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Abstract

Large language models (LLMs) have revolu-
tionized language processing, delivering out-
standing results across multiple applications.
However, deploying LLMs on edge devices
poses several challenges with respect to mem-
ory, energy, and compute costs, limiting their
widespread use in devices such as mobile
phones. A promising solution is to reduce the
number of bits used to represent weights and
activations. While existing works have found
partial success at quantizing LLMs to lower
bitwidths, e.g. 4-bit weights, quantizing ac-
tivations beyond 16 bits often leads to large
computational overheads due to poor on-device
quantization support, or a considerable accu-
racy drop. Yet, 8-bit activations are very attrac-
tive for on-device deployment as they would
enable LLMs to fully exploit mobile-friendly
hardware, e.g. Neural Processing Units (NPUs).
In this work, we make a first attempt to facili-
tate the on-device deployment of LLMs using
integer-only quantization. We first investigate
the limitations of existing quantization meth-
ods for on-device deployment, with a special
focus on activation quantization. We then ad-
dress these limitations by introducing a simple
post-training quantization method, named Mo-
bileQuant, that extends previous weight equiv-
alent transformation works by jointly optimiz-
ing the weight transformation and activation
range parameters in an end-to-end manner. Mo-
bileQuant demonstrates superior capabilities
over existing methods by 1) achieving near-
lossless quantization on a wide range of LLM
benchmarks, 2) reducing latency and energy
consumption by 20%-50% compared to current
on-device quantization strategies, 3) requiring
limited compute budget, 4) being compatible
with mobile-friendly compute units, e.g. NPU.

1 Introduction

Large language models (LLMs) have markedly ad-
vanced language processing capabilities, paving

the way for expansive applications in artificial in-
telligence. However, the deployment of LLMs is
costly in terms of memory, computation, and en-
ergy, which can be prohibitive on edge devices like
mobile phones. A standard approach to facilitate
running these models on edge devices is to quantize
them, representing weights and activations with
fewer bits, thereby mitigating these costs.

Existing LLM quantization works can be
grouped into two categories: weight-only quanti-
zation and weight-activation quantization. Weight-
only quantization approaches (Frantar et al., 2023;
Lin et al., 2024) convert model weights into low-
bitwidth integers, most commonly 4-bit, and main-
tain the activations in 16-bit floating-point. Weight-
only quantization often preserves accuracy while
significantly reducing the model storage footprint.
In addition, weight-only quantization can result
in minor gains in inference latency due to the re-
duction in memory access overheads. However,
these approaches still suffer from high energy con-
sumption and high latency, as computation is per-
formed in floating point. Costly on-the-fly weight
dequantization is also required during inference.
Instead, weight-activation quantization approaches
forgo the need for on-the-fly dequantization by
quantizing both weights and activations, and poten-
tially utilizing efficient fixed-point operators. De-
spite its efficiency benefits, quantizing activations
typically degrades accuracy given the activation
outliers (Xiao et al., 2023; Wu et al., 2024; Luo
et al., 2024), especially in the case where static
per-tensor quantization parameters are applied. To
counteract this accuracy drop, previous works in-
clude quantizing activations for certain expensive
operations (Xiao et al., 2023), e.g. matrix multipli-
cation, or employing dynamic per-token quantiza-
tion (Shao et al., 2024; Liu et al., 2023; Ashkboos
et al., 2024; Liu et al., 2024), which is often slow
on Graphic Processing Units (GPUs) and, most im-
portantly, lacks hardware support on edge devices.
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Notably, none of these methods support lossless 8-
bit (int8) per-tensor quantization for the activations,
or fully leverage low-precision fixed-point engines,
such as the Digital Signal Processor (DSP), or ded-
icated Neural Processing Unit (NPU) (Qualcomm,
2024; Google, 2021), commonly found in mobile
devices (Mahurin, 2023). Towards on-device quan-
tization for LLMs, we introduce MobileQuant, a
post-training quantization approach that not only
effectively handles the conventional accuracy and
efficiency challenges of quantization but is also
seamlessly supported by existing mobile hardware.
To achieve this, MobileQuant consists of three sim-
ple yet effective methodological extensions, moti-
vated by the shortcomings of existing state-of-the-
art works when deployed on device, and building
on top of these works. These extensions include:
1) applying weight equivalent transformation on
all possible layers, 2), learning the optimal quanti-
zation range for activations, 3) jointly optimizing
all weight transformation and range parameters in
an end-to-end manner. As such, MobileQuant ap-
plies a combination of per-tensor and per-channel
weight quantization at 4-bit or 8-bit and per-tensor
activation quantization at 8-bit or 16-bit, utilizing
fixed-point integer representations for all opera-
tions.

The benefits of MobileQuant over previous
works are multifold. Firstly, MobileQuant enables
the quantization of the weights to either 4-bit or
8-bit and the activations to 8-bit integers, except
for non-linearities like softmax and normalization,
with minimal impact on performance. Mobile-
Quant, hence, maximizes the potential of equiva-
lent transformation-based methods (Nagel et al.,
2019; Xiao et al., 2023; Lin et al., 2024; Shao
et al., 2024) that achieve linear-invariant weight
equalization. Deploying LLMs on device using
MobileQuant results in a significant reduction in in-
ference speed and energy usage as the latency and
energy consumption of multiply-accumulate opera-
tions correlate directly with the bit-widths. Besides
substantial gains during inference, we also show
that MobileQuant’s end-to-end optimization ben-
efits from more calibration samples and extended
training samples through our ablation study. In
contrast, previous works that adopt closed-form
solutions (Nagel et al., 2019), search-based op-
timization (Lin et al., 2024), and block-wise er-
ror minimization (Shao et al., 2024; Liu et al.,
2024) struggle to scale with the number of sam-
ples and training steps. Lastly, in comparison with

other learnable-based quantization methods such
as Quantization Aware Training (QAT) (Liu et al.,
2023; Bondarenko et al., 2023), MobileQuant re-
tains the model generalizability as the model re-
mains mathematically equivalent to its unquantized
variant. Our contributions are summarized as fol-
lows:

1. We introduce a post-training quantization ap-
proach for large language models (LLMs) that
is supported by current mobile hardware im-
plementations (i.e. DSP, NPU), thus being
directly deployable on real edge devices.

2. Our method improves upon prior works
through simple yet effective methodological
extensions that enable us to effectively quan-
tize most activations to a lower bitwidth (i.e.
8-bit) with near-lossless performance.

3. We conduct a comprehensive on-device eval-
uation of model accuracy, inference latency,
and energy consumption. Our results indi-
cate that our method reduces both inference
latency and energy usage by 20%-50% while
still maintaining accuracy compared to mod-
els using 16-bit activations.

2 Related Work

2.1 Post-training Quantization (PTQ)

Previous research in post-training quantization for
LLMs can be categorized into three main groups:
Weight-only Quantization focuses on compress-
ing the model weights to reduce storage require-
ments and memory transfer overheads. Represen-
tative works (Frantar et al., 2023; Lin et al., 2024;
Shao et al., 2024; Liu et al., 2024) generally achieve
performance comparable to full-precision models
and maintain similar inference speeds on GPUs.
However, these methods dequantize weights to 16-
bit values on the fly, resulting in high-precision
floating-point computations and hence leading to
high inference latency and energy consumption,
particularly on edge devices such as mobile phones.
Weight-activation Quantization extends quantiza-
tion to both model weights and activations, aiming
to further reduce computational overhead. How-
ever, as indicated in prior works (Dettmers et al.,
2022; Xiao et al., 2023), activations have dynamic
ranges across different data distributions and are
hence more challenging to quantize compared to
weights. As a result, quantizing activations to a
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lower bit-width often results in a significant per-
formance decline. Leading solutions either retain
some compute-intensive matrix multiplications in
full precision (Dettmers et al., 2022; Xiao et al.,
2023) or utilize dynamic per-token activation quan-
tization, which lacks hardware support on mobile
platforms. In contrast, our approach quantizes all
linear operations and is compatible with current
hardware support on edge devices.
Learning to Round. Notable works like (Nagel
et al., 2020; Lee et al., 2023) also focus on weight-
only quantization but introduce techniques for
learning optimal weight rounding. The key ar-
gument is that the conventional round-to-nearest
method is suboptimal, as it does not account for the
interdependencies among adjacent weights. Our
work is orthogonal with this research and can hence
be integrated with these techniques.

2.2 Quantization Aware Training (QAT)

Quantization aware training (QAT) involves retrain-
ing or fine-tuning full-precision models using dif-
ferentiable quantizers. Recent research (Liu et al.,
2023; Bondarenko et al., 2023) has shown that
QAT outperforms PTQ methods, particularly with
in-domain training data. However, QAT requires
extensive training, which is often impractical for
LLMs. Additionally, QAT may be vulnerable to
domain shifts if the data used for pretraining is un-
available. In contrast, our approach is zero-shot,
only requiring a minimal set of calibration samples
and a limited compute budget. Once trained, our
model remains mathematically equivalent to the
original model when unquantized, enhancing its
adaptability to various downstream tasks.

3 Preliminaries

3.1 Mobile-friendly Design Choices

Quantization methods are differentiated by several
main design choices, with varying levels of hard-
ware support. In this section, we first list these
design choices and then highlight the limitations of
existing works with respect to these choices.
Support for mobile-friendly bitwidth: int8-int8
operations are widely supported and most often
optimized for, while int4-int16 and int8-int16 are
typically supported although often slower than int8-
int8.
Quantization groups: Quantizing using per-tensor
and per-channel statistics is widely supported while
using per-token statistics is not.

Dynamic vs static: Static quantization statistics
that do not depend on the input data, typically com-
puted on a holdout calibration set, are widely sup-
ported. Dynamic quantization, on the other hand,
requires online calibration from the input data and
is not widely supported.

State-of-the-art quantization methods demon-
strate strong performance on a server use case (i.e.
high-end GPU). However, they either utilize on-the-
fly dequantization and 16-bit floating point opera-
tions (Frantar et al., 2023; Lin et al., 2024), which
are computationally inefficient, or dynamic per-
token quantization (Xiao et al., 2023; Shao et al.,
2024), which, as previously mentioned, has no sup-
port on edge devices.

We, instead, consider design choices that are
widely supported and optimized on modern edge
devices (e.g. Mobile NPUs), namely i) fixed-point
weight and activation quantization with integer
arithmetic operations, and ii) per-tensor/channel
quantization with static pre-computed ranges. Our
objective is hence to improve existing state-of-the-
art approaches such as SmoothQuant (Xiao et al.,
2023) and OmniQuant (Shao et al., 2024) while
staying within the limits of hardware support on
device.

3.2 Weight Equivalent Transformation
Prior efforts on LLM quantization (Dettmers et al.,
2022; Xiao et al., 2023) observed that activations
are harder to quantize compared to the model
weights due to the outlier channel dimensions
with diverse min-max ranges. As an example,
given a fully connected layer Y = XW, W ∈
RN×M ,X ∈ RN ,Y ∈ RM , specific channel di-
mensions {i : 0 ≤ i < N} in X may have a wide
min-max range across different data samples, caus-
ing substantial quantization errors. To counteract
this, previous methods proposed a weight equiva-
lent transform defined by a scaling vector S ∈ RN :

Y = XW = (XS−1) · (SW) = X̂Ŵ (1)

The goal is to find the optimal scaling vec-
tor S such that both X̂ and Ŵ are easier to
quantize compared to the original X and W.
SmoothQuant (Xiao et al., 2023) reparameterized S

as si =
max(|Xi|)α

max(|Wi|)(1−α) ), 0 ≤ i < N , and searched
for the hyper-parameter α. The obtained S is sim-
ilar to the closed-form solution derived in (Nagel
et al., 2019). OmniQuant (Shao et al., 2024) ex-
tended SmoothQuant (Xiao et al., 2023) by learning
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Figure 1: Weight equalization transformation proposed in (Nagel et al., 2019; Xiao et al., 2023; Shao et al.,
2024). In this example, we use three consecutive layers: one normalization layer, e.g. LayerNorm (Ba et al.,
2016)/RMSNorm (Zhang and Sennrich, 2019), and two linear layers, and assume the activations of all layers have
the same hidden dimension N . Here A ∈ RN refers to the affinity transformation of the normalization layer. The
goal of weight transformation is to learn the scaling vector S such that the resulting weight matrices (i.e. S0W1S

−1
1

and S1W2) and activations X̄ , are easier to quantize. S is hence the only learnable parameters. Note that the new
model is mathematically equivalent to the original model when unquantized.

S, together with the weight clipping parameters via
block-wise error minimization. Here, both S and
S−1 can be fused to the adjacent linear layers, mak-
ing the transformation mathematically equivalent
to the original models. Figure 1 provides an illus-
tration of the transformation among consecutive
linear layers.

4 MobileQuant: Towards Mobile-friendly
Quantization

4.1 Challenges for Mobile-friendly
Quantization

The weight equivalent transformation approaches
used in SmoothQuant and OmniQuant, as de-
scribed in Section 3.2, demonstrate strong perfor-
mance on GPU-like hardware. However, they do
not work out of the box for edge devices. Specif-
ically, two challenges remain: i) the weight trans-
formations cannot propagate beyond non-linear
operators, e.g. Softmax, RMSNorm (Zhang and
Sennrich, 2019), LayerNorm (Ba et al., 2016),
SiLU/GELU (Hendrycks and Gimpel, 2016). To
counteract this, we apply weight transformations
on all consecutive layers with linear components,
e.g. between linear layers or affine transformations
in the normalization layers, while keeping the non-
linear activations in 16-bit integers; ii) with the
weight transformation, the distribution of the ac-
tivations shifts accordingly. This causes essential
difficulty for learning-based approaches like Omni-
Quant (Shao et al., 2024), when the min-max range
for the activations changes after each training iter-

ation. OmniQuant (Shao et al., 2024) proposed to
bypass the issue with dynamic per-token quantiza-
tion, which has no hardware support on-device.

4.2 Learning the Per-tensor Range of the
Activations

Given the distribution of the activations shifts ac-
cordingly with the weight transformation, the ideal
solution is to re-estimate the activation ranges
across the training set after each training iteration.
However, doing so is computationally prohibited.
Hence, we propose to learn the activation range
jointly with the weight transformation. Given an
activation tensor X, instead of learning the min
and max values fmin(X), fmax(X) directly, we
leverage the correlation between fmin, fmax and
the scale and offset parameters, α, β ∈ R, for quan-
tization. With the targeted bit-width bw, quantizing
X can be formulated as:

qmax =2bw − 1, (2)

α =
fmax − fmin

qmax
, β =

fmin

α
(3)

Xint = min(max(ste(
X

α
)− β, 0), qmax) (4)

Here, Xint refers to the quantized tensor of
X, ste refers to straight-through estimator. We
can therefore learn fmin = αβ and fmax =
αqmax +αβ indirectly by learning α and β, which
are computationally more stable.
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WikiText (↓)
TinyLLaMA StableLM-2 Gemma
1.1B 1.6B 2B

FP16 14.9 28.4 18.0

W8A8

SmoothQuant-Static 177 583 >1E+03
SmoothQuant-Edge 27.1 74.5 45.3
OmniQuant-Static 51.0 298.6 >1E+03
OmniQuant-Edge 16.3 30.9 23.4

W4A8

OmniQuant-Static 416.3 258.5 >1E+03
OmniQuant-Edge 18.8 36.0 23.9

Table 1: Adapting quantization SOTA to the on-
device setting. OmniQuant and SmoothQuant are not
fully supported for on-device deployment. We intro-
duce mobile-friendly variants. Evaluation: perplexity
on WikiText (Merity et al., 2016). We adopt the “Edge”
variants as strong on-device baselines.

4.3 End-to-end Optimization vs Layer-wise
Optimization

To learn the equivalent transformation, previous
works either resort to closed-form solutions (Nagel
et al., 2019), search-based methods (Xiao et al.,
2023; Lin et al., 2024), or layer-wise error mini-
mization (Shao et al., 2024). These solutions re-
quire limited training budget, but, as shown in Sec-
tion. 5.4, lead to sub-optimal performance. Particu-
larly, given the restricted form of supervision, we
show that these methods cannot scale with more
training samples or iterations. We, instead, pro-
pose to jointly optimize all the training param-
eters, including the weight equalization parame-
ters S, weight clipping parameters used in Omni-
Quant (Shao et al., 2024), and the range parameters
α, β for all layers in an end-to-end manner. Com-
pared to previous PTQ approaches, which strug-
gle with more training samples and epochs, we
demonstrate that our holistic optimization approach
consistently improves the performance with larger
training settings for different LLM architectures.
Compared to QAT, our method preserves model
generalizability and does not overfit to specific cal-
ibration samples, achieving near-lossless zero-shot
performance.

5 Experiments

5.1 Setup

We perform experiments by training and simulating
the quantization on GPUs and further evaluate the
on-device performance on a Samsung Galaxy S24,
with the Snapdragon 8 Gen 3 HTP as the compute

unit. All models were trained on two A100 GPUs,
with a maximum sequence length of 2048.
Architectures: MobileQuant focuses on
lightweight LLMs that are suitable to be deployed
on mobile devices. Hence, we experiment with
representative pretrained models with different
architectures: TinyLlaMA-1.1B-Chat-v1.0 (Zhang
et al., 2024), StableLM-2-1.6B (Bellagente et al.,
2024), and Gemma-2B (Google, 2024).

Quantization details. MobileQuant use a subset
of the Pile (Gao et al., 2020) dataset as the calibra-
tion set. We explore two quantization settings: i)
W8A8: 8-bit weight quantization with per-tensor
statistics except for the last linear projection in each
MLP block (e.g. down_proj in LLaMA-like (Tou-
vron et al., 2023) models) which uses per-channel
statistics, and 8-bit per-tensor quantization for the
activations, except those linked to non-linear oper-
ators. ii) W4A8: 4-bit per-channel quantization for
model weights, and 8-bit per-tensor quantization,
likewise excluding non-linear operators.
We consider asymmetric quantization for both set-
tings, which can utilize the full quantized range.
We also provide extra experiments on symmetric
per-channel W4A8 quantization in the supplemen-
tal material, which is better supported by the cur-
rent on-device toolchain we use.
Evaluation datasets. We evaluate our quanti-
zation approach in a zero-shot setting on repre-
sentative tasks from the Language Model Evalu-
ation Harness benchmark (Harness) (Gao et al.,
2023) including WikiText (Merity et al., 2016),
AI2 Reasoning Challenge (arc_challenge) (Clark
et al., 2018), Hellaswag (Zellers et al., 2019), and
MMLU (Hendrycks et al., 2021).

5.2 On-device Baselines
In this section, we extend state-of-the-art
weight-activation quantization methods,
SmoothQuant (Xiao et al., 2023) and Omni-
Quant (Shao et al., 2024) on device and use
them as baselines. As these approaches utilize
dynamic per-token quantization for the activation,
which is not supported on edge devices, we
modify these methods to work on device by
using static per-tensor activation quantization,
referring to these variants as OmniQuant-Static
and SmoothQuant-Static respectively. Note that,
for SmoothQuant, we only include evaluations on
W8A8, which is the default setting used in the
original work.
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#Samples #Epochs
TinyLlaMA-1.1B StableLM-2-1.6B Gemma-2B

Block-wise End-to-end Block-wise End-to-end Block-wise End-to-end

128 20 18.3 19.9 35.4 40.4 23.0 32.5
128 60 18.3 17.4 37.0 36.5 23.7 26.1
128 120 18.1 17.1 37.1 35.1 24.0 23.1
256 60 17.9 17.1 35.9 34.2 24.5 22.0
1024 60 17.7 17.1 35.4 33.6 24.9 21.4

Table 2: End-to-end range optimization: Perplexity on WikiText for OmniQuant-Edge W4A8 setting with
block-wise vs end-to-end range optimization. Best overall performance is in bold, best block-wise performance
is underlined. Compared to block-wise, end-to-end optimization benefits from larger training settings with more
samples/iterations, leading to better performance.

As shown in Table 1, both “Static” variants suffer
from large performance degradation when evalu-
ated on WikiText (Merity et al., 2016). We fur-
ther observe that the performance drop is mainly
caused by quantizing the activations for the last
linear layer in each MLP head (i.e. down_proj
in LLaMA-like (Touvron et al., 2023) models).
To further alleviate this issue, we introduce an
extra weight equalization transformation between
consecutive linear layers in each MLP head (i.e.
S between the up_proj and down_proj layers
in TinyLLaMA (Zhang et al., 2024)). The new
models, which we termed SmoothQuant-Edge and
OmniQuant-Edge respectively, significantly allevi-
ate the performance degradation. For the remain-
der of this section, we use these adapted models as
strong on-device baselines.

WikiText (↓)
TinyLLaMA StableLM-2 Gemma
1.1B 1.6B 2B

FP16 14.9 28.4 18.0

W8A8

OmniQuant-Edge 16.3 30.9 23.4
OmniQuant-Edge w ARL 15.9 30.5 22.8

W4A8

OmniQuant-Edge 18.8 36.0 23.9
OmniQuant-Edge w ARL 18.3 35.4 23.0

Table 3: Activation range learning (ARL): Perplexity
on WikiText for OmniQuant-Edge with/without ARL
for W8A8 and W4A8 settings. The performance gains
are larger on models with larger quantization errors.

5.3 Impact of Activation Range Learning

Table 1 shows that the learning-based approach,
OmniQuant (Shao et al., 2024), outperforms the
search-based method, SmoothQuant (Xiao et al.,
2023), for all models by a notable margin. How-
ever, learning to transform the weights with fixed

activation ranges is suboptimal, as the activation
ranges shift after each training iteration. We fur-
ther evaluate the impact of incorporating activation
range learning (ARL), described in Section. 4.2,
into OmniQuant (Shao et al., 2024). In other words,
we learn the per-tensor scale and offset parameters,
together with the weight transformation via block-
wise error minimization.

Table 3 demonstrates that activation range learn-
ing (ARL) consistently improves the performance
for all LLM models across all settings. The gains
are larger for quantized models exhibiting a larger
performance gap compared to the FP16 models.
Notably, these models require more training steps
to mitigate the quantization errors, leading to larger
range shifts for the activation.

5.4 Impact of End-to-End Optimization

In the previous section, we show that incorporat-
ing ARL into our baselines results in consistent
improvements. Nonetheless, there is still a notable
performance gap between the quantized models
and the FP16 models, especially under the W4A8
setting. In order to reduce this gap, we attempt to
improve the performance by scaling up the perfor-
mance, namely increasing the number of calibra-
tion samples and the number of training epochs.
However, Table 2 shows that the performance of
all considered models saturate as we scale the train-
ing up using the block-wise approach proposed
in OmniQuant (Shao et al., 2024). We therefore
conjecture that the optimization is hindered by the
block-wise error minimization objective that pro-
vides limited global supervision. To verify this, we
use our end-to-end training pipeline and jointly op-
timize all trainable parameters of the whole model,
namely the weight transformation, clipping, and
activation range learning parameters.
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WikiText ↓ ARC-Challenge ↑ HellaSwag ↑ MMLU ↑
W8A8

TinyLlaMA-1.1B

FP16 14.9 33 60 25
SmoothQuant-Edge 27.1 29.6 52.8 24.9
OmniQuant-Edge 16.3 31.7 58.4 24.9
MobileQuant 15.5 (-0.8) 31.9 (+0.2) 59.2 (+0.8) 25.0 (+0.1)

StableLM-2-1.6B

FP16 28.4 39 65 32
SmoothQuant-Edge 70.2 35.9 61.8 26.0
OmniQuant-Edge 30.9 36.3 63.4 29.3
MobileQuant 29.7 (-1.2) 37.1 (+0.8) 63.6 (+0.2) 30.0 (+0.7)

Gemma-2B

FP16 18.0 23 42 28
SmoothQuant-Edge 45.3 23.0 39.0 25.8
OmniQuant-Edge 23.4 22.4 39.9 26.8
MobileQuant 20.3 (-3.1) 21.8 (-1.2) 40.9 (+1.0) 25.8 (-1.0)

W4A8

TinyLlaMA-1.1B
FP16 14.9 33 60 25
OmniQuant-Edge 18.8 28.8 56.4 25.5
MobileQuant 17.1 (-1.7) 32.3 (+3.5) 57.0 (+0.6) 25.5 (+0.0)

StableLM-2-1.6B
FP16 28.4 39 65 32
OmniQuant-Edge 36.0 34.9 60.2 25.9
MobileQuant 33.6 (-2.4) 35.6 (+0.7) 60.5 (+0.3) 24.1 (-1.8)

Gemma-2B
FP16 18.0 23 42 28
OmniQuant-Edge 23.9 23.1 38.1 25.5
MobileQuant 21.4 (-2.5) 23.0 (-0.1) 38.9 (+0.8) 25.6 (+0.1)

Table 4: Comparisons with existing state-of-the-art methods on Harness: Best performance is bold, second-best
underlined. We indicate the gain/drop of our approach vs the next strongest on-device baseline. Our method, Mo-
bileQuant, demonstrates consistent improvements across models, quantization configurations, and tasks, achieving
best performance in most cases.

As shown in Table 2, our end-to-end trained
models demonstrate consistent improvements with
more training samples and iterations, only under-
performing the blockwise optimized models in
the smallest settings when the models were under-
trained. We currently train the models with up to
1024 samples for 60 epochs but posit that the mod-
els could be further improved with more diverse
samples and larger training settings.

5.5 Harness Benchmark Results

Following previous approaches (Xiao et al., 2023;
Shao et al., 2024; Liu et al., 2023), we perform
zero-shot evaluations on representative tasks from
the Harness benchmark (Gao et al., 2023). Table 4
shows that, in addition to the WikiText perplexity,
our method also improves the quantization perfor-
mance for the common sense reasoning tasks in
general, without using any in-domain data. The

TinyLlaMA-1.1B WikiText ↓ Lambada ↑
FP16 14.9 82.9
W8A16 15.2 82.9
MobileQuant W8A8 15.6 82.4
full W8A8 8e5 1.3

Table 5: On-device accuracy of the quantized
TinyLLaMA-1.1B-Chat-v1.0 on WikiText and LAM-
BADA. Models run on a Snapdragon 8 Gen 3 HTP
processor.

improvements are consistent for most benchmarks
and we believe that the performance of our method
could be further improved with in-domain data, es-
pecially for benchmarks with a large domain shift
relative to our calibration set (i.e. Pile (Gao et al.,
2020)).
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Seq. Length Method Avg. lat. (ms) Avg. energy (mJ) Peak mem. (MiB)

Prompt Encoding

256
W8A16 510 1000 1019
MobileQuant (W8A8) 276 490 1011
full W8A8 89 183 1006

Autoregressive Generation

1024
W8A16 54 69 1007
MobileQuant (W8A8) 46 61 1005
full W8A8 42 61 1003

2048
W8A16 119 165 1010
MobileQuant (W8A8) 95 110 1007
full W8A8 94 106 1006

Table 6: On-device execution cost. Measurements of latency, energy and memory are computed under sustained
execution (30 minutes). Values are reported per single forward pass.

5.6 On-device Evaluation

On-device Setup. We further deploy the quan-
tized LLM model on a mobile device and provide
evaluations on the accuracy, latency, memory us-
age, and power consumption. Specifically, we eval-
uate the W8A8 quantized TinyLLaMA-1.1B-Chat-
v1.0 (Zhang et al., 2024) model on a Samsung
Galaxy S24, using the Snapdragon 8 Gen 3 HTP
as the compute unit. We evaluate the model un-
der three different quantization settings: 1) W8A16,
which keeps activations as 16-bit; Note that the
matrix multiplication for the self-attention compu-
tation is still between 8-bit and 16-bit unsigned
integer activations to avoid potential overflowing,
2) full W8A8, keeps all activations in 8-bit, and 4)
our proposed MobileQuant for W8A8.
On-device Accuracy. We compute the accuracy
of the quantized models on two tasks: i) Wiki-
Text (Merity et al., 2016) from Harness (Gao et al.,
2023), as we used in our previous evaluations and
ii) LAMBADA (Paperno et al., 2016), which pre-
dicts the last token of a sentence given the previ-
ous context. Following SmoothQuant (Xiao et al.,
2023), we use the first 1000 samples from LAM-
BADA for this task. Table 5 shows that using 16-bit
activations (i.e. W8A16) achieves lossless perfor-
mance. However, quantizing all activations into
8-bit leads to near-zero performance, highlighting
the difficulty of activation quantization. Our W8A8
MobileQuant model achieves near-lossless perfor-
mance in both tasks, approaching the performance
of the FP16 model.
On-device Latency. We provide the on-device

latency evaluation by running the quantized model
in two modes: i) prompt encoding with a context
length of 256, ii) auto-regressive generation with
a maximum sequence length of 1024 and 2048.
Table 6 shows that, for prompt encoding, using
lower-bitwidth activations is critical to reducing
the inference latency, as some of the operations,
e.g. self-attention (batched matrix multiplication),
are compute-intensive. Our model demonstrates
significant advantages over the full W8A16 solu-
tion, reducing the latency by 40%. However, there
is still a large gap between MobileQuant and the
full W8A8 model, indicating the improvement mar-
gin. For auto-regressive generation, the latency
gaps are smaller. We posit that the auto-regressive
generation is not as compute-bound as prompt en-
coding, especially for lightweight models, but in-
stead is partially memory access-bound. Our so-
lution demonstrates a 20% latency reduction com-
pared to W8A16, achieving the same latency as
the full W8A8 model. We include a video demo
that showcases the auto-regressive generation of
the quantized model on device in the supplemental
material. In general, the advantage of low-bitwidth
activations correlates strongly with the scale of the
computation. Hence, we aim to extend the latency
evaluation to larger models in our future research.

On-device Energy and Memory. Apart from la-
tency, energy consumption is another important
aspect of on-device execution, which is often over-
looked by quantization research. To measure the en-
ergy requirements of different models, we run them
on a number of identical mobile phones as used be-
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fore continuously for 30 minutes. The phones are
connected to the testing host machine via WiFi
using an internal network without access to the
internet, to avoid any undesired network activity.
The phones are also not being charged and their
screens are turned off. All phones begin each test
at the same battery level and the final energy of run-
ning a model is calculated as the ratio of the total
battery discharged over the duration of a test, mi-
nus reference discharge of a phone not running any
model, divided by the number of times the model
was run. We repeat measurements for different
models 3 times, rotating the phones each time, and
report the average. We also report peak memory
required to run a model as the peak resident mem-
ory recorded for the benchmarking process by the
Linux Kernel (the so-called Virtual Memory High
Water Mark). From Table 6, the energy consump-
tion of each model aligns well with the latency.
Compared to W8A16, MobileQuant reduces 50%
of the power usage for prompt encoding and 35%
for autoregressive generation. The peak memory
usage for all models are similar as it is dominated
by the model weight.

6 Conclusion

We revisited LLM quantization from the perspec-
tive of deployment on edge devices such as mobile
phones. We examined the limitations of current
state-of-the-art models for on-device deployment
and present MobileQuant, the first framework to
facilitate compute-, and energy-efficient quantized
LLMs with minimal performance loss. Mobile-
Quant is drop-in compatible with today’s edge de-
vice hardware and low-level runtimes.

Limitations

The work explores reducing the overhead of on-
device deployment for Large Language Models by
hardware-friendly quantization. Our current study
focuses on established pretrained LLMs with 1 to 2
billion parameters, which limits the overall capac-
ity of the quantized models. Also, the quantized
models inherit the error of the pretrained models,
e.g. hallucination, which may be corrected by ex-
tra guard models (Inan et al., 2023). For now, we
demonstrate the efficiency and effectiveness of Mo-
bileQuant on specific high-end mobile phones. We
plan to extend our research to more LLMs with
different architectures, model sizes, capacities, as
well as more edge devices in the future.
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A Appendix: On-device Experiments for
W4A8

In this appendix, we provide further on-device eval-
uation for W4A8. The current on-device toolchains
we use support only symmetric per-channel weight
quantization. This, however, typically leads to per-
formance degradation as the full quantization range
may not be fully utilized if the weights are biased
toward positive or negative. Here we first present
extra W4A8 results with symmetric per-channel
quantization. We then include on-device latency
evaluation showcasing the advantages of using 4-
bit integer representation for the weights.

A.1 Symmetric vs Asymmetric W4A8
Quantization

We train extra W4A8 models with symmetric per-
channel quantization. Table 7 presents the perfor-
mance of symmetric per-channel W4A8 models on
Wikitext (Gao et al., 2023), confirming the perfor-
mance degradation compared to the asymmetric
counterparts.

WikiText (↓)
TinyLLaMA StableLM-2 Gemma
1.1B 1.6B 2B

FP16 14.9 28.4 18.0

MobileQuant-Asym 17.1 33.6 21.4
MobileQuant-Sym 17.5 36.4 24.7

Table 7: Evaluation of symmetric vs asymmetric W4A8
per-channel quantization on Wikitext (Gao et al., 2023).

Method TinyLlaMA-1.1B Gemma-2B

Prompt Encoding (Seq. Length 256)

W8A16 510 1191
MobileQuant (W8A8) 276 752
full W8A8 89 311

W4A16 320 617
MobileQuant (W4A8) 239 460
full W4A8 89 98

Autoregressive Gen. (Context Length 1024)

W8A16 54 78
MobileQuant (W8A8) 46 60
full W8A8 42 59

W4A16 50 56
MobileQuant (W4A8) 38 40
full W4A8 40 40

Table 8: On-device latency (ms) for TinyLlaMA-
1.1B (Zhang et al., 2024) and Gemma-2B (Google,
2024) across different settings.

A.2 On-device Latency for Symmetric W4A8
models

We further evaluate the on-device latency of the
W4A8 models with symmetric quantization. Ta-
ble8 shows that, compared to W8A8, the W4A8
models demonstrate improved inference speed for
both prompt encoding and autoregressive genera-
tion. For larger models like Gemma-2B, the im-
provements are more significant, i.e. reducing the
latency of prompt encoding and autoregressive gen-
eration by 39% and 33%. Here, TinyLLaMA-1.1B
achieves the same inference speed, i.e. 40 ms per
token (25 tok/s). We conjecture that, in this setting,
the autoregressive generation for these models is
likely memory-bound. We plan to further investi-
gate the performance bottleneck in future research.
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