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Abstract
Despite the superior performance, it is chal-
lenging to deploy foundation models or large
language models (LLMs) due to their massive
parameters and computations. While pruning is
a promising technique to reduce model size and
accelerate the inference, the traditional prun-
ing techniques can hardly be applied for LLMs
as they need to finetune the model on the full
dataset with multiple epochs consuming mas-
sive data and hardware resources. To deal with
this problem, post-training pruning methods are
proposed to prune LLMs in one-shot without
retraining. However, their accuracy after prun-
ing may suffer from certain performance degra-
dation due to the lack of retraining with mas-
sive data. To address this issue, in this paper,
we first formulate the post-training problem
for layer-wise LLM compression to simultane-
ously prune multiple weights in LLMs. Next,
we provide an optimal solution for this problem
and design our post-training pruning algorithm
for both unstructured and semi-structured spar-
sity. Our extensive experiments demonstrate
the superior performance of the proposed meth-
ods in comparison to SOTA baselines across
various LLM families including transformer-
based LLMs and Mamba-based LLMs.

1 Introduction

Foundation models or large language models
(LLMs) have achieved remarkable performance on
a variety of tasks. However, it is challenging to
deploy LLMs in practical applications due to their
massive parameters and computations. To facili-
tate LLM deployment in practice, various model
compression techniques targeting LLMs including
pruning (Hubara et al., 2021b; Frantar and Alis-
tarh, 2023) and quantization (Dettmers et al., 2022;
Frantar et al., 2022; Yao et al., 2022; Xiao et al.,
2023) have been proposed to reduce memory and
computation costs.

The traditional pruning techniques, which fine-
tune or retrain models (Li et al., 2020) on full

datasets for many epochs (i.e., pruning-aware train-
ing), are too expensive for LLMs in terms of data
and GPU resources. Thus, post-training pruning
based on well-pre-trained models with reduced
resource requirements represents a more reason-
able approach for LLMs. Notably, SparseGPT
(Frantar and Alistarh, 2023) is the representative
post-training pruning work with outstanding per-
formance. It reduces memory cost by sequentially
loading transformer blocks, one at a time, instead
of loading the whole model. Moreover, it reduces
the data cost by using only a small amount of cal-
ibration data, eliminating the retraining process
on massive data. Besides the optimization based
SparseGPT, there are some other heuristic post-
training pruning methods such as (Sun et al., 2023;
Zhang et al., 2024), achieving accuracy close to
SparseGPT.

However, the performance of SparseGPT is still
sub-optimal as it relies on the solution of Single
Removal Problem (SRP) (Singh and Alistarh, 2020;
Frantar et al., 2021) to address the pruning of mul-
tiple weights, which is essentially a Multiple Re-
moval Problem (MRP). In particular, the SRP pro-
vides the optimal solution to prune one weight at a
time and modify all other weights to compensate
the pruned single weight and minimize the loss.
However, as the optimal solution is unaware of all
previous pruned weights and requires to modify
all other weights including previous pruned ones
(making them unpruned again), it is at odds with
the MRP for multiple pruned weights. Thus, the
optimal solution in SRP can not be directly ap-
plied to solve MRP. To successfully incorporate the
SRP solution, a series of approximation methods
are adopted in SparseGPT, at the cost of certain
performance degradation, as detailed in Sec. 2.3.

Different from the SRP-based SparseGPT, we
directly formulate the MRP for layer-wise LLM
pruning to simultaneously prune multiple weights
in LLMs. Next, we derive the optimal solution for
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the MRP problem with detailed analysis for its ad-
vantages. Based on the optimal solution, we design
our post-training pruning algorithms for both un-
structured and semi-structured sparsity. In our com-
prehensive evaluation, we demonstrate our superior
performance in terms of perplexity and zero-shot
accuracy compared with SOTA baselines for both
transformer-based and Mamba-based LLMs (such
as our 4.278 perplexity on wikitext2 v.s. 5.698 from
SparseGPT for LLaMA2-70B under 2:4 sparsity).

Our contributions are summarized as follows:

• We directly formulate the MRP for LLM prun-
ing, to enable simultaneous pruning of mul-
tiple weights, covering the SRP as a special
case, as detailed in Sec. 3.4.

• We derive the optimal solution for the pro-
posed MRP. Based on that, we design accu-
rate post-training pruning algorithms for both
unstructured and semi-structured sparsity.

• Our comprehensive experiments across vari-
ous LLM families (based on transformers and
Mamba), model sizes, and datasets demon-
strate our superior performance compared
with the optimization-based SparseGPT and
other heuristic SOTA baselines.

2 Background

2.1 Post-Training Pruning

The post-training pruning problem can be typically
formulated as the following,

min
δw

L′(w + δw)− L′(w),

s.t. (w + δw)⊙M = 0, (1)

where w is the original model weights, δw is the
modifications of model weights and M is the bi-
nary pruning mask on model weights with 1 de-
notes pruning. L′(w) is the typical training loss.
The problem minimizes the difference of the loss
before and after pruning, by optimizing the un-
pruned weights, with the constraint that the pruned
weights following the mask should be zero.

2.2 Single Removal Problem

The single removal problem (SRP) is investigated
in many works (Singh and Alistarh, 2020; Frantar
and Alistarh, 2022, 2023) due to its simplicity. It

optimizes the following (Singh and Alistarh, 2020),

min
δw

L(δw) =
1

2
δwHδwT ,

s.t. (δw +w) · et = 0, (2)

where et is a one-hot vector denoting the pruned lo-
cation for the single weight, and H is the Hessian
matrix of weights. w and δw are formulated as one-
dimensional vectors for simplicity. The problem
prunes one weight at a time, without any informa-
tion for other previous pruned weights.

Note that here L′(w + δw) − L′(w) ≈
∇wL

′δwT + 1
2δwHδwT ≈ 1

2δwHδwT . It ig-
nores the first-order Jacobian term ∇wL

′δwT and
only minimizes the second-order Hessian term
1
2δwHδwT , by assuming that the model is well-
trained and thus pruned at local minimum.

2.3 Limitations of SRP

2.3.1 Zero Jacobian Assumption

Following SRP, SparseGPT (Frantar and Alistarh,
2023) applies the SRP solution for each linear layer
in LLMs with H = 2xxT . However, the assump-
tion with zero Jacobian does not hold in this layer-
wise pruning setting with a local quadratic loss
L′(w) = ∥wx∥22, since we can directly obtain the
Jacobian ∇wL̂ = 2wxxT which is non-zero. The
assumption may be unreasonable here.

2.3.2 Sequential Weight Freezing

Another difficulty with the SRP solution is its un-
awareness of all other pruned weights during prun-
ing. Specifically, when compensating the loss of a
single pruned weight, its optimal solution requires
to modify all other weights including all previous
pruned weights, making them unpruned again and
violating the pre-defined sparsity requirement.

Thus, the SRP solution is not able to directly
prune multiple weights. To address this problem,
SparseGPT applies a series of techniques such as
Optimal Partial Updates and Hessian Synchroniza-
tion. The key idea is to sequentially prune weights
in the same row, and freeze/fix all weights (includ-
ing pruned and unpruned weights) previous to the
current pruned weight, so that the previous pruned
weights are kept zero. The drawback is that all
previous unpruned weights are also frozen without
further updating, leading to sub-optimal achieve-
ments with potential performance degradation.
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3 Multiple Removal Problem

3.1 Notations
For linear layers, the forward computation can
be represented as wx, where w ∈ Rn×m is the
weights and x ∈ Rm×B (B is the token number in
each batch) is the layer input. [A]q,p denotes the
weight in the qth row and the pth column of the
2D matrix A. [A]q,: denotes the qth row of A, and
[A]:,p represents the pth column of A.

To make the problem tractable, the pruned
weights are distributed in k rows (k ≤ n),
and their row indexes are denoted by qi, ∀i ∈
{1, . . . , k}. In the qthi row, there are ki pruned
elements, and their column indexes are denoted
by pij , ∀j ∈ {1, . . . , ki}. Since different rows
qi have different numbers and distributions of
pruned locations, we use the representation pij
rather than pj . Thus, the pruned locations/indexes
in the weight matrix w can be expressed as
(qi, pij), ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , ki}, or
(qi, pi1), (qi, pi2), ..., (qi, piki),∀i ∈ {1, . . . , k}.

es is a one-hot vector with the sth element as
one and all others as zero. So eTqiwepij means the
weight in the qthi row and the pthij column of w,
with eqi ∈ Rn×1 and epij ∈ Rm×1.

Tr(·) represents the trace function.

3.2 Motivation with MRP
To address the limitations of the SRP, we try to for-
mulate and solve the MRP, which prunes multiple
weights simultaneously. Our MRP is specifically
formulated for the layer-wise LLM pruning with-
out any assumptions. Furthermore, since our MRP
prunes multiple weights at the same time, each
pruned weight is aware of all other pruned weights
and thus there is no need to freeze any weights,
which effectively addresses the limitations of SRP.

3.3 MRP Formulation
In LLMs, the linear layers in transformer (Vaswani
et al., 2017) or Mamba (Gu and Dao, 2023) blocks
are the main cost of computations and parameters.
To reduce the overhead of pruning LLMs, follow-
ing SparseGPT, we adopt the layer-wise compres-
sion strategy to sequentially load and prune one
single block instead of the whole model. The sig-
nificantly reduced memory cost makes it feasible
to use only one single GPU for all computations.

For each linear layer, we try to minimize the
difference of the linear outputs (measured by
ℓ2 norm) before and after pruning, i.e., ∥(w +

δw)x − wx∥22 = ∥δwx∥22. To make the prob-
lem tractable, as discussed in Sec. 3.1, the pruned
locations/indexes in the weight matrix w can be
expressed as (qi, pi1), (qi, pi2), ..., (qi, piki),∀i ∈
{1, . . . , k}. The pruned weights (qi, pij) are set
to zero, i.e. [w + δw]qi,pij = 0. To minimize
the loss incurred by pruning, the other unpruned
weights are updated for the compensation of pruned
weights. Our MRP is formulated as the following,

min
δw

L(δw) = ∥δwx∥2,

s.t. eT
qiδwepi1 + [w]qi,pi1 = 0,

eT
qiδwepi2 + [w]qi,pi2 = 0,

......

eT
qiδwepiki

+ [w]qi,piki
= 0,

∀i ∈ {1, . . . , k}, (3)

where eTqiδwepij denotes the weight in the qthi row
and the pthij column of δw.

It can be transformed to vector representation,

min
δw

L(δw) = ∥δwx∥2,

s.t. eT
q1δwep_q1 +wq1 = 0,

eT
q2δwep_q2 +wq2 = 0,

......

eT
qkδwep_qk +wqk = 0, (4)

where ep_qi ∈ Rm×ki with [ep_qi ]:,j = epij , and
wqi = [[w]qi,pi1 , [w]qi,pi2 , ..., [w]qi,piki ] ∈ R1×ki .
In MRP, multiple weights are pruned simultane-
ously. ep_qi is a collection of all pruned column
indexes in the qthi row, and wqi is a collection of
all pruned weight values in the qthi row.

3.4 Comparison with SRP
Our problem formulation is different from the SRP
(Singh and Alistarh, 2020) in several ways.

Relax the zero Jacobian assumption. Differ-
ent from SRP with the zero Jacobian assumption
which does not hold for the layer-wise LLM prun-
ing, our formulation directly optimize the differ-
ence of outputs before and after pruning, without
any assumptions or approximations.

Furthermore, we provide an explanation for why
SRP can still achieve good performance with the
unreasonable zero Jacobian assumption. Specif-
ically, since H = 2xxT for linear layers with
the quadratic loss L′(w) = ∥wx∥22, we have
1
2δwHδwT = δwxxT δwT = ∥δwx∥22, which
means that the optimization objective of SRP is
well aligned with that of our proposed MRP. That
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is why SRP can still perform well with an unreason-
able assumption. We demonstrate that our MRP-
based method can achieve better performance than
the SRP solutions such as SparseGPT.

Simultaneous multiple removal without any
approximations. The pruning removes multiple
weights in the model. Compared with SRP, our
proposed MRP directly addresses the problem by
simultaneously pruning multiple weights, without
the need for sequential weight freezing following a
series of approximation techniques such as Optimal
Partial Updates and Hessian Synchronization (see
Sec. 2.3.2). Our straightforward formulation leads
to a direct solution to update all unpruned weights,
leading to a better accuracy performance than SRP
solutions which freeze part of unpruned weights
without further updating.

Cover SRP as a special case. The SRP is a spe-
cial case of our MRP. Our formulation deals with
multiple weight removals in 2D weight matrices,
which covers the single weight removal within 1D
weight vectors in SRP as a special case. Conse-
quently, the SRP solution is also a special case of
our MRP solution.

4 Methodology

We first derive our optimal solution for the MRP
and then discuss the algorithm design.

4.1 Optimal Solution
The Lagrange function of Problem (4) is

L (δw,λ) =∥δwx∥2 + (eT
q1δwep_q1 +wq1)λ1

+ (eT
q2δwep_q2 +wq2)λ2 + ...

+ (eT
qkδwep_qk +wqk )λk,

=Tr(xT δwT δwx) +
∑

i

(eT
qiδwep_qi +wqi)λi,

(5)

where λi ∈ Rki×1 denotes the Lagrange multi-
plier corresponding to the constraint for the qthi
row in Problem (4). λi = [λi1, λi2, ......, λiki ] and
each λij corresponds to the constraint eTqiδwepij +
[w]qi,pij = 0 in Problem (3). Unlike the SRP with
a scalar δwx, in our problem, δwx is a matrix,
requiring the trace function Tr(·).

The gradients with reference to δw should be 0.

δL (δw,λ)

δ(δw)
= 2δwxxT +

∑

i

eqiλ
T
i e

T
p_qi = 0. (6)

We can obtain δw as below,

δw = −
(∑

i

eqiλ
T
i e

T
p_qi

)
(2xxT )−1. (7)

By applying Equation (7) in Equation (5), we
have the following,

g(λ) = −1

2

∑

i

λT
i e

T
p_qi(2xx

T )−1ep_qiλi +
∑

i

wqiλi.

(8)

Note that eTqieqi = 1 and eTqieqs = 0, for
i ̸= s. Besides, we can switch the position of
xT (2xxT )−1ep_qiλi and λT

i e
T
p_qi(2xx

T )−1x in
the trace function.

The gradients with reference to λ should be 0.

δg(λ)

δλi
= −eT

p_qi(2xx
T )−1ep_qiλi +wT

qi = 0,∀i. (9)

We can obtain the optimal λ as below,

λ∗
i = [eT

p_qi(2xx
T )−1ep_qi ]

−1wT
qi ,∀i. (10)

The optimal δw can be derived as below,

δw∗ = −
(∑

i

eqiwqi [e
T
p_qi(2xx

T )−1ep_qi ]
−1eT

p_qi

)

× (2xxT )−1. (11)

The minimal loss/error corresponding to the opti-
mal δw can be obtained by

L∗ =
1

2

∑

i

λT
i e

T
p_qi(2xx

T )−1ep_qiλi

=
1

2

∑

i

wqi [e
T
p_qi(2xx

T )−1ep_qi ]
−1wT

qi . (12)

Remark 4.1. Dampening for the inverse. If
2xxT is not full rank with difficulties for the in-
version (2xxT )−1, the dampening technique is
adopted to compute (2xxT + γI)−1 instead, with
γ as the dampening ratio.
Remark 4.2. Separate row computation. For
the optimal perturbation in Equation (11), since
eqi is a one-hot vector, eqi ×A only has non-zero
values in the qthi row with all zeros for all other
rows. Thus, in Equation (11), each term with the
index i in the sum just computes the qthi row in the
outputs and the computation of the qthi row does
not affect the qths row, ∀s ̸= i. Specifically, we
have the following,

[δw∗]qi,: = −wqi [e
T
p_qi(2xx

T )−1ep_qi ]
−1eT

p_qi(2xx
T )−1

(13)

Remark 4.3. Full interactions between pruned
weights. For our optimal perturbation in Equa-
tion (11) and optimal loss in Equation (12), our
solution is not the simple sum of multiple SRP
solutions. Our solution not only depends on
the multiple pruned weights, but also takes the
interactions of the multiple removals (denoted
by [eTp_qi(2xx

T )−1ep_qi ]
−1) into considerations,

which are unavailable in SRP without the infor-
mation of other multiple removals.
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Algorithm 1 Accurate post-training pruning.

Input: weight matrix w, pruning rate α, block-
size S, block number N , 2xxT + γI .
repeat

Initialize the pruning mask M = 0;
Compute the inversion [2xxT + γI]−1 ;
for i = 1 to N do

Find the pruned weight indexes using either
Solution S or M for pruning mask;
Update M with new pruned locations;
Compute the modifications on unpruned
weights using Solution S or M for optimal
compensation with M ;
Update unpruned and pruned weights;

end for
until The final linear layer is pruned.

4.2 Algorithm Design

Our pruning algorithm is shown in Algorithm 1.
We need to address two key problems: the pruning
mask and optimal compensation. For each problem,
we have two choices, including Solution M from
our MRP and its simplified version, Solution S.

4.2.1 Pruning Mask

In the algorithm, we need to select the pruned loca-
tions and determine the pruning mask.

Solution M. It is too complex to follow Equa-
tion (12) to find out the pruning mask with the min-
imal pruning loss. Specifically, it needs to select
k weights from all weights for each combination,
leading to too many combinations. It also needs to
compute and sort the losses of all combinations to
find out the minimal loss. Thus, for unstructured
pruning, we do not implement Solution M.

For semi-structured pruning with N:M sparsity,
we implement our Solution M based on our op-
timal loss in Equation (12). Specifically, in N:M
sparsity, we split the weights into groups with M
weights in each group, and then select N weights to
be pruned in each group. For example, in 2:4 spar-
sity, there are 2 pruned weights every 4 weights.
Thus, in each group with 4 weights, we use Equa-
tion (12) to select 2 weights to be pruned with the
minimal loss. In particular, there are 6 combina-
tions to select 2 elements from 4. We compute the
loss with Equation (12) for each combination and
find out the minimal loss with its corresponding 2
elements, which are determined to be pruned. By
doing this for each group, we can determine the

pruning mask for the whole matrix.
Note that it is still a simplified version of Equa-

tion (12), since each group is computed separately
without interactions from other groups. Ideally,
Equation (12) needs to consider all groups together,
which is unaffordable. For example, if there are G
groups with 6 combinations in each group for 2:4
sparsity, there are totally 6G combinations. So we
just consider the combinations within each group,
without connections between groups.

Solution S. To reduce the complexity and
make the problem tractable, we can assume that
eTp_qi(2xx

T )−1ep_qi in Equation (12) is a diago-
nal matrix with all zeros for off-diagonal elements.
It means that we ignore the interactions between
multiple pruned locations and each pruned weight
does not affect other pruned weights. Thus, Equa-
tion (12) can be transformed to the following,

L̂∗ =
[w]2i,j

2[(2xxT )−1]j,j
. (14)

We follow Equation (14) to compute the potential
pruning loss for each single weight (indexed by
(i, j)). Then we sort the losses of all weights and
find out the K weights with smaller losses as the
pruned weights. It is similar to the mask searching
in SparseGPT (Frantar and Alistarh, 2023).

4.2.2 Optimal Compensation

With the pruning mask, we need to update other
unpruned weights to compensate the pruning loss.

Solution M. To achieve the best performance,
we directly follow Equation (11) to compute the
modifications of other unpruned weights. In Equa-
tion (11), we do not need to exactly compute multi-
ple matrix multiplications such as eTp_qi(2xx

T )−1

and eTp_qi(2xx
T )−1ep_qi , since they just select cer-

tain rows or columns in a matrix. Besides, the com-
plexity of the inversion [eTp_qi(2xx

T )−1ep_qi ]
−1 is

smaller than (2xxT )−1 with a reduced dimension.
Solution S. Similar to the pruning mask, we

can reduce the complexity of Equation (11) by as-
suming that eTp_qi(2xx

T )−1ep_qi in Equation (11)
is a diagonal matrix with all zeros for off-diagonal
elements. It ignores the interactions between mul-
tiple pruned weights, and the solution is similar
to that in SparseGPT (Frantar and Alistarh, 2023).
For simplicity, we directly follow SparseGPT for
Solution S of optimal compensation.
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Model &
Setting

Datasets Origin
Unstructured 50% 2:4 sparsity (50% sparsity)

SS
(SparseGPT)

SM
(ours)

SS
(SparseGPT)

SM
(ours)

MS
(ours)

MM
(ours)

LLaMA2-7B
S=2048

wikitext2 5.472 7.052 7.018 10.85 10.15 10.7 10.14
c4 7.263 9.305 9.204 13.65 12.48 13.38 12.47

LLaMA2-7B
S=all

wikitext2 5.472 7.045 7.019 10.92 10.37 10.6 10.38
c4 7.263 9.36 9.247 13.62 12.762 13.31 12.759

LLaMA2-13B
S=2048

wikitext2 4.884 6.028 6.001 8.76 8.219 8.644 8.224
c4 6.727 8.275 8.21 11.4 10.71 11.28 10.699

LLaMA2-13B
S=all

wikitext2 4.884 6.082 6.03 8.732 8.239 8.65 8.225
c4 6.727 8.374 8.269 11.36 10.796 11.23 10.789

LLaMA2-70B
S=all

wikitext2 3.319 4.509 4.142 5.698 4.278 4.353 4.278
c4 5.709 6.932 6.528 8.154 6.683 6.84 6.683

OPT-2.7B
S=512

wikitext2 12.47 13.43 13.29 17.13 16.74 16.89 16.68
c4 14.34 15.8 15.66 19.34 18.7 19.07 18.69

OPT-6.7B
S=2048

wikitext2 10.86 11.64 11.57 14.16 13.73 14.19 13.72
c4 12.71 13.81 13.77 16.42 15.86 16.34 15.85

OPT-30B
S=all

wikitext2 9.558 9.926 9.824 10.9 10.7 10.88 10.7
c4 11.44 12.12 11.98 13.16 12.93 13.13 12.93

BLOOM-1.7B
S=512

wikitext2 15.39 19.1 18.67 23.7 22.91 24.01 22.86
c4 19.49 22.53 22.06 27.02 25.95 27.42 25.88

BLOOM-3B
S=2048

wikitext2 13.48 15.99 15.56 18.87 18.6 18.8 18.57
c4 17.48 19.76 19.3 22.81 22.22 22.77 22.2

BLOOM-7.1B
S=2048

wikitext2 11.37 13 12.86 14.87 14.57 14.82 14.57
c4 15.2 16.71 16.59 18.79 18.47 18.74 18.47

Table 1: Perplexity comparisons for LLMs with C4 as the calibration dataset. More results are in Appendix A and B.

4.3 Accurate Pruning Algorithms

We design our post-training pruning algorithms for
both unstructured and semi-structured sparsity.

4.3.1 Unstructured Post-Training Pruning
To align with SparseGPT for a fair comparison, we
adopt the block pruning setting. The weight matrix
is split into blocks with a number of S columns
(block-size) in each block. All blocks share the
same pruning rate α to keep overall pruning rate.

In Algorithm 1, for all blocks, based on how to
solve the pruning mask and optimal compensation,
we have two combinations, SS and SM. The first
S (or M) denotes using Solution S (or M) for
pruning mask, and the second S (or M) represents
Solution S (or M) for optimal compensation. We
do not implement Solution M for pruning mask
due to its huge complexity. SS is just SparseGPT.

For the number of columns S in a block, S = 1
leads to too many blocks with high complexity. A
typical S value is 128, 512, and 2048. S = all
means that all columns are in the same block.

4.3.2 Semi-Structured Post-Training Pruning
Similarly, in semi-structured pruning, we can use
Solution S or M for pruning mask and optimal

compensation, leading to 4 combinations: SS,
SM, MS, and MM. The first S (or M) denotes
using Solution S (or M) for pruning mask, and the
second S (or M) is for optimal compensation.

4.4 Comparison with the SRP-based Solution

As discussed in Sec. 2.3, the SRP-based method
such as SparseGPT needs to freeze (fix) all weights
previous to the current pruned weight, incurring
certain performance degradation without further
updating the frozen unpruned weights. Different
from SparseGPT, our MRP solution updates all
unpruned weights, resulting in better performance.
Furthermore, ours is not a simple sum of multiple
SRP solutions. Instead, it depends on not only the
pruned weights, but also the interactions between
them, as shown in Equation (11) and (12).

5 Experimental Results

Our implementation for the proposed method is
based on PyTorch (Paszke et al., 2019) and Hug-
gingFace (Wolf et al., 2019). We sequentially prune
the linear layers of the blocks in LLMs, which only
loads one single block each time with significantly
less memory cost (Yao et al., 2022; Frantar and

9686



Model Method
Sparsity: 70% Sparsity: 80%

WT2 PTB C4 WT2 PTB C4

BLOOM-
7.1B

Original 11.37 20.82 15.2 11.37 20.82 15.2
SparseGPT 26.79 62.24 30.3 150.77 266.9 121.6
Ours-SM 22.69 49.35 25.47 93.48 168.2 70.75

LLaMA2-
13B

Original 4.884 50.94 6.727 4.884 50.94 6.727
Wanda1 - - - 2e3 - -

SparseGPT 26.47 568 27.81 339.4 1872 262.9
Ours-SM 19.05 451.2 22.12 93.43 861.8 88.36

OPT-66B
Original 9.339 13.36 10.99 9.339 13.36 10.99

SparseGPT 16.62 28.14 16.87 1.5e4 1e4 6e3
Ours-SM 14.41 23.78 14.92 58.39 147.7 42.75

LLaMA2-
70B

Original 3.319 24.25 5.709 3.319 24.25 5.709
Wanda1 - - - 1e2 - -

SparseGPT 9.042 56.36 11.69 30.12 285.3 33.12
Ours-SM 8.31 51.69 11.12 26.35 219.5 28.2

1 Wanda is not able to run on a single GPU for large LLMs such as LLAMA2-13B
and OPT-30B. Its results are from the Wanda paper.

Table 2: Perplexity comparison with baselines. WT2
denotes WikiText2. The calibration dataset is C4. More
results are shown in Appendix C.

Alistarh, 2022, 2023). We conduct experiments
on one NVIDIA A100 GPU. Similar to (Dettmers
et al., 2022; Frantar and Alistarh, 2023), we do not
incorporate any finetuning.

Our experiments can be finished on one sin-
gle GPU within a few hours. For example, for
a LLaMA2-7B model, our pruning method can be
finished on one single GPU within 4 hours, which
is still not very long. Our method can achieve a
better perplexity and accuracy especially for large
sparsity, which can hardly or never be achieved
by the baselines. Compared with other typical
pruning-aware training methods which require to
fine-tune/re-train the pruned model with massive
data, our method is very efficient with a few GPU
hours cost on a single GPU, since we do not require
finetuning. For example, the LLaMA Pro method
(Wu et al., 2024) needs over 2800 GPU hours to
finetune a small part of the LLaMA2-7B model on
multiple GPUs.

Models. We test our method for transformer-
based LLM families (including LLaMA2 (Tou-
vron et al., 2023), OPT (Zhang et al., 2022a), and
BLOOM (Scao et al., 2022)) and Mamba-based
LLMs (Gu and Dao, 2023). For each LLM family,
we experiment with multiple models of different
sizes to demonstrate the general performance.

Datasets. For the calibration data, for a fair com-
parison, we adopt the same setting as SparseGPT
and Wanda (Sun et al., 2023) to randomly choose
128 segments each with 2048 tokens from the first
shard of the C4 dataset (Raffel et al., 2020) or the
LAMBADA dataset (Paperno et al., 2016).

For performance evaluation, we test the mod-
els on commonly used datasets including raw-

WikiText2 (Merity et al., 2016), PTB (Marcus et al.,
1994) and C4. We also test on ZeroShot datasets
including LAMBADA (Paperno et al., 2016), Hel-
laSwag (Zellers et al., 2019), PIQA (Tata and Patel,
2003), ARC-Easy and ARC-Challenge (Boratko
et al., 2018), and WinoGrade (ai2, 2019).

Baselines. We compare with SparseGPT, Wanda
(Sun et al., 2023), and Magnitude (Zhu and Gupta,
2017) methods. We do not compare with AdaPrune
(Hubara et al., 2021b) as it performs worse than
SparseGPT.

Configurations. We adopt the perplexity to eval-
uate the accuracy of sparse models. To make a fair
comparison, we adopt the same hyperparameters
as SparseGPT, including the dampening ratio, the
calibration data number, token length, and so on.
We also test the accuracy on zero-shot datasets.

5.1 Results on Transformer-based LLMs

The results on transformer-based LLMs under var-
ious block-size settings are presented in Table 1.
More results for OPT and BLOOM models are
shown in Appendix A and B. We compare the
perplexity for unstructured pruning (50% sparsity)
and semi-structured pruning (2:4 sparsity). As dis-
cussed in Section 4.2, in unstructured pruning, we
only have SS and SM since the complexity to ad-
dress pruning mask with Solution M is too high. In
semi-structured pruning, we have 4 combinations,
SS, SM, MS, and MM. SS corresponds to the
original SparseGPT, and other methods are based
on our proposed optimal solution.

As demonstrated in Table 1, our method can
achieve a lower perplexity for various models on
different datasets under the same setting. Specif-
ically, for unstructured sparsity, our perplexity is
lower than SparseGPT. For 2:4 sparsity, all of our
methods achieve lower perplexity than SparseGPT.
MM typically performs the best since it adopts
more advanced techniques following our optimal
solution. However, it has the highest complexity.
We notice that the performance of SM is very
close to (or even better than) that of MM, with
lower complexity. Thus, we suggest to use SM
with a limited computation budget. In the follow-
ing, we mainly show the results of SM.

More results for other models are demonstrated
in Table A1, A2 and A3 with similar observations.
We also demonstrate the comparison with other
baselines under different sparsity in Table 2 and
Appendix C. Ours can achieve better perplexity.
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Model Method Sparsity
Perplexity ↓ Accuracy ↑
LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrade Average

Mamba-130M

Magnitude 50% 1e20 0.19 27.21 53.92 30.18 25.94 50.59 31.338
Sparsegpt 50% 29.8 35.65 32.37 60.88 41.88 23.38 51.62 40.963

Wanda 50% 44.99 29.38 32.1 60.28 42.47 23.89 51.14 39.877
Ours-SM 50% 28.97 35.2 32.21 60.83 41.58 24.23 51.93 40.997

Mamba-370M

Magnitude 50% 9e9 2.37 29.57 55.93 29.92 24.06 50.28 32.022
Sparsegpt 50% 13.39 45.8 39.71 65.13 48.48 26.28 53.59 46.498

Wanda 50% 17.69 41.16 38.96 65.02 47.64 25 53.28 45.177
Ours-SM 50% 12.33 47.88 40.21 64.69 47.64 26.54 54.3 46.877

Mamba-790M

Magnitude 50% 2e58 0.04 28.98 56.8 27.36 24.74 51.14 31.510
Sparsegpt 50% 8.31 54.43 47.71 68.28 51.94 25.17 55.8 50.555

Wanda 50% 11.89 48.19 46.81 68.61 52.74 26.19 53.75 49.382
Ours-SM 50% 7.865 56.01 47.96 68.88 51.56 26.28 55.88 51.095

Mamba-1.4B

Magnitude 70% 5e6 0.29 27.29 53.24 31.27 21.25 50.2 30.590
Sparsegpt 70% 31.66 34.66 34.66 61.1 40.91 22.7 55.01 41.507

Wanda 70% 1936 4.68 28.35 56.91 35.02 21.84 51.54 33.057
Ours-SM 70% 19.65 41.96 35.74 61.1 41.16 22.87 54.38 42.868

Mamba-2.8B
Sparsegpt 70% 9.964 53.58 42.19 63.82 46.97 24.83 56.27 47.943

Wanda 70% 160.7 17.62 32.91 59.36 39.14 21.42 52.8 37.208
Ours-SM 70% 7.511 58.82 43.25 64.64 46.63 25.17 58.25 49.460

Table 3: Results for Mamba models. The calibration dataset is LAMBADA. Magnitude, Wanda and SparseGPT are
not implemented for Mamba models in original papers. We implement and adapt these baselines for Mamba.

5.2 Results for Mamba-based LLMs
The results for Mamba models (Gu and Dao, 2023)
are demonstrated in Table 3. Similarly, our method
can achieve a better perplexity than other baselines
for various Mamba models under the same setting.

5.3 Zero-Shot Evaluation
The zero-shot results for Mamba model are demon-
strated in Table 3. Our method with a better per-
plexity can achieve a higher average accuracy on
zero-shot datasets than other baselines.

In Table 3, we can observe that with 50% spar-
sity, the accuracy for LAMBADA under Magnitude
pruning is very low, such as 2.37% for Mamba-
370M, while it is a bit higher on other datasets
such as HellaSwag with 29.57%. This observa-
tion highlights that the LAMBADA dataset is quite
sensitive to the model sparsity. The reason is that
LAMBADA is a token prediction dataset, while
other datasets are based on selection from candi-
date answers, such as Hellaswag to choose one
from 4 candidates with 25% accuracy for random
guessing. Thus, with a relatively large sparsity
such as 50%, the magnitude pruned model does
not perform well, just similar to or a bit better than
random guessing. Then for the token prediction of
LAMBADA, it achieves extremely low accuracy
such as 2.37% since random guessing can hardly
guess the correct token with too many choices. But
its accuracy on HellaSwag can still be 30%, which
is just a bit better than random guessing (25% with
4 choices). We can see that achieving good per-
formance on the LAMBADA dataset demonstrates

the superior performance of our method.

5.4 Ablation Study
We ablate different values of the dampening ratios
and the number of calibration data. We test our
method on the LLaMA2-7B model. As shown in
Appendix D and Figure A1, by using a smaller
dampening ratio or more calibration data, our per-
formance can be better. But to make a fair compar-
ison, we set γ = 0.01 and use 128 samples.

6 Related Work

Post-training pruning. It is challenging to apply
the traditional pruning methods for LLMs, since
it requires to retrain or finetune the model on the
full dataset for many epochs with massive data
and computation costs (Yang et al., 2023; Zhang
et al., 2022b; Li et al., 2022; Zhan et al., 2021,
2024). To address this problem, post-training prun-
ing for LLMs are explored to prune the model with
a small amount of calibration data, requiring much
less resources compared with retraining. The post-
training idea is originally proposed in quantization
(Nagel et al., 2020; Hubara et al., 2021b; Shen
et al., 2024a; Frantar et al., 2022) for transform-
ers and LLMs, and then successfully applied for
pruning (Hubara et al., 2021a; Kwon et al., 2022;
Shen et al., 2024b; Frantar and Alistarh, 2023; Shen
et al., 2024c). Post-training compression usually
investigates the compression for a single layer of
the LLM instead of the whole model for simplicity.
The memory cost is reduced significantly as the
memory only loads one block at a time (Hubara
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et al., 2021a; Frantar et al., 2022).
Post-training solvers. AdaPrune (Hubara et al.,

2021a) uses weight magnitudes to determine the
pruning mask, and then uses an optimizer such
as SGD to update unpruned weights and improve
the performance based on a small amount of cal-
ibration data. Its performance is sub-optimal due
to the limited number of finetuning data. To fur-
ther improve the performance, the optimization-
based post-training methods are proposed such as
OBC (Frantar and Alistarh, 2022) and SparseGPT
(Frantar and Alistarh, 2023). Based on the SRP
and its solution (Singh and Alistarh, 2020), OBC
introduces a greedy solver to remove one single
weight at a time, and then reconstructs the remain-
ing weights following closed-form solutions in
each iteration. SparseGPT further improves the
solution of OBC and applies to the largest avail-
able open-source LLM models, achieving 60% un-
structured sparsity with SOTA performance in per-
plexity. Besides optimization-based methods, the
heuristic Wanda (Sun et al., 2023) suffers from
significant accuracy loss when the sparsity is large.

7 Conclusion

We first formulate the MRP in LLMs to prune mul-
tiple weights simultaneously. Then we derive the
optimal solution. Based on the optimal solution, we
propose accurate post-training pruning algorithms
for unstructured and semi-structured sparsity. Our
comprehensive experiments demonstrate that our
method is more accurate than SOTA baselines un-
der the same configurations.

Limitations

The complexity of our method may be higher than
SparseGPT, as we need to invert the matrix multiple
times. As discussed in Sec. 4.2.2, we can avoid
certain matrix multiplications with row or column
selection, and the complexity of matrix inversion
is reduced due to a smaller matrix dimension. Our
method can still be finished with one single GPU
within a few hours.
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Appendix

A Results on OPT Models

The results for OPT models are demonstrated in Table A1. Similarly, our methods can achieve a better
perplexity than SparseGPT for various models on different datasets under the same setting. For 2:4
sparsity, MM typically can achieve the best performance and the performance of SM is very close to (or
even better than) that of MM with lower complexity.

Model &
Setting

Datasets
Original

perplexity
Unstructured 50% 2:4 sparsity

SS
(SparseGPT)

SM
(ours)

SS
(SparseGPT)

SM
(ours)

MS
(ours)

MM
(ours)

OPT-125M
S=128

wikitext2 27.65 37.02 35.75 58.78 52.4 59.13 52.31
ptb 38.99 55.4 55.37 92.42 83.22 91.68 83.23
c4 26.56 33.49 32.72 51.49 45.76 49.64 45.59

OPT-350M
S=128

wikitext2 22 31.21 30.12 50.57 50.06 51.94 48.46
ptb 31.07 43.44 42.71 72.45 70.8 72.23 70.96
c4 22.59 29.17 28.36 46.48 42.79 46.04 42.16

OPT-2.7B
S=512

wikitext2 12.47 13.43 13.29 17.13 16.74 16.89 16.68
ptb 17.97 20.45 20.28 26.97 25.99 26.63 25.91
c4 14.34 15.8 15.66 19.34 18.7 19.07 18.69

OPT-6.7B
S=2048

wikitext2 10.86 11.64 11.57 14.16 13.73 14.19 13.72
ptb 15.77 17.45 17.33 21.53 20.38 21.11 20.4
c4 12.71 13.81 13.77 16.42 15.86 16.34 15.85

OPT-30B
S=all

wikitext2 9.558 9.926 9.824 10.9 10.7 10.88 10.7
ptb 14.04 15.3 15.05 16.58 16.19 16.53 16.2
c4 11.44 12.12 11.98 13.16 12.93 13.13 12.93

Table A1: Perplexity comparisons for OPT models under various block-size settings.

B Results on BLOOM Models

The results for BLOOM models are demonstrated in Table A2. Similarly, our methods can achieve a
better perplexity than SparseGPT for various models on different datasets under the same setting. For 2:4
sparsity, the performance of SM is very close to (or even better than) that of MM with lower complexity.

Model &
Setting

Datasets
Original

perplexity
Unstructured 50% 2:4 sparsity

SS
(SparseGPT)

SM
(ours)

SS
(SparseGPT)

SM
(ours)

MS
(ours)

MM
(ours)

BLOOM-560M
S=128

wikitext2 22.41 29.12 28.77 37.58 36.28 38.78 36.02
ptb 43.66 60.52 60.36 77.53 73.93 79.4 73.01
c4 26.59 32.83 32.12 40.72 39.6 41.98 39.46

BLOOM-1.7B
S=512

wikitext2 15.39 19.1 18.67 23.7 22.91 24.01 22.86
ptb 29.99 39.23 39.21 48.65 45.79 48.2 45.41
c4 19.49 22.53 22.06 27.02 25.95 27.42 25.88

BLOOM-3B
S=2048

wikitext2 13.48 15.99 15.56 18.87 18.6 18.8 18.57
ptb 25.34 30.47 29.56 38.44 37.34 38.91 37.48
c4 17.48 19.76 19.3 22.81 22.22 22.77 22.2

BLOOM7.1B
S=2048

wikitext2 11.37 13 12.86 14.87 14.57 14.82 14.57
ptb 20.82 24.26 23.97 28.28 27.86 28.5 27.8
c4 15.2 16.71 16.59 18.79 18.47 18.74 18.47

Table A2: Perplexity comparisons for BLOOM models under various block-size settings.
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C Results of Other Sparsity and Baselines

We demonstrate the comparison with other baselines under different sparsity in Table A3. Our method
can achieve better perplexity.

Table A3: Perplexity comparison of our method and baselines. WT2 denotes WikiText2. Wanda is not able to run
on a single GPU for large LLMs such as LLAMA2-13B and OPT-30B. Its results are from the Wanda paper.

Model Method block-size
Sparsity: 0.7 Sparsity: 0.8

WT2 PTB C4 WT2 PTB C4

OPT-6.7B
Original - 10.86 15.77 12.71 10.86 15.77 12.71

SparseGPT 512 20.7 31.3 21.68 84.43 103.6 71.8
Ours-SM 512 19.84 31.06 21.18 80.52 101.34 69.2

LLaMA2-7B

Original - 5.472 37.91 7.263 5.472 37.91 7.263
Wanda - - - - 1e5 - -

SparseGPT 512 26.25 2203 28.49 104 4358 104.6
Ours-SM 512 24.53 1812 26.75 91.92 3422 90.12

BLOOM-7.1B
Original - 11.37 20.82 15.2 11.37 20.82 15.2

SparseGPT 2048 26.79 62.24 30.3 150.77 266.9 121.6
Ours-SM 2048 22.69 49.35 25.47 93.48 168.2 70.75

LLaMA2-13B

Original - 4.884 50.94 6.727 4.884 50.94 6.727
Wanda - - - - 2e3 - -

SparseGPT all 26.47 568 27.81 339.4 1872 262.9
Ours-SM all 19.05 451.2 22.12 93.43 861.8 88.36

OPT-30B
Original - 9.558 14.04 11.44 9.558 14.04 11.44

SparseGPT all 15.42 25.63 17.09 604.4 303.7 349
Ours-SM all 13.54 22.42 15.56 50.61 71.98 39.15

OPT-66B
Original - 9.339 13.36 10.99 9.339 13.36 10.99

SparseGPT all 16.62 28.14 16.87 1.5e4 1e4 6e3
Ours-SM all 14.41 23.78 14.92 58.39 147.7 42.75

LLaMA2-70B

Original - 3.319 24.25 5.709 3.319 24.25 5.709
Wanda - - - - 1e2 - -

SparseGPT all 9.042 56.36 11.69 30.12 285.3 33.12
Ours-SM all 8.31 51.69 11.12 26.35 219.5 28.2

D Ablation Study

We ablate different values of the dampening ratios and the number of calibration data. We test our SM
method on the LLAMA2-7B model. As shown in Figure A1, by using a smaller dampening ratio or more
calibration data, our performance can be better. But to make a fair comparison, we set γ = 0.01 and use
128 samples.
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Figure A1: Ablation study for the dampening ratio and the number of samples.
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