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Abstract

The burgeoning capabilities of advanced large
language models (LLMs) such as ChatGPT
have led to an increase in synthetic content
generation with implications across a variety of
sectors, including media, cybersecurity, public
discourse, and education. As such, the ability to
detect LLMs-generated content has become of
paramount importance. We aim to provide a de-
tailed overview of existing detection strategies
and benchmarks, scrutinizing their differences
and identifying key challenges and prospects
in the field, advocating for more adaptable and
robust models to enhance detection accuracy.
We also posit the necessity for a multi-faceted
approach to defend against various attacks to
counter the rapidly advancing capabilities of
LLMs. To the best of our knowledge, this work
is the first comprehensive survey on the detec-
tion in the era of LLMs. We hope it will provide
a broad understanding of the current landscape
of LLMs-generated content detection, and we
have maintained a website to consistently up-
date the latest research as a guiding reference
for researchers and practitioners.

1 Introduction

With the rapid development of powerful AI tools,
the risk of LLMs-generated content has raised con-
siderable concerns, such as misinformation spread
(Bian et al., 2023; Hanley and Durumeric, 2023;
Pan et al., 2023), fake news (Oshikawa et al., 2018;
Zellers et al., 2019; Dugan et al., 2022), gender bias
(Sun et al., 2019), education (Perkins et al., 2023;
Vasilatos et al., 2023), and social harm (Kumar
et al., 2023; Yang et al., 2023c).

We also find on the Google search trend, that
the concerns about AI-written text have witnessed
a significant increase since the release of the lat-
est powerful Large Langue Models (LLMs) such
as ChatGPT (Schulman et al., 2022) and GPT-4

*Work done partly during the internship at NEC Laborato-
ries America.

(OpenAI, 2023b). Humans are already unable to
directly distinguish between LLMs- and human-
written text, with the fast advancement of the model
size, data scale, and AI-human alignment (Brown
et al., 2020; Ouyang et al., 2022). Concurrently,
growing interests are shown to detectors, like the
commercial tool GPTZero (Tian, 2023), or Ope-
nAI’s own detector (OpenAI, 2023a) since humans
can be easily fooled by improvements in decoding
methods (Ippolito et al., 2019). However, the mis-
use of detectors also raises protests from students
on the unfair judgment on their homework and es-
says (Herbold et al., 2023; Liu et al., 2023b) and
popular detectors perform poorly on code detec-
tion (Wang et al., 2023a). Alongside these advance-
ments, there has been a proliferation of detection al-
gorithms aimed at identifying LLMs-generated con-
tent. However, there remains a dearth of compre-
hensive surveys encompassing the latest method-
ologies, benchmarks, and attacks on LLMs-based
detection systems.

Earlier work on text detection dates back to fea-
ture engineering (Badaskar et al., 2008). For exam-
ple, GTLR (Gehrmann et al., 2019a) assumes the
generated word comes from the top distribution on
small LMs like BERT (Devlin et al., 2019) or GPT-
2 (Radford et al., 2019). Recently, there has been
an increasing focus on detecting ChatGPT (Weng
et al., 2023; Liu et al., 2023b; Desaire et al., 2023),
to mitigate ChatGPT misuse or abuse (Sison et al.,
2023). In particular, it has recently been called for
regulation1 on powerful AI like ChatGPT usage
(Hacker et al., 2023; Wahle et al., 2023).

Therefore, we firmly believe that the timing is
ideal for a comprehensive survey on the detection
of LLMs-generated content. It would serve to invite
further exploration of detection approaches, offer
valuable insights into the strengths and weaknesses

1https://www.nytimes.com/2023/05/16/technology/openai-
altman-artificial-intelligence-regulation.html
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of previous research, and highlight potential chal-
lenges and opportunities for the research commu-
nity to address. Our paper is organized as follows:
we first briefly describe the problem formulation,
including the task definition, metrics, and datasets
in Section 2. In Section 3, we classify detection
by their working mechanism and scope of applica-
tion. In section 4, we summarize the three popular
detection methods: training-based, zero-shot and
watermarking. We also investigate various attacks
in Section A.2 since defending against attacks is
of increasing importance and point out some chal-
lenges in Section A.3. Finally, in Section 5 we
provide additional insights into this topic on poten-
tial future directions, as well as the conclusion in
Section 6.

2 Problem formulation
2.1 Overview
We refer to any textual outputs from LLMs follow-
ing specific inputs as LLMs-Generated Content. It
can be generally classified into natural languages
like news, essays, reviews, and reports, or program-
ming languages like codes of Python, C++, and
Java. Current research usually aims at the detection
of content with moderate length and specific topics.
It is meaningless to detect a short sentence describ-
ing some facts like EMNLP started in 1996 or sim-
ple coding question def hello_world(): print(’Hello
World’), to be human or AI written.

Formally, consider an LLM denoted as LLM ,
which generates a candidate text S of length |S|
based on an input prompt. Let f() represent a poten-
tial detector we aim to use for classification, assign-
ing f(S) to 0 or 1, where 0 and 1 signify human or
machine, respectively. The LLM can be classified
into unknown (Black-box), fully known (White-
box), or partially known (known model name with
unknown model parameters) to the detectors. In
practice, we are usually given a candidate corpus
C comprising both human and LLMs-generated
content to test f().

Apart from the standard definition, machine-
generated content can undergo additional modi-
fications in practical scenarios, including rephras-
ing by humans or other AI models. Besides, it is
also possible that the candidate text is a mix of
human and machine-written text. For example, the
first several sentences are written by humans, and
the remaining parts by machines, or vice versa.
When a text undergoes revisions, the community
often perceives it as paraphrasing and treats it as

either machine- or human-generated text, depend-
ing on the extent of these modifications and the
intent behind them. However, it is important to
highlight that if a substantial majority of the text
is authored by humans, or if humans have exten-
sively revised machine-generated text, it becomes
challenging to maintain the assertion that the text
is purely machine-generated. Hence, in this survey,
we adhere to the traditional definition by consider-
ing machine-generated content as text that has not
undergone significant modifications, and we con-
sistently classify such text as machine-generated.

2.2 Metrics

Previous studies (Mitchell et al., 2023; Sadasivan
et al., 2023) predominantly used the Area Under
the Receiver Operating Characteristic (AUROC)
score to gauge the effectiveness of detection algo-
rithms. As a binary classification problem, AUROC
shows the results under different thresholds, and
the F1 score is also helpful. Krishna et al. (2023);
Yang et al. (2023b) suggest that AUROC may not
consistently provide a precise evaluation, particu-
larly as the AUROC score nears the optimal limit
of 1.0 since two detectors with identical AUROC
score of 0.99 could exhibit substantial variations in
detection quality from a user’s perspective. From a
practical point of view, ensuring a high True Pos-
itive Rate (TPR) is imperative while keeping the
False Positive Rate (FPR) to a minimum. As such,
current research (Krishna et al., 2023; Yang et al.,
2023b) both report TPR scores at a fixed 1% FPR,
along with the AUROC. Other work (Sadasivan
et al., 2023) also refer to Type I and Type II er-
rors following the binary hypothesis test and even
report TPR at 10−6 FPR (Fernandez et al., 2023).

2.3 Datasets

In this section, we discuss the common datasets
used for this task. The corpus is usually adopted
from previous NLP tasks, and reconstructed by
prompting LLMs to generate new outputs as candi-
date machine-generated text. Usually, there are two
prompting methods: 1). prompting LLMs with the
questions in some question-answering datasets. 2).
prompting LLMs with the first 20 to 30 tokens to
continue writing in datasets without specific ques-
tions. Specifically, several datasets have been com-
piled and utilized in the field. Some noteworthy
datasets include TURINGBENCH (Uchendu et al.,
2021), HC3 (Guo et al., 2023), CHEAT (Yu et al.,
2023a), Ghostbuster (Verma et al., 2023), OpenG-
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Training-based
Methods
(§4.1)

Black-box (§4.1.1)

Known Source

Mixed sources OpenAI text classifier (OpenAI, 2023a), GPTZero (Tian, 2023), G3Detector (Zhan et al., 2023),
GPT-Sentinel (Chen et al., 2023c)

Mixied decoding (Ippolito et al., 2020), GPT-Pat (Yu et al., 2023b)

Mixed strategies

Graph structure and contrastive learning CoCo (Liu et al., 2022),

Proxy perplexity LLMDet (Wu et al., 2023a)

Positive unlabeled training MPU (Tian et al., 2023)

Adversarial training RADAR (Hu et al., 2023)

Unknown Source

Cross-domain transfer (Pu et al., 2023), GPTZero (Tian, 2023), Conda (Bhattacharjee et al., 2023),
Model family (Antoun et al., 2023)

Surrogate model Ghostbuster (Verma et al., 2023),

Detection in the wild Deepfake text detection (Li et al., 2023b), (Wang et al., 2024)

White-box (§4.1.2)

Full access Word rank GLTR (Gehrmann et al., 2019a),

Partial access
Logits as waves SeqXGPT (Wang et al., 2023b)

Contrastive logits feature Sniffer (Li et al., 2023a)

Zero-shot
Methods
(§4.2)

Black-box (§4.2.1)

Known Source

Database Retrieval (Krishna et al., 2023)

Uncommon n-grams (Grechnikov et al., 2009), (Badaskar et al., 2008)

Probability curve DetectGPT (Mitchell et al., 2023), (Liu et al., 2024; Hans et al., 2024)

N-gram divergence DNA-GPT (Yang et al., 2023b)

Smaller model as a proxy (Mireshghallah et al., 2023; Shi et al., 2024)

Rewriting Raidar (Mao et al., 2024)

Codes detection DetectGPT4Code (Yang et al., 2023d)

Unknown Source Intrinsic dimension Persistent homology dimension estimator (Tulchinskii et al., 2023)

White-box (§4.2.2)

Full access Log-Rank ratio DetectLLM-LRR (Su et al., 2023a)

Partial access

Traditional methods

Entropy (Lavergne et al., 2008)

Perplexity (Beresneva, 2016)

Log probability GLTR (Gehrmann et al., 2019a)

Recent methods

Probability curvature on perturbations DetectGPT (Mitchell et al., 2023)

Conditional probability divergence DNA-GPT (Yang et al., 2023b)

Conditional probability curvature Fast-DetectGPT (Bao et al., 2023)

Uniform information density GPT-who (Venkatraman et al., 2023)

Bayesian surrogate model (Deng et al., 2023)

Watermarking
Methods
(§4.3)

Black-box (§4.3.1) Known Source

Traditional methods Paraphrasing (Atallah et al., 2003), Syntax tree manipulations (Topkara et al., 2005),
(Meral et al., 2009), Synonym substitution (Topkara et al., 2006)

Latest methods BERT-based lexical (Yang et al., 2022) and synonyms (Yang et al., 2023a) substitution

White-box (§4.3.2) Known Source

Training-free watermark

Gumbel watermark (Aaronson, 2022; Zhao et al., 2024)

Hashing of blocks (Christ et al., 2023)

Logits deviation w/ green-red list Soft watermark (Kirchenbauer et al., 2023a)

Logits deviation w/ fixed split Unigram-Watermark (Zhao et al., 2023a)

Sampling w/ randomized number (Kuditipudi et al., 2023)

Sentence-level w/ rejection sampling SemStamp (Hou et al., 2023),

Reweight strategy w/ ciphers DiPmark (Wu et al., 2023b),

Publicly-verifiable key (Fairoze et al., 2023)

Optimal statistical watermarking UMP (Huang et al., 2023)

Training-based watermark

Logits deviation w/ semantic embeddings Training-free (Fu et al., 2023),
Training-based (Liu et al., 2023a)

Message encoding w/ reparameterization REMARK-LLM (Zhang et al., 2023b),

Multi-bit watermark

Invariant features (Yoo et al., 2023a),

Color-listing COLOR (Yoo et al., 2023b)

Secret key or error code (Fernandez et al., 2023; Qu et al., 2024)

Figure 1: Taxonomy on detection methods. We list the most representative approaches for each category.
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PTText (Chen et al., 2023c), M4 (Wang et al.,
2023c), MGTBench (He et al., 2023), and MULTI-
TuDE (Macko et al., 2023) and some other datasets
not explicitly built for detection have also been
used, such as C4 (Raffel et al., 2019), shareGPT
2, and alpaca (Taori et al., 2023), as summarized
in Table 2. For text detection, we only list datasets
explicitly built for detection, while some general
datasets like C4 (Raffel et al., 2019) or alpaca
(Taori et al., 2023) can also be used. For code de-
tection, we only list datasets that have been used
in previous code detection work (Lee et al., 2023;
Yang et al., 2023d). And other codegeneration cor-
pora can also be adopted. The detailed description
is included in Appendix A.7.

Data Contamination. Despite those released
standard datasets, we argue that static evaluation
benchmarks might not be desirable for this prob-
lem with the rapid progress of LLMs trained, tuned,
or aligned on large amounts of data across the
whole internet. On the one hand, Aaronson (2022)
mentioned that some text from Shakespeare or the
Bible is often classified as AI-generated because
such classic text is frequently used in the training
datasets for generative language models. On the
other hand, many detectors did not fully disclose
their training data, especially commercial tools like
GPTZero (Tian, 2023). It is natural to worry that
those standard evaluation benchmarks would face
a serious test data contamination problem, consid-
ering the commercial detectors would consistently
improve their products for profits. So, with the
rapid evolution of LLMs and detectors, the tradi-
tional paradigm of providing standard benchmarks
might no longer be suitable for AI-generated text
detection. We provide a unique solution to this:
ð Utilize the most latest human-written con-

tent to reduce data contamination problem by
collecting such content from the most updated
open-source websites, which themselves explic-
itly forbid posting AI-written posts.

3 Detection Scenarios
The findings of previous research, such as
(Gehrmann et al., 2019b) and (Dugan et al., 2022),
highlight the general difficulty faced by humans
in distinguishing between human- and machine-
generated text, motivating the development of auto-
matic solutions. The detection process can be classi-
fied into black-box or white-box detection based on
whether the detector has access to the source model

2https://sharegpt.com/

Black-box
Known sourcing

White-box
Full access

Black-box
Unknown sourcing

White-box
Partial access

Increasing transparency

Increasing transparency

Increasing difficulty

Increasing difficulty

Watermark

Training-based

Zero-shot

Three categories of detectors

Figure 2: Three categories of detectors and four detec-
tion scenarios: as the transparency decreases, the detec-
tion difficulty increases.

output logits. In black-box detection, there are two
distinct cases: 1). when the source model name is
known, such as GPT-4; 2). when the source model
name is unknown, and the content might have been
generated by models like GPT-4, Bard, or other
undisclosed models. On the other hand, white-box
detection also encompasses two cases: 1). the detec-
tor only has access to the model’s output logits or
partial logits, such as the top-5 token log probabil-
ity in text-davinci-003; 2). the detector has
access to the entire model weights. Table 2 shows
four categories according to application scenarios
and three detector methods. Specifically, we can
categorize the usage of detecting LLM-generated
content into four distinct scenarios based on their
application: These categorizations highlight the dif-
ferent levels of information available to the detec-
tors, ranging from limited knowledge to complete
access and demonstrate the various scenarios en-
countered in detecting machine-generated content.

3.1 Black-Box Detection with Unknown
Model Source

This scenario closely resembles real-world applica-
tions, particularly when users, such as students, uti-
lize off-the-shelf AI services to assist them in writ-
ing their essays. In such cases, teachers are often
unaware of the specific AI service being employed.
Consequently, this situation poses the greatest chal-
lenge as very limited information is available to
identify instances of deception.

3.2 Black-Box Detection with Known Model
Source

In this scenario, we possess knowledge regarding
the specific model from which the text originates,
yet we lack access to its underlying parameters.
This aspect carries considerable significance due
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to the market domination of major language model
providers such as OpenAI and Google. Many users
rely heavily on their services, enabling us to make
informed assumptions about the model sources.

3.3 White-Box Detection with Full Model
Parameters

While access to the most powerful LLMs, such as
Anthropic’s Claude or OpenAI’s ChatGPT, is typi-
cally limited, assuming full access to the model pa-
rameters is an active research area. This approach
is reasonable, considering that researchers often
encounter resource constraints, making it challeng-
ing to experiment with large-scale models. For
instance, watermarking-based methods (Kirchen-
bauer et al., 2023a) typically require full access
to the model parameters. This technique manipu-
lates the next token prediction at each sampling
position by modifying the distribution. Although
this approach necessitates access to the complete
model parameters, it has shown promise and could
potentially be adapted for practical use.

3.4 White-Box Detection with Partial Model
Information

This corresponds to the scenarios when only the
partial model outputs, like the top-5 token logits
are provided by text-davinci-003. Previous
work like DetectGPT (Mitchell et al., 2023) and
DNA-GPT (Yang et al., 2023b) both utilize such
probability to perform detection.

3.5 Model Sourcing

Furthermore, another aspect related to detection
goes beyond distinguishing between human and
machine-generated content. This task involves de-
termining which specific model may have gener-
ated the content and is referred to as authorship
attribution (Uchendu et al., 2020), origin tracing
(Li et al., 2023a), or model sourcing (Yang et al.,
2023b). We consider this task as a special scenario
since it is slightly different from other detection
tasks.

4 Detection Methodologies

In this section, we delve into further details about
the detection algorithms. Based on their distinguish-
ing characteristics, existing detection methods can
be categorized into three classes: 1) Training-based
classifiers, which typically fine-tune a pre-trained
language model on collected binary data - both

human and AI-generated text distributions. 2) Zero-
shot detectors leverage the intrinsic properties of
typical LLMs, such as probability curves or rep-
resentation spaces, to perform self-detection. 3)
Watermarking involves hiding identifying informa-
tion within the generated text that can later be used
to determine if the text came from a specific lan-
guage model, rather than detecting AI-generated
text in general. We summarize the representative
approaches in Figure 1 as classified by the scenar-
ios listed in Section 3.

4.1 Training-based
The earlier work of training a detection classifier
focuses on fake review (Bhagat and Hovy, 2013),
fake news (Zellers et al., 2019) or small models (So-
laiman et al., 2019; Bakhtin et al., 2019; Uchendu
et al., 2020) detection. Subsequently, growing in-
terest in this line of research turns to detecting
high-quality text brought by LLMs.

4.1.1 Black-box

The first line of work focuses on black-box detec-
tion. When the model source is known, some work
use the text generated by 1 mixed sources and
subsequently train a classifier together for detection.
For example, OpenAI (OpenAI, 2023a) collects
text generated from different model families and
trains a robust detector for detection text with more
than 1,000 tokens. GPTZero (Tian, 2023) also col-
lects their human-written text spans student-written
articles, news articles, and Q&A datasets spanning
multiple disciplines from a variety of LLMs. Simi-
larly, G3Detector (Zhan et al., 2023) claims to be a
general GPT-Generated text detector by finetuning
RoBERTa-large (Liu et al., 2019) and explores the
effect of the use of synthetic data on the training
process. GPT-Sentinel (Chen et al., 2023c) trains
the RoBERTa and T5 (Raffel et al., 2020) classi-
fiers on their constructed dataset OpenGPTText.
2 Mixed decoding is also utilized by incorpo-

rating text generated with different decoding pa-
rameters to account for the variance. Ippolito et al.
(2020) find that, in general, discriminators transfer
poorly between decoding strategies, but training on
a mix of data can help. GPT-Pat (Yu et al., 2023b)
train a siamese network to compute the similarity
between the original text and the re-decoded text.
Besides, 3 mixed strategies involves additional
information, such as graph structure and contrastive
learning in CoCo (Liu et al., 2022), proxy model
perplexity in LLMDet (Wu et al., 2023a), positive
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unlabeled training in MPU (Tian et al., 2023) and
adversarial training in RADAR (Hu et al., 2023).

On the other hand, when the source model is
unknown, OpenAI text classifier (OpenAI, 2023a)
and GPTZero (Tian, 2023) still works by 1 cross-
domain transfer. Other works like (Pu et al., 2023;
Antoun et al., 2023), Conda (Bhattacharjee et al.,
2023) also rely on the zero-shot generalization abil-
ity of detectors trained on a variety of model fami-
lies and tested on unseen models. Besides, Ghost-
buster (Verma et al., 2023) directly uses outputs
from known 2 surrogate model as the signal
for training a classifier to detect unknown model.
Additionally, 3 detection in the wild (Li et al.,
2023b) contributes a wild testbed by gathering texts
from various human writings and deepfake texts
generated by different LLMs for detection without
knowing their sources.

4.1.2 White-box
The second kind of work lies in the white-box sit-
uation when the model’s full or partial parame-
ters are accessible. For example, when we have
full access to the model, GLTR (Gehrmann et al.,
2019a) trains a logistic regression over absolute
word ranks in each decoding step. When only par-
tial information like the model output logits are
available, SeqXGPT (Wang et al., 2023b) intro-
duce a sentence-level detection challenge by syn-
thesizing a dataset that contains documents that are
polished with LLMs and propose to detect it with
logits as waves from white-box LLMs. Sniffer (Li
et al., 2023a) utilizes the contrastive logits between
models as a typical feature for training to perform
both detection and origin tracking.

4.2 Zero-Shot

In the zero-shot setting, we do not require exten-
sive training data to train a discriminator. Instead,
we can leverage the inherent distinctions between
machine-generated and human-written text, mak-
ing the detector training-free. The key advantage
of training-free detection is its adaptability to new
data distributions without the need for additional
data collection and model tuning. It’s worth noting
that while watermarking methods can also be con-
sidered zero-shot, we treat them as an independent
track. Previous work utilizes entropy (Lavergne
et al., 2008), average log-probability score (So-
laiman et al., 2019), perplexity (Beresneva, 2016),
uncommon n-gram frequencies (Grechnikov et al.,
2009; Badaskar et al., 2008) obtained from a lan-

guage model as the judge for determining its origin.
However, those simple features fail as LLMs are
becoming diverse and high-quality text generators.
Similarly, there are also black- and white-box de-
tection, as summarized below.

4.2.1 Black-Box
When the source of the black-box model is known,
DNA-GPT (Yang et al., 2023b) achieves superior
performance by utilizing N-Gram divergence be-
tween the continuation distribution of re-prompted
text and the original text. Besides, DetectGPT
(Mitchell et al., 2023) also investigates using an-
other surrogate model to replace the source model
but achieves unsatisfactory results. In contrast,
Mireshghallah et al. (2023) proves that a smaller
surrogate model like OPT-125M (Zhang et al.,
2022) can serve as a universal black-box text detec-
tor, achieving close or even better detection perfor-
mance than using the source model. Additionally,
Krishna et al. (2023) suggests building a database
of generated text and detecting the target text by
comparing its semantic similarity with all the text
stored in the database. Finally, DetectGPT4Code
(Yang et al., 2023d) also investigates detecting
codes generated by ChatGPT through a proxy small
code generation models by conditional probability
divergence and achieves significant improvements
on code detection tasks.

When the source of the model is unknown, PHD
(Tulchinskii et al., 2023) observes that real text ex-
hibits a statistically higher intrinsic dimensionality
compared to machine-generated texts across vari-
ous reliable generators by employing the Persistent
Homology Dimension Estimator (PHD) as a means
to measure this intrinsic dimensionality, combined
with an additional encoder like Roberta to facilitate
the estimation process.

4.2.2 White-Box
When the partial access to the model is given, tradi-
tional methods use the features such as entropy
(Lavergne et al., 2008), average log-probability
score (Solaiman et al., 2019) for detection. How-
ever, these approaches struggle to detect text from
the most recent LLMs. Then, the pioneer work De-
tectGPT (Mitchell et al., 2023) observes that LLM-
generated text tends to occupy negative curvature
regions of the model’s log probability function and
leverages the curvature-based criterion based on
random perturbations of the passage. DNA-GPT
(Yang et al., 2023b) utilizes the probability differ-
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ence between the continuous distribution among
re-prompted text and original text and achieves
state-of-the-art performance. Later, Deng et al.
(2023) improves the efficiency of DetectGPT with a
Bayesian surrogate model by selecting typical sam-
ples based on Bayesian uncertainty and interpolat-
ing scores from typical samples to other ones. Fur-
thermore, similar to DNA-GPT (Yang et al., 2023b)
on using the conditional probability for discrimina-
tion, Fast-DetectGPT (Bao et al., 2023) builds an
efficient zero-shot detector by replacing the prob-
ability in DetectGPT with conditional probability
curvature and witnesses significant efficiency im-
provements. Additionally, GPT-who (Venkatraman
et al., 2023) utilizes Uniform Information Density
(UID) based features to model the unique statisti-
cal signature of each LLM and human author for
accurate authorship attribution.

When the full access to the model is given,
Su et al. (2023a) leverages the log-rank informa-
tion for zero-shot detection through one fast and
efficient DetectLLM-LRR (Log-Likelihood Log-
Rank ratio) method, and another more accurate
DetectLLM-NPR (Normalized perturbed log rank)
method, although slower due to the need for pertur-
bations.

4.3 Watermarking
Text watermarking injects algorithmically de-
tectable patterns into the generated text while ide-
ally preserving the quality and diversity of lan-
guage model outputs. Although the concept of wa-
termarking is well-established in vision, its appli-
cation to digital text poses unique challenges due
to the text’s discrete and semantic-sensitive nature
(Kutter et al., 2000). Early works are edit-based
methods that modify a pre-existing text. The earli-
est work can be dated back to Atallah et al. (2001),
which designs a scheme for watermarking natural
language text by embedding small portions of the
watermark bit string in the syntactic structure of
the text, followed by paraphrasing (Atallah et al.,
2003), syntax tree manipulations (Topkara et al.,
2005; Meral et al., 2009) and synonym substitu-
tion (Topkara et al., 2006). Besides, text water-
marking has also been used for steganography and
secret communication (Fang et al., 2017; Ziegler
et al., 2019; Abdelnabi and Fritz, 2021), and in-
tellectual property protection (He et al., 2022a,b;
Zhao et al., 2022, 2023b), but this is out the scope
of this work. In light of growing ethical considera-
tions, text watermarking has been increasingly used

to ascertain the origin of textual content and detect
AI-generated content (Grinbaum and Adomaitis,
2022). The primary focus of this paper is on the
use of text watermarking to detect AI-generated
text.

In general, watermarking for text detection can
also be classified into white-box and black-box wa-
termarking. Watermarking is designed to determine
whether the text is coming from a specific language
model rather than universally detecting text gener-
ated by any potential model. As such, knowledge
of the model source is always required in text wa-
termarking for detection.

4.3.1 Black-Box Watermarking
In black-box setting, such as API-based appli-
cations, the proprietary nature of the language
models used by LLM providers precludes down-
stream users from accessing the sampling process
for commercial reasons. Alternatively, a user may
wish to watermark human-authored text via post-
processing. In such cases, black-box watermarking
aims to automatically manipulate generated text to
embed watermarks readable by third parties. Tradi-
tional works designed complex linguistic rules such
as paraphrasing (Atallah et al., 2003), syntax tree
manipulations (Topkara et al., 2005; Meral et al.,
2009) and synonym substitution (Topkara et al.,
2006), but lack scalability. Later work turns to pre-
trained language models for efficient watermarking.
For example, Yang et al. (2022) proposes a natural
language watermarking scheme based on context-
aware lexical substitution (LS). Specifically, they
employ BERT (Devlin et al., 2019) to suggest LS
candidates by inferring the semantic relatedness
between the candidates and the original sentence.
Yang et al. (2023a) first defines a binary encoding
function to compute a random binary encoding cor-
responding to a word. The encodings computed
for non-watermarked text conform to a Bernoulli
distribution, wherein the probability of a word rep-
resenting bit-1 is approximately 0.5. To inject a
watermark, they alter the distribution by selectively
replacing words representing bit-0 with context-
based synonyms that represent bit-1. A statistical
test is then used to identify the watermark.

4.3.2 White-Box Watermarking

The most popular 1 training-free watermark di-
rectly manipulates the decoding process when the
model is deployed. In the efforts of watermarking
GPT outputs, Aaronson (2022) works with Ope-
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nAI to first develop a technique for watermarking
language models using exponential minimum sam-
pling to sample text from the model, where the
inputs to the sampling mechanism are a hash of the
previous k consecutive tokens through a pseudo-
random number generator. By Gumbel Softmax
(Jang et al., 2016) rule, their method is proven to
ensure guaranteed quality. Besides, Christ et al.
(2023) provides the formal definition and con-
struction of undetectable watermarks. Their cryp-
tographically inspired watermark design proposes
watermarking blocks of text from a language model
by hashing each block to seed a sampler for the
next block. However, there are only theoretical con-
cepts for this method without experimental results.
Another pioneering work of training-free water-
mark (Kirchenbauer et al., 2023a) embeds invisible
watermarks in the decoding process by dividing
the vocabulary into a “green list” and a “red list”
based on the hash of prefix token and subtly in-
creases the probability of choosing from the green
list. Then, a third party, equipped with knowledge
of the hash function and random number gener-
ator, can reproduce the green list for each token
and monitor the violation of the green list rule.
Subsequently, Zhao et al. (2023a) simplifies the
scheme by consistently using a fixed green-red list
split, showing that the new watermark persists in
guaranteed generation quality and is more robust
against text editing. Kuditipudi et al. (2023) cre-
ate watermarks that are distortion-free by utilizing
randomized watermark keys to sample from token
probability distribution by inverse transform sam-
pling and exponential minimum sampling. Hou
et al. (2023) propose a sentence-level semantic wa-
termark based on locality-sensitive hashing (LSH),
which partitions the semantic space of sentences.
The advantage of this design is its enhanced robust-
ness against paraphrasing attacks. DiPmark (Wu
et al., 2023b) is an unbiased distribution-preserving
watermark that preserves the original token distri-
bution during watermarking and is robust to mod-
erate changes of tokens by incorporating a novel
reweight strategy, combined with a hash function
that assigns unique i.i.d. ciphers based on the con-
text. Drawn on the drawbacks of random green-red
list splitting, Fu et al. (2023) uses input sequence to
get semantically related tokens for watermarking
to improve certain conditional generation tasks.

Despite training-free watermarking, text water-
marks can also be injected through pre-inference
training or post-inference training: 2 training-

based watermark. One example of pre-inference
training is REMARK-LLM (Zhang et al., 2023b),
which injects the watermark by a message encod-
ing module to generate a dense token distribution,
following a message decoding module to extract
messages from the watermarked textual and repa-
rameterization is used as a bridge to connect the
dense distribution with tokens’ one-hot encoding.
The drawback is that training is required on source
data and might not generalize well to unseen text
data. On the contrary, post-inference training in-
volves adding a trained module to assist in inject-
ing watermarks during inference. For instance, Liu
et al. (2023a) proposes a semantic invariant robust
watermark for LLMs, by utilizing another embed-
ding LLM to generate semantic embeddings for all
preceding tokens. However, it is not training-free
since these semantic embeddings are transformed
into the watermark logits through their trained wa-
termark model.

Despite from 0-bit watermark, there is also 3
multi-bit watermarking. For example, Yoo et al.
(2023a) designs a multi-bit watermarking following
a well-known proposition from image watermark-
ing that identifies natural language features invari-
ant to minor corruption and proposes a corruption-
resistant infill model. COLOR (Yoo et al., 2023b)
subsequently designs another multi-bit watermark
by embedding traceable multi-bit information dur-
ing language model generation while allowing
zero-bit detection simultaneously. Fernandez et al.
(2023) also consolidates watermarks for LLMs
through more robust statistical tests and multi-bit
watermarking.

5 Attack, Challenges, Future Outlook
The detection of LLM-generated content is an
evolving field. Detection attacks can be found in
Appendix A.2 and we also summarize the chal-
lenges in Appendix A.3. Additionally, we list some
potential avenues for future work (details are in-
cluded in Appendix A.8): 1). robust and scalable de-
tection techniques; 2). rigorous and standard evalu-
ation; 3). fine-grained detection; 4). user education
and awareness; 5). transparency and explainability.

6 Conclusion
We comprehensively survey LLMs-generated con-
tent detection over existing task formulation, bench-
mark datasets, evaluation metrics, and different de-
tection methods to help the research community
quickly learn the progress in this field.
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Limitations

Despite conducting a comprehensive literature re-
view on AI-generated content detection, we ac-
knowledge the potential for omissions due to in-
complete searches.

Ethics Statement

The utilization of AI detection presents significant
ethical considerations, particularly when it comes
to the detection of plagiarism among students. Mis-
classifications in this context can give rise to sub-
stantial concerns. This survey aims to summarize
the current techniques employed in this field com-
prehensively. However, it is important to note that
no flawless detectors have been developed thus far.
Consequently, users should exercise caution when
interpreting the detection outcomes, and it should
be understood that we cannot be held accountable
for any inaccuracies or errors that may arise.
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A Appendix

A.1 Commercial Detection Tool

Despite from academic research, AI text detection
also draws considerable attention from commer-
cial companies. Table 1 summarizes the popular
commercial detectors. Although the majority of
them simultaneously claim to be the most accu-
rate AI detectors on the homepage of their website,
it is essential to evaluate their performance based
on various factors such as accuracy, speed, robust-
ness, and compatibility with different platforms and
frameworks. Regrettably, a dearth of articles exists
that explicitly delve into the comparative analysis
of the aforementioned properties among popular
commercial detectors.

A.2 Detection Attack
Despite the progress of detection work, there are
also continuous efforts to evade existing detectors,
and we summarize the main streams in this section.

A.2.1 Paraphrasing Attack
Paraphrasing could be performed by human writers
or other LLMs, and even by the same source model.
Paraphrasing can also undergo several rounds, in-
fluenced by a mixture of different models. Current
research mostly focuses on the simple paraphrase
case where another model rewrites a machine-
generated text for one round. For instance, Kr-
ishna et al. (2023) trains a T5-11b model for para-
phrasing text and discovers that all detectors ex-
perience a significant drop in quality when faced
with paraphrased text. Additionally, simple para-
phrasing attacks involve word substitutions (Shi
et al., 2023). Moreover, paraphrasing can also be
achieved through translation attacks. However, con-
ducting more in-depth analysis and research on
complex paraphrasing techniques in the future is
crucial. Becker et al. (2023) systemically examines
different classifiers encompassing both classical ap-
proaches and Transformer techniques for detecting
machine (like T5) or human paraphrased text.

A.2.2 Adversarial Attack

Though the adversarial attack is popular for general
NLP tasks (Alzantot et al., 2018), there has been lit-
tle work specifically addressing adversarial attacks
on detectors for LLM-generated content. However,
we can consider the following two types of attacks
for further investigation and exploration:
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Product Name Website Price API available
Originality.AI https://app.originality.ai/api-access $0.01/100 words Yes

Quil.org https://aiwritingcheck.org/ Free website version No
Sapling https://sapling.ai/ai-content-detector 1 million chars at $25/month Yes

OpenAI text classifier https://openai-openai-detector.hf.space/ Free website version Yes
Crossplag https://crossplag.com/ai-content-detector/ Free website version No
GPTZero https://gptzero.me/ 0.5 million words at $14.99/mo Yes
ZeroGPT https://www.zerogpt.com/ Free website version No

CopyLeaks https://copyleaks.com/ai-content-detector 25000 words at $10.99/Month No

Table 1: A summary of popular commercial tools to detect AI-generated text.

Adversarial Examples: Attackers can generate
specially crafted inputs by making subtle modifi-
cations to the text that fool the AI text detectors
while remaining mostly unchanged to human read-
ers (Shi et al., 2023). These modifications can in-
clude adding or removing certain words or charac-
ters, introducing synonyms, or leveraging linguis-
tic tricks to deceive the detector. Evasion attacks
aim to manipulate the AI text detector’s behavior
by exploiting its vulnerabilities. Attackers can use
techniques such as obfuscation, word permutation,
or introducing irrelevant or misleading content to
evade detection. The goal is to trigger false nega-
tives and avoid being flagged as malicious or inap-
propriate.

Model Inversion Attacks: Attackers can launch
model inversion attacks by exploiting the responses
of AI text detectors. They might submit carefully
crafted queries and observe the model’s responses
to gain insights into its internal workings, architec-
ture, or training data, which can be used to create
more effective attacks or subvert the system’s de-
fenses.

A.2.3 Prompt Attack

Current LLMs are vulnerable to prompts (Zhu
et al., 2023), thus, users can utilize smartly de-
signed prompts to evade established detectors. For
example, Shi et al. (2023) examines instructional
prompt attacks by perturbing the input prompt to
encourage LLMs to generate texts that are difficult
to detect. Lu et al. (2023) also show that LLMs
can be guided to evade AI-generated text detection
by a novel substitution-based In-Context example
Optimization method (SICO) to automatically gen-
erate carefully crafted prompts, enabling ChatGPT
to evade six existing detectors by a significant 0.54
AUC drop on average. Nevertheless, limited atten-
tion has been devoted to this topic, indicating a
notable research gap that merits significant schol-
arly exploration in the immediate future. Notably, a

recent work (Chakraborty et al., 2023a) introduces
the Counter Turing Test (CT2), a benchmark con-
sisting of techniques aiming to evaluate the robust-
ness of existing six detection techniques compre-
hensively. Their empirical findings unequivocally
highlight the fragility of almost all the proposed
detection methods under scrutiny. Despite the hard
prompt attack, Kumarage et al. (2023) first creates
an evasive soft prompt tailored to a specific PLM
through prompt tuning; and then, they leverage
the transferability of soft prompts to transfer the
learned evasive soft prompt from one PLM to an-
other and find the universal efficacy of the evasion
attack.

A.3 Challenges
A.3.1 Theorical Analysis
Inspired by the binary hypothesis test in (Polyan-
skiy and Wu, 2022), (Sadasivan et al., 2023) claims
that machine-generated text will become indistin-
guishable as the total variance between the distri-
butions of human and machine approaches zero. In
contrast, Chakraborty et al. (2023b) demonstrates
that it is always possible to distinguish them by
curating more data to make the detection of AU-
ROC increase exponentially with the number of
training instances. Additionally, DNA-GPT (Yang
et al., 2023b) demonstrates the difficulty of ob-
taining a high TPR while maintaining a low FPR.
Nevertheless, a dearth of theoretical examination
persists regarding the disparities in intrinsic char-
acteristics between human-written language and
LLMs. Scholars could leverage the working mech-
anisms of GPT models to establish a robust theo-
retical analysis, shedding light on detectability and
fostering the development of additional detection
algorithms.

A.3.2 LLM-Generated Code Detection
Previous detectors usually only focus on the text,
but LLMs-generated codes also show increasing
quality (see a recent survey (Zan et al., 2022)).

9802

https://app.originality.ai/api-access
https://aiwritingcheck.org/
https://sapling.ai/ai-content-detector
https://openai-openai-detector.hf.space/
https://crossplag.com/ai-content-detector/
https://gptzero.me/
https://www.zerogpt.com/
https://copyleaks.com/ai-content-detector


Among the first, Lee et al. (2023) found that previ-
ous watermarking (Kirchenbauer et al., 2023a) for
text does not work well in terms of both detectabil-
ity and generated code quality. It is evidenced that
low entropy persists in generated code (Lee et al.,
2023), thus, the decoding process is more deter-
ministic. They thus adapt the text watermarks to
code generation by only injecting watermarks to to-
kens with higher entropy than a given threshold and
achieve more satisfactory results. Code detection
is generally believed to be even harder than text
detection due to its shorter length, low entropy, and
non-natural language properties. DetectGPT4Code
(Yang et al., 2023d) detects codes generated by
ChatGPT by using a proxy code model to approxi-
mate the logits on the conditional probability curve
and achieves the best results over previous detec-
tors.

A.3.3 Model Sourcing
Model sourcing (Yang et al., 2023b), is also known
as origin tracking (Li et al., 2023a) or authorship
attribution (Uchendu et al., 2020). Unlike the tra-
ditional distinction between human and machine-
generated texts, it focuses on identifying the spe-
cific source model from a pool of models, treating
humans as a distinct model category. With the fast
advancement of LLMs from different organizations,
it is vital to tell which model or organization po-
tentially generates a certain text. This has practical
applications, particularly for copyright protection.
Consequently, we believe that in the future, it may
become the responsibility of organizations releas-
ing powerful LLMs to determine whether a given
text is a product of their system. Previous work
either (Li et al., 2023a) trains a classifier or uti-
lizes the intrinsic genetic properties (Yang et al.,
2023b) to perform model sourcing, but still can
not handle more complicated scenarios. GPT-who
(Venkatraman et al., 2023) utilizes Uniform Infor-
mation Density (UID) based features to model the
unique statistical signature of each LLM and hu-
man author for accurate authorship attribution.

A.3.4 Bias
It has been found that current detectors tend to be
biased against non-native speakers (Liang et al.,
2023). Also, Yang et al. (2023b) found that previ-
ous detection tools often perform poorly on other
languages other than English. Besides, current re-
search usually focuses on the detection of text
within a certain length, thus showing bias against
the shorter text. How to ensure the integrity of de-

tectors under various scenarios without showing
bias against certain groups is of central importance.

A.3.5 Generalization

Currently, the most advanced LLMs, like Chat-
GPT, are getting actively updated, and OpenAI
will make a large update every three months. How
to effectively adapt existing detectors to the up-
dated LLMs is of great importance. For example,
Tu et al. (2023a) records the ChatLog of ChatGPT’s
response to long-form generation every day in one
month, observes performance degradation of the
Roberta-based detector, and also finds some stable
features to improve the robustness of detection. As
LLMs continuously benefit from interacting with
different datasets and human feedback, exploring
ways to effectively and efficiently detect their gener-
ations remains an ongoing research area. Addition-
ally, Kirchenbauer et al. (2023b) investigates the
reliability of watermarks for large language models
and claims that watermarking is a reliable solution
under human paraphrasing and various attacks at
the context length of around 1000. Pu et al. (2023)
examines the zero-shot generalization of machine-
generated text detectors and finds that none of the
detectors can generalize to all generators. All those
findings reveal the difficulty of reliable generaliza-
tion to unseen models or data sources of detection.

A.4 News Reports

We summarize several influential news on the
false use of AI detectors and concerns brought by
AI-generated information.
1. International students are concerned their
original writing is being flagged as AI-generated
text. link
2. Professor Flunks All His Students After
ChatGPT Falsely Claims It Wrote Their Papers.
link
3. China reports first arrest over fake news
generated by ChatGPT. link
4. Professors have a summer assignment: Prevent
ChatGPT chaos in the fall. link
5. AI makes plagiarism harder to detect, argue
academics – in paper written by chatbot. link
6. How AI Could Take Over Elections—And
Undermine Democracy. link
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Datasets Length Size Data type #Language
TuringBench (2021) 100∼400 200K News articles 1

HC3 (2023) 100∼250 44,425 Reddit, Wikipedia, medicine and finance 2
CHEAT (2023a) 100∼300 35,304 Academical abstracts 1

Ghostbuster (2023) 200∼1200 12,685 Student essays, creative fiction, and news 1
GPT-Sentinel (2023c) 100∼400 29,395 OpenWebText (2023) 1

M4 (2023c) 200-300 122,481 Multi-domains 6
MGTBench (2023) 10∼200 2,817 Question-answering datasets 1
Deepfake (2023b) ∼264 447,674 Multi-domains 1
HC3 Plus (2023b) 100∼250 214,498 Summarization, translation, and paraphrasing 2

MULTITuDE (2023) 150∼400 74,081 MassiveSumm (2021) 11
HumanEval (2021) ∼181 164 Code Exercise 1

APPS (2021) ∼474 5,000 Code Competitions 1
CodeContests (2022) ∼2239 165 Code Competitions 6

Table 2: A summarization of the detection datasets. Length is reported in the number of words for text and characters
for codes. #Language represents the number of types of natural languages for text and programming languages for
codes.

A.5 Related Survey

In the literature, there are some other surveys on
this topic. For example, Jawahar et al. (2020) dis-
cusses the detection of small language models.
Tang et al. (2023) provides an overview of previ-
ous detection methods but does not fully cover the
recent progress in the era of LLMs. Very recently,
Crothers et al. (2022) surveys threat models and
detection methods but also summarizes previous
detection methods rather than the latest progress
with LLMs. Unlike them, our work aims to fill this
gap by providing the first comprehensive survey
about detection, attack, and benchmarks, especially
focusing on detecting LLMs like ChatGPT. Thus,
our survey includes the most advanced approaches.

Dhaini et al. (2023) gives a survey of the state of
detecting only ChatGPT-Generated text but ignores
various detection methods on other models.

A.6 Additional Latest Work

Very recently, there have been some additional
work released very close to our submission, includ-
ing watermarking methods (Fairoze et al., 2023; Tu
et al., 2023b; Chen et al., 2023a; Ajith et al., 2023;
Zhang et al., 2023a; Li et al., 2023c; Keleş et al.,
2023; Piet et al., 2023; Gu et al., 2023; Huang et al.,
2023; Zhao et al., 2024; Qu et al., 2024; Liu and
Bu, 2024; Wouters, 2023), training-based methods
(Chen et al., 2023b; Guo and Yu, 2023; Wang et al.,
2024; Soto et al., 2024), zero-shot methods (Mao
et al., 2024; Hans et al., 2024; Shi et al., 2024;
Liu et al., 2024), attacks (Irtiza Tripto et al., 2023;
Macko et al., 2024; Peng et al., 2024).

A.7 Datasets

• Uchendu et al. (2021) presents the TURING-
BENCH benchmark for Turing Test and Author-
ship Attribution across 19 language models.

• HC3 (Guo et al., 2023) collectes the Human Chat-
GPT Comparison Corpus (HC3) with both long-
and short-level documents from ELI5 (Fan et al.,
2019), WikiQA (Yang et al., 2015), Crawled
Wikipedia, Medical Dialog (Chen et al., 2020),
and FiQA (Maia et al., 2018).

• CHEAT (Yu et al., 2023a) provides 35,304 syn-
thetic academic abstracts, with Generation, Pol-
ish, and Mix as prominent representatives.

• Ghostbuster (Verma et al., 2023) provides a de-
tection benchmark that covers student essays, cre-
ative fiction, and news at document-level detec-
tion and paragraph-level.

• OpenGPTText (Chen et al., 2023c) consists of
29,395 rephrased content generated using Chat-
GPT, originating from OpenWebText (Gokaslan
and Cohen, 2019).

• M4 (Wang et al., 2023c) is a large-scale bench-
mark covering multi-generator, multi-domain,
and multi-lingual corpus for machine-generated
text detection.

• MULTITuDE (Macko et al., 2023) Large-Scale
Multilingual Machine-Generated Text Detection
Benchmark comprising 74,081 authentic and
machine-generated texts in 11 languages gener-
ated by 8 multilingual LLMs. They find that the
most currently available black-box methods do
not work in multilingual settings.

• MGTBench (He et al., 2023) focuses on
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ChatGPT-generated content on: TruthfulQA (Lin
et al., 2022), SQuAD (Rajpurkar et al., 2016) and
NarrativeQA (Kočiský et al., 2018).

• SAID(Social media AI Detection) Cui et al.
(2023) is curated for real AI-generate text from
popular social media platforms like Zhihu and
Quora, and conducting detection tasks on actual
social media platforms prove to be more chal-
lenging compared to traditional simulated AI-text
detection.

• HC3 Plus (Su et al., 2023b) is a more extensive
and comprehensive dataset that considers more
types of tasks, considering tasks such as summa-
rization, translation, and paraphrasing to possess
semantic-invariant properties and are more diffi-
cult to detect.
We summarize them in Table 2.

A.8 Future Outlooks

Details on the future outlook are as follows.

• Robust and Scalable Detection Techniques: Cur-
rent LLMs are getting constant improvements
from big tech companies. Thus, the development
of advanced algorithms and detection techniques
capable of accurately identifying LLM-generated
content in real time is a priority. Future research
should focus on improving the accuracy, robust-
ness to attacks, and scalability of detection meth-
ods to keep up with the increasing volume and
complexity of LLM-generated content.

• Rigorous and Standard Evaluation: As discussed
in Section 2.3, current evaluation faces data con-
tamination issues; either the LLMs or the de-
tectors might encounter the human data in their
training stage. Besides, the evaluation benchmark
also varies. The detection results affect the length,
prompting methods, and adopted datasets. How-
ever, unlike traditional machine learning tasks
where one benchmark can be used for a long
period, how to avoid any potential data contami-
nation is very critical.

• Fine-grained Detection: LLM-generated content
can vary in its intentions, ranging from malicious
propaganda to unintentional misinformation. Fu-
ture work should explore approaches that can de-
tect and differentiate between various categories
of LLM-generated content, allowing for more
tailored interventions and countermeasures.

• User Education and Awareness: Educating users
about the existence and capabilities of LLMs de-
tectors is essential. For example, in Appendix

A.4, we show some reported misuse of AI detec-
tors in education. Future work should focus on
raising awareness among users about the reliabil-
ity of detection tools. This can empower users to
make more informed decisions and mitigate the
impact of deceptive or misleading decisions.

• AI Regulations: As LLMs become more sophis-
ticated, the ethical implications of their usage
in generating deceptive content become increas-
ingly important. Future research should explore
ethical frameworks and guidelines for the re-
sponsible development and deployment of LLMs
while considering the potential consequences and
risks associated with their misuse.

• Transparency and Explainability: Enhancing
the transparency and explainability of LLM-
generated content detection algorithms is crucial
for building trust and understanding among users.
For example, Yang et al. (2023b) uses the non-
trivial N-gram overlaps to support the detection
results. But currently, most detectors can only
give a predictive probability, with no clues about
evidence. Future work should focus on develop-
ing techniques that can provide explanations or
evidence for the classification decisions made by
detection systems, enabling users to understand
the rationale behind content identification better.

9805


