
pruned models is essential, as these models often
play significant roles in decision-making processes
across various sectors. In this context, our approach
is designed to be transparent and responsible, pro-
viding clear documentation and rigorous evaluation
to maintain the reliability and fairness of the mod-
els.

Also, we have selected a color scheme that pri-
oritizes accessibility, ensuring the visuals are clear
and discernible to individuals with color vision
deficiencies. This inclusive approach reflects our
commitment to making our research accessible to a
wider audience, including those with varying visual
abilities.

References

Hervé Abdi and Lynne J Williams. 2010. Principal
component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433-459.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari
do Nascimento, Torsten Hoefler, and James Hens-
man. 2024. Slicegpt: Compress large language
models by deleting rows and columns. Preprint,
arXiv:2401.15024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piga: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2024. The
unreasonable ineffectiveness of the deeper layers.
Preprint, arXiv:2403.17887.

Geoftrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in deep
learning: Pruning and growth for efficient inference
and training in neural networks. Journal of Machine
Learning Research, 22(241):1-124.

Cheng-Yu Hsieh, Chun-Liang Li, CHIH-KUAN YEH,
Hootan Nakhost, Yasuhisa Fujii, Alex Jason Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. In The 61st Annual Meeting Of The
Association For Computational Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Darioush Kevian, Usman Syed, Xingang Guo, Aaron
Havens, Geir Dullerud, Peter Seiler, Lianhui Qin, and
Bin Hu. 2024. Capabilities of large language models
in control engineering: A benchmark study on gpt-4,
claude 3 opus, and gemini 1.0 ultra. arXiv preprint
arXiv:2404.03647.

9917

https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2310.06825

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang,
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. 2024. The era of
1-bit llms: All large language models are in 1.58 bits.
arXiv preprint arXiv:2402.17764.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702-21720.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language mod-
els are more redundant than you expect. Preprint,
arXiv:2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
Chloe Hillier, and Timothy P Lillicrap. 2019. Com-
pressive transformers for long-range sequence mod-
elling. arXiv preprint.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. WINOGRANDE: an ad-
versarial winograd schema challenge at scale. CoRR,
abs/1907.10641.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,
Yu Zheng, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu
Zhang, Mosharaf Chowdhury, et al. 2023. Efficient
large language models: A survey. arXiv preprint
arXiv:2312.03863.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long,
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. 2024. Model compression and effi-
cient inference for large language models: A survey.
arXiv preprint arXiv:2402.09748.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng
Chang, Hengheng Zhang, Zhensu Chen, Xiaopeng
Zhang, and Qi Tian. 2023. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
arXiv preprint arXiv:2309.14717.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

A Appendix

A.1 Experimental details

For all our experiments we used 4 NVIDIA A100
GPUs, with 80GB of VRAM each, and running all
of the data sets on one slicing pattern using one
NVIDIA A100 takes around 30 minutes, leading
to a total time of 10 hours for a plot that has 20
possible Sp values. We use a total of 1000 samples
for each data set in all our configurations. Also,
calculating the LR score can take upwards of 30-40
minutes per model on 1 NVIDIA A100 GPU, but
that only has to be computed once.

A.2 Tables with mean/median results

For a detailed evaluation, Table 3 compares our
technique in the median setting against the constant
slicing proposed by SliceGPT, and Table 4 provides
a comparison in the average setting.

A.3 Llama3-8B and Mistral-7B in various
scenarios

Visual representations of our experiments are
shown across several figures: Figure 3 and Fig-
ure 4 illustrate the performance of Llama3-8B with
30% and 35% of the network sliced, respectively,
comparing it to the baseline accuracy achieved by
SliceGPT. Similarly, Figures 5, 6, and 7 display the
results for Mistral-7B with 30%, 35%, and 40%
of the network sliced, again benchmarked against
SliceGPT’s constant slice accuracies. In each fig-
ure, the red line denotes the baseline accuracy set
by SliceGPT for the respective slicing percentages.

9918

https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

Model Technique Pruned Piga Hellaswag Winogrande Arc Easy Wikitextv2 Average
Acc. (1) Acc. (1) Acc. (1) Acc. (1) Perplexity () Acc. (1)
30% 59.3% 37.2% 56.4% 42.9% 13.37 49.0%
5.3 SliceGPT 35% 57.7% 34.1% 54.3% 39.3% 16.58 46.4%
2 40% 57.0% 32.4% 51.8% 35.9% 20.69 44.3%
% 30% 60.5% 38.1% 57.4% 43.0% 13.07 49.7 %
ﬂ Dynamic Slicing ~ 35% 58.7 % 35.8% 56.2% 39.6% 15.75 47.6 %
40% 58.1% 34.2% 55.0% 37.2% 19.21 46.1%
30% 62.6% 38.0% 59.7% 51.1% 8.87 52.9%
g SliceGPT 35% 58.5% 35.9% 57.6% 42.8% 10.80 48.7%
= 40% 57.1% 33.6% 54.1% 38.2% 13.33 45.8%
=)
Z 30% 62.6% 38.6% 59.5% 52.4% 8.80 53.4%
= Dynamic Slicing ~ 35% 59.2% 36.0% 56.9% 45.1% 10.42 49.3%
40% 57.9% 34.3% 54.1% 40.0% 12.68 46.5%

Table 3: Comparison of our technique in the median setting against the constant slicing proposed by SliceGPT, bold
means higher value in comparison

Model Technique Pruned Piqa Hellaswag Winogrande Arc Easy Wikitextv2 Average
Acc. (1) Acc. (1) Acc. (1) Acc. (1) Perplexity () Acc. (1)
30% 59.3% 37.2% 56.4% 42.9% 13.37 49.0%
8.% SliceGPT 35% 57.7% 34.1% 54.3% 39.3% 16.58 46.4%
’3 40% 57.0% 32.4% 51.8% 35.9% 20.69 44.3%
% 30% 60.6 % 38.0% 57.4% 43.0% 13.11 49.8 %
ﬂ Dynamic Slicing ~ 35% 58.6 % 35.6% 55.8% 39.7% 159 47.4%
40% 58.1% 34.0% 54.6% 37.1% 19.34 46.0%
30% 62.6% 38.0% 59.7% 51.1% 8.87 52.9%
& SliceGPT 35% 58.5% 35.9% 57.6% 42.8% 10.80 48.7%
= 40% 57.1% 33.6% 54.1% 38.2% 13.33 45.8%
S
z 30% 62.6% 38.1% 59.5% 52.3% 8.81 53.1%
= Dynamic Slicing ~ 35% 59.0% 35.7% 57.0% 44.8 % 10.50 49.1%
40% 57.8% 33.6% 54.2% 39.6% 12.76 46.3%

Table 4: Comparison of our technique in the average setting against the constant slicing proposed by SliceGPT, bold
means higher value in comparison

Piga Hellaswag Winogrande Arc Easy Wikitextv2
43.8 --- SliceGPT baseline
385 133
38.2 43.6 133
—_ —_ ~ 434
§ 38.0 § § . 13.2
378 > 543.2 -% 13.2
© © © -
5375 E 5430 £132
S g S F131
<37, < <428 '
37.0 V 2.6 131
. 13.0
--- sliceGPT baseline 7| 36.8 --- SliceGPT baseline [®778® 7777 == SliceGPT baseline | 42.4 30
13.
30 20 10 0 30 20 10 0 30 20 10 0 30 20 10 0 30 20 10 0
Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%)

Figure 3: Llama3 8B with 30% of the network sliced on average, the red line is the baseline accuracy achieved by
SliceGPT with a constant 30% slice.

9919

Piga Hellaswag Winogrande Arc Easy Wikitextv2
0.2 36.5] " SliceGPT baseline 57,5 = SliceGPT baseline 41.59 --- sliceGPT baseline 16.6
59.0 57.0 41.0 16.4
gos8s g §565 g405 .
>58.6 > > >] 162
g g 9 56.0 ® 40.0 K -=-- SliceGPT baseline
g %84 3 g g 5160
<582 £ £5%5 2395 /(N\ & 16
)
58.0 5.0 39.0 15.8
57.8 54.5
38.5 156
35 27 18 10 1 T35 27 18 10 1 35 27 18 10 1 35 27 18 10 1 735 27 18 10 1
Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%)

Figure 4: Llama3 8B with 35% of the network sliced on average, the red line is the baseline accuracy achieved by
SliceGPT with a constant 35% slice.

Piga Hellaswag Winogrande Arc Easy Wikitextv2

632 -=- SliceGPT baseline 39.0 61.5 - == sliceGPT baseline 54.0 8.9 -=- SliceGPT baseline

63.0 38.5 61.0 53.5 8.9 /
g 62.8 / g380 g 60.5 g530 >8-9
goze \1 i g¥s g 60.0 f Is25 388
s [g g 24 °
2 62.4 2 37.0 S s95 g 588
< 62.2 < 365 < c00 < 52.0 8.8

62.0 36.0 51.5 8.8

61.8 35.51 --- SliceGPT baseline 585 A ~=- SliceGPT baseline . 8.8

51.0 -
30 20 10 0 30 20 10 0 30 20 10 0 30 20 10 0 30 20 10 0
Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%)

Slice Base (%)

Figure 5: Mistral 7B with 30% of the network sliced on average, the red line is the baseline accuracy achieved by
SliceGPT with a constant 30% slice.

Piga Hellaswag Winogrande Arc Easy Wikitextv2
50.5 === SliceGPT baseline
- 37.0 //\~ 59.0 46.0
59.2 36.0 1o oAy 58.5
£ 59.0 S 580 R 45.0 .
> 2.35.0 Z = z
2 58.8 @ ® 57.5 3 3
5 5340 5 S 44.0 5
8585 g gs1.0 g &
58.2 3.0 56.5 43.0
58.0 32.0 56.0 l
=== SliceGPT baseline === SliceGPT baseline 2.0 === SliceGPT baseline === SliceGPT baseline
35 27 18 10 1 35 27 18 10 1 35 27 18 10 1 35 27 18 10 1 35 27 18 10 1
Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%)

Figure 6: Mistral 7B with 35% of the network sliced on average, the red line is the baseline accuracy achieved by
SliceGPT with a constant 35% slice.

Piqa Hellaswag Winogrande 20 Arc Easy Wikitextv2
58.5{ " SliceGPT baseline B --- SliceGPT baseline 13.3
35.0 55
58.0 34.0 w0 132
I I s 13.1
a5 30 g 27
3 3 20 g54.5 3130
557.0 5 5 1 2
I I 0 54.0 . 9129
2 v 2310 £ \Z i < =
56.5 12.8
30.0 333 12.7
56.0 :
29.04 --- sliceGPT baseline 53.0 --- SliceGPT baseline 34.0 1261 SliceGPT baseline
40 30 20 10 0 40 30 20 10 0 40 30 20 10 0 40 30 20 10 0 40 30 20 10 0
Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%) Slice Base (%)

Figure 7: Mistral 7B with 40% of the network sliced on average, the red line is the baseline accuracy achieved by
SliceGPT with a constant 40% slice.

9920

