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Abstract

We present a new approach called MeritOpt
based on the Personalized Federated Learn-
ing algorithm MeritFed that can be applied
to Natural Language Tasks with heterogeneous
data. We evaluate it on the Low-Resource Ma-
chine Translation task, using the datasets of
South East Asian and Finno-Ugric languages.
In addition to its effectiveness, MeritOpt is
also highly interpretable, as it can be applied
to track the impact of each language used for
training. Our analysis reveals that target dataset
size affects weight distribution across auxil-
iary languages, that unrelated languages do not
interfere with the training, and auxiliary opti-
mizer parameters have minimal impact. Our
approach is easy to apply with a few lines of
code, and we provide scripts for reproducing
the experiments.1

1 Introduction

While 7,000+ languages are currently in use world-
wide, most existing Natural Language Processing
(NLP) tasks and Large Language Models (LLMs)
cover at most 500 of them (Logacheva et al., 2020;
ImaniGooghari et al., 2023; Lin et al., 2024). Many
languages still possess low amount of resources,
and a lot of NLP tasks for such languages re-
main unsolved. These facts indicate the difficulty
and non-triviality of using LLMs that typically
require large amounts of data. A popular direc-
tion of approaching low-resource languages (LRLs)
is Machine Translation: automatic translation be-
tween most of these low-resource languages to
high-resource ones is more economically and so-
cially motivated than developing language-specific
systems (Ranathunga et al., 2023).

To solve the tasks for LRLs, a lot of studies em-
ploy the related languages or languages originating
from the same geographical and historical back-
ground (ImaniGooghari et al., 2023; Da Dalt et al.,

1https://github.com/VityaVitalich/MeritOpt

2024; Millour et al., 2024). Despite the positive
effect, it usually requires empirical knowledge, and
many guesses and trials of different approaches
when choosing the best combination of languages
used, the most suitable amount of data, and the best
learning strategy (Hedderich et al., 2021).

New approach. To address these issues, we
present our approach called MeritOpt to train
LLMs for the target language while multiple
datasets for different languages are available. The
key idea behind our method is inspired by Tupitsa
et al. (2024), who focus on a specific (Personalized)
Federated Learning formulation (Kairouz et al.,
2021). The method from Tupitsa et al. (2024) is
a special case of our method. We emphasize that
the idea is borrowed from the Federated Learning
(FL) field, however, no FL itself is applied in the
paper. FL focuses on the specific setting of dis-
tributed training, when there exist multiple clients
with their own (and private) data. In the scenario
of Tupitsa et al. (2024), versions of the Federated
Averaging algorithm are natural choices for solv-
ing the problem since collecting raw data from the
clients is prohibited due to privacy constraints. In
contrast, we do not have clients or distributed sys-
tems for the problem we are considering. We focus
on exploring the underlying algorithmic techniques
in application to heterogeneous datasets rather than
the Distributed Training. We are not restricted by
any privacy constraints since the datasets we con-
sider are open. That is, our work is not an FL paper.

Our approach is also more robust than the exist-
ing baselines as it adjusts the impact of each lan-
guage (aggregation weights) during training with-
out any explicit inductive bias towards language
relatedness. In particular, our strategy benefits
from the updates from the “important” languages
and tolerates the updates from the “not important”
ones. This setup is extremely beneficial for the
interpretability of the training process.
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In this study, we primarily focus on low-resource
languages. However, our approach can be applied
to any similar task (not necessarily in NLP). The
main requirement is to possess multiple heteroge-
neous input datasets, while the goal is to train the
model suitable for some target data distribution.

Therefore, we apply the algorithm to the Ma-
chine Translation task using two datasets: the sub-
set from the Large-Scale Multilingual Machine
Translation Shared Task (Small Track #2) (Wen-
zek et al., 2021) and the subset of Sami languages
from the multilingual benchmark for Finno-Ugric
languages (Yankovskaya et al., 2023). To test the
method effectively within our compute budget, we
focus our study on scenarios with one target lan-
guage and the remaining languages as auxiliary
languages. Our approach can be further applied
to the datasets with several target languages and
several translation directions.

Two research questions are addressed in this pa-
per: (i) “Can MeritOpt improve the results of the
multilingual or single language baselines using ag-
gregation weights?” and (ii) “How do the target
language weights and the weights of related and
non-related languages change across training?”.

The contributions of the paper are as follows:

• We present a new algorithmic framework for
the training from heterogeneous input datasets
and test it on the Indonesian languages and
Sami languages of the Finno-Ugric group.

• We explore how languages interact with each
other during training, as our approach allows
measuring the impact (which language con-
tributes more) at each training step.

• We perform an ablation study to analyze the
effects of unrelated languages, training dataset
size, and auxiliary MeritOpt parameters.

• Under certain assumptions, we rigorously
prove that the proposed method converges to
some neighborhood of the solution.

• Finally, we present a natural analogy between
two seemingly unrelated setups – Federated
Learning and LLMs training on low-resource
languages: although we do not have workers
(clients) in the later setup, we can interpret
each dataset for some language as a client,
and we can also interpret the languages itself
as some data-distributions of those clients. We

believe that this viewpoint/analogy is interest-
ing on its own and opens a giant room for fu-
ture research in NLP. Moreover, our paper in-
dicates that this direction is indeed prominent:
we adjusted one particular FL algorithm to
the setting of training LLMs for low-resource
languages, which are not directly related to
FL, and showed promising results.

2 Related Work

In this section, we discuss the existing methods for
low-resource language NLP tasks, especially for
low-resource machine translation (LRMT) (Had-
dow et al., 2022), and also give a brief overview
of the existing methods in Personalized Federated
Learning, and methods to estimate the impact of
auxiliary data.

Regarding similar approaches, the paper of
Wang et al. (2020) also assigns the non-uniform
weights for different languages. However, we do
not compute any gradient similarity metrics and
approximately solve an auxiliary problem to find
the aggregation weights.

2.1 Low-Resource Machine Translation
Existing approaches for NLP tasks for LRLs usu-
ally fall into the following categories: supervised or
unsupervised, single language training or multilin-
gual training, continuous pre-training or finetuning,
with or without data augmentation, balanced or im-
balanced datasets (Hedderich et al., 2021; Wang
et al., 2021; Krasadakis et al., 2024; Goyal et al.,
2020). This list of categories is not extensive. How-
ever, they all aim to develop the best learning strat-
egy given limited data.

In the following subsections, we discuss the
methods developed or applied for the datasets
on South East Asian Languages and Finno-Urgic
benchmarks, the main targets of our research.

2.1.1 LRMT for South East Asian Languages
Several approaches have been developed to solve
the Large-scale Multilingual Machine Translation
task (Shared Task on WMT-21). The organizers
(Wenzek et al., 2021) summarize all the used ap-
proaches and provide the FLORES model (Goyal
et al., 2022) extended to 124 languages. Most of
the participants, Yang et al. (2021); Budiwati et al.
(2021); Liao et al. (2021), use a generic pre-trained
multilingual models like DeltaLM (Ma et al., 2021)
or FLORES (Goyal et al., 2022) and fine-tune it
correspondingly with the vast collected parallel
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data, together with applying progressive learning
and iterative back-translation. Sutawika and Cruz
(2021) use a standard Seq2Seq Transformer model
without any training or architecture tricks, relying
mainly on the strength of the data preprocessing
techniques and filtering.

Given our focus on a setup with very limited
data and our available computational resources, we
concentrate on evaluating our specific approach.
Therefore, our results cannot be compared to the
above-mentioned methods.

2.1.2 LRMT for Finno-Ugric languages
Regarding the Finno-Ugric languages, very few
approaches are developed or tested on the bench-
mark. Tars et al. (2022) uses the standard M2M100
model (Fan et al., 2021) enhanced with the follow-
ing steps: vocabulary extension in the tokenizer,
data filtering, and preprocessing. Yankovskaya
et al. (2023) improves previous results with back-
translation and synthetic data as well as with the
sampled high-resource language pairs to reduce
catastrophic forgetting. Our models involve the
same baselines; however, our training data con-
sists of Sami languages (input) and Finish (output).
Therefore, we also cannot compare the results di-
rectly to the above-mentioned methods.

2.2 Personalized Federated Learning

Federated Learning (FL) (Konecnỳ et al., 2016;
McMahan et al., 2017) is a modern and rapidly
developing part of Machine Learning, considering
the training on the data distributed over multiple
clients (Kairouz et al., 2021). In the standard sce-
nario, the goal is to train one global model that
suits multiple clients, i.e., solve standard empirical
risk minimization. In scenarios with heterogeneous
data, the global model can show suboptimal results
for particular clients, which necessitates consid-
ering Personalized Federated Learning (PFL) for-
mulations to achieve better results on the client’s
data while getting benefits from collaboration with
others.

In the training of LLMs for the target (low-
resource) language using the data in multiple lan-
guages, the goal is quite similar: to achieve good
results for the target language while getting ben-
efits from the model updates for other available
languages. Informally speaking, by associating lan-
guages with clients, one can get a correspondence
between PFL formulations and NLP formulations
for low-resource languages. Therefore, in our work,

we adjust the algorithmic ideas from (Tupitsa et al.,
2024) to the training of LLMs for low-resource
languages. We specify again that we do not use
Personalized FL directly: our method is based on
an analogy with the MeritFed method from Feder-
ated Learning.

There also exist multiple PFL formulations and
methods for solving them with their own advan-
tages and limitations, e.g., see (Fallah et al., 2020;
Collins et al., 2021; Hanzely et al., 2020; Kulkarni
et al., 2020; Wu and Wang, 2021). However, the
works on PFL focus on different scenarios from
our setup, i.e., they consider distributed training.

2.3 Impact of Auxilary Data

Many existing papers rely on auxiliary data, espe-
cially when the given dataset is too small. Schröder
and Biemann (2020) automatically assesses the
similarity of sequence tagging datasets to identify
beneficial auxiliary data for Multi-Task Learning
or Transfer Learning setups. Chen et al. (2022)
propose a joint task and data scheduling model for
auxiliary learning by creating a mapping from task,
feature, and label information to the schedule in a
parameter-efficient way.

Regarding LRMT, studies use the related lan-
guages when little data for the target language is
given. One of the attempts to approach each lan-
guage differently during training is made by Huo
et al. (2024). They dynamically allocate parameters
of an appropriate scale to each language direction
based on the consistency between the gradient of
the individual language and the average gradient.
Millour et al. (2024); Da Dalt et al. (2024) show
that datasets on closely related languages are highly
beneficial for applying to the target low-resource
language. ImaniGooghari et al. (2023) also investi-
gate the positive effects of closely related languages
on the Glot-500 model. They analyze the impact
of related languages via continued pre-training and
confirm better performance for languages with their
language family or script present in training.

3 Methodology

General setup. We start with the description of
the general problem formulation that our approach
is suitable for. That is, we consider the scenario
when n ≥ 1 datasets {Di}ni=1 are available for
training, and the goal is to train the model for some
data distribution D using this collection of datasets.
More precisely, we focus on the standard learning
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Algorithm 1 MeritOpt: General Algorithmic Framework for Learning from Heterogeneous Data

1: Input: Number of steps T , starting point x0 ∈ Rd, stepsizes {γt}Tt=1 (γt > 0), optimization update
rule OptStep(x, g, γ) : Rd × Rd × R → Rd, datasets {Di}ni=1, target validation dataset D̂

2: for t = 0, 1, . . . , T do
3: for all i = 1, . . . , n in parallel do
4: Compute stochastic gradient gi(xt) from dataset Di

5: end for
6: wt+1 ≈ argmin

w∈∆n
1

f
D̂

(
OptStep

(
xt,

n∑
i=1

wigi(x
t), γt

))

7: xt+1 = OptStep

(
xt,

n∑
i=1

wt+1
i gi(x

t), γt

)

8: end for

problem (Shalev-Shwartz and Ben-David, 2014):
minx∈Rd fD(x), where fD : Rd → R is the ex-
pected loss computed for the data distribution D,
i.e., fD := Eξ∼D[fξ(x)] with fξ : Rd → R being
a loss on sample ξ and Eξ∼D[·] denoting an expec-
tation w.r.t. ξ coming from the target distribution
D, and x ∈ Rd represents a vector of model param-
eters, i.e., weights of the network. In practice, data
distribution D is typically unknown. Therefore, to
approximate fD(x), finite dataset D̂ sampled from
distribution D is used. Throughout the paper, we
call this dataset the target one and denote the cor-
responding (empirical) loss as f

D̂
(x). In addition,

we assume that a collection of datasets {Di}ni=1 is
available for the training.

We assume that D1 is sampled from the target
distribution D, and we make no assumptions on
the other datasets. In particular, {Di}ni=2 can be
arbitrary heterogeneous and different from D1 and
D̂. However, if some of the available datasets are
sampled from distributions that are close to D, they
can be quite useful for the training. This idea serves
as the main motivation behind our approach.

Algorithmic framework. To solve the described
problem, we propose a generic algorithmic frame-
work – MeritOpt (see Algorithm 1) – inspired
by MeritFed proposed by Tupitsa et al. (2024)
for solving Personalized Federated Learning prob-
lems. MeritOpt can be seen as a “wrapper” for an
optimization method having update rule xt+1 =
OptStep(xt, g(xt), γt), where xt represents the
weights of the model after step t, g(xt) is the
stochastic (mini-batched) gradient computed at xt,
and γt is the learning rate. For example, when
the underlying method is Stochastic Gradient De-
scent (SGD) (Robbins and Monro, 1951), we have
OptStep(xt, g(xt), γt) = xt − γtg(x

t) and Algo-

rithm 1 reduces to MeritFed2 from (Tupitsa et al.,
2024). However, we can apply MeritOpt to the
update rule of any stochastic first-order method,
e.g., Adam (Kingma and Ba, 2015) and its vari-
ations, AdaGrad (Streeter and McMahan, 2010;
Duchi et al., 2011), RMSProp (Hinton et al., 2012),
and other methods. In our experiments, we use
Adam as OptStep(x, g, γ). The resulting method –
MeritOpt-Adam – is a new method that was never
used or analyzed before.

In addition to the update rule OptStep(x, g, γ),
MeritOpt takes n input datasets {Di}ni=1 and 1

target validation dataset D̂. At each iteration, the
method computes (mini-batched) stochastic gradi-
ent gi(xt) using the corresponding dataset Di for
each i = 1, . . . , n. Then, to construct the update
direction, MeritOpt searches appropriate aggrega-
tion weights (that can be interpreted as “merits” for
different languages) wt+1 = (wt+1

1 , . . . , wt+1
n )⊤

(see Line 6) and then makes a step xt+1 =
OptStep

(
xt,
∑n

i=1w
t+1
i gi(x

t), γt
)

using the com-
puted weighted average of the stochastic gradi-
ents. We emphasize that the choice of aggregation
weights wt+1 is crucial: for example, if datasets
{Di}ni=2 came from distributions significantly dif-
ferent from the target distribution D and we choose
uniform weights, i.e., wt+1

1 = . . . = wt+1
n = 1/n,

then the optimization step with the update vector∑n
i=1w

t+1
i gi(x

t) can be useless (on average) in
terms of solving the target problem. Moreover,
if some datasets came from distributions close to
D, it is natural to use the corresponding stochastic
gradients with larger weights to benefit from them.
MeritOpt addresses this issue in Line 6: the

goal is to find aggregation weights wt+1 ∈ ∆n
1 ,

where ∆n
1 := {y ∈ Rn | ∑n

i=1 yi = 1, yi ≥
2MeritFed = MeritOpt-SGD.
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0 ∀ i = 1, . . . , n} is the n-dimensional probabil-
ity simplex, such that the loss f

D̂
on the target

validation dataset D̂ is minimized after the step
OptStep

(
xt,
∑n

i=1w
t+1
i gi(x

t), γt
)

that depends
on wt+1. If D̂ is sufficiently large, then f

D̂
can

be seen as a good approximation of fD (Shalev-
Shwartz et al., 2009), and optimizing f

D̂
leads to

sufficiently good solution for fD. In other words,
given stochastic gradients gi(x

t) computed from
different datasets {Di}ni=1, MeritOpt tries to find
the best-weighted average of them to make an opti-
mization step. Following Tupitsa et al. (2024), we
apply several steps of Stochastic Mirror Descent
(Nemirovskij and Yudin, 1983) to solve the prob-
lem in Line 6 approximately (see Appendix C.1).

Application to NLP. The described approach can
be applied to the training of LLMs for LRLs. In
this case, {Di}ni=1 correspond to the input datasets
in n different languages. In particular, D1 is the
training dataset for the target language3 and D̂ is
the target validation dataset for the same language.
The remaining datasets {Di}ni=2 are for other lan-
guages. Some of these languages can be related to
the target one, but, in general, we allow the usage
of datasets in significantly different languages as
well: MeritOpt automatically adjusts aggregation
weights and assigns higher weights to more bene-
ficial languages. Therefore, aggregation weights
wt+1 can be used to measure the impact of selected
languages on the model’s training for the target lan-
guage. In other words, we extend the training target
language dataset and prevent drifting towards the
solution for other languages. We also note that in
the original work (Tupitsa et al., 2024), MeritFed
was tested on on different problems (image and
emotion classification with different models).

4 Experiments

In this section, we apply the methodology to learn
low-resource languages with the help of related
languages. We also discuss the data used, the base-
lines, and the evaluation metrics.

4.1 Datasets
To test the developed method, we consider datasets
with related languages that either belong to the
same language family or are geographically related,
which we expect to be “helpful” during the training

3One can interpret all possible texts in the target language
as some distribution D. In this interpretation, D1 can be seen
as some dataset sampled from language D.

procedure. We focus exclusively on settings with
related languages, as this approach is more compu-
tationally efficient. However, our method does not
have any inherent bias towards language related-
ness and can be applied to any number of languages
in the training set. As demonstrated in Section 5,
it becomes even more effective with addition of
unrelated languages.

For our experiments, we select a subset from
the Large-Scale Multilingual Machine Translation
Shared Task (Small Track #2) (Wenzek et al., 2021)
and the subset of Sami languages from the mul-
tilingual benchmark for Finno-Ugric languages
(Yankovskaya et al., 2023). We describe each
dataset in detail in the following paragraphs.

South East Asian languages Dataset. For the
first round of experiments, we select one of the
small tracks, Large-Scale Multilingual Machine
Translation Shared Task, comprising translation
pairs between fairly related languages and En-
glish and not requiring substantial computational
resources at training time. We stick to Javanese,
Indonesian, Malay, Tagalog, and Tamil as input lan-
guages and English as output. As target languages,
we utilize Javanese and Tagalog as the smallest
language pairs in the dataset. We perform our ex-
periments on multiple dataset scales: 80K (small),
150K (medium), and 500K (large). Our primary
goal is to test the method; therefore, we do not
perform experiments on the whole dataset, leaving
this to future work. For additional experiments, we
utilize the Hungarian dataset from Small Track #1.
All the dataset statistics are provided in Table 5 for
the initial dataset and for the datasets created for
our experiments.

Finno-Samic Languages Dataset. Regarding
the dataset compiled from the Finno-Ugric bench-
mark (Yankovskaya et al., 2023), we stick to
the Sami languages as the only option matching
our criteria: parallel training datasets of differ-
ent sizes with the same output language (Finnish)
for those pairs, parallel development and test
datasets of good quality. Unfortunately, such data
is available only for Finno-Samic languages4, such
as tartuNLP/finno-ugric-benchmark North Sami,
South Sami, Inari Sami, Skolt Sami. The dataset
statistics are presented in Table 6. In future ex-

4https://huggingface.co/datasets/tartuNLP/
finno-ugric-benchmark,
https://huggingface.co/datasets/tartuNLP/
finno-ugric-train
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Method Inari Sami Skolt Sami South Sami North Sami

Score Steps Score Steps Score Steps Score Steps

FTOnlyT 9.44 ± 0.20 1.5K 38.83 ± 0.31 2K 48.70 ± 0.14 8K 39.26 ± 0.33 53K
FTAll 5.56 ± 0.29 21K 34.11 ± 0.23 23K 44.62 ± 0.10 23K 33.57 ± 2.34 12K
FTNoT 2.38 ± 0.09 16K 11.62 ± 0.37 23K 16.63 ± 0.35 16K 10.16 ± 0.16 2K

CPAll 51.39 ± 0.05 30K 44.90 ± 0.12 25K 11.60 ± 0.29 23K 39.78 ± 0.08 69K
CPNoT 50.14 ± 0.04 31K 43.40 ± 0.13 25K 11.09 ± 0.24 23K 39.30 ± 0.18 65K

MeritOpt 52.08 ± 0.01 12K 50.27 ± 0.17 12K 13.26 ± 0.17 2.5K 38.526 ± 1.39 30K

Table 1: Mean SpBLEU scores and the number of steps required to reach them for baselines and MeritOpt within
Finno-Samic low-resource languages.

Method Tagalog Java

79K 155K 555K 79K 128K 555K

Score Steps Score Steps Score Steps Score Steps Score Steps Score Steps

FTOnlyT 28.69 ± 0.10 8K 30.48 ± 0.05 44K 33.88 ± 0.07 52K 19.23 ± 0.02 500 19.69 ± 0.01 1K 20.75 ± 0.10 3.5K
FTAll 24.78 ± 0.02 12K 26.53 ± 0.17 25K 30.02 ± 0.03 79K 19.26 ± 0.02 12K 19.28 ± 0.07 25K 19.92 ± 0.06 85K
FTNoT 20.45 ± 0.08 7K 20.41 ± 0.07 11K 20.34 ± 0.09 53K 18.73 ± 0.02 12K 18.80 ± 0.04 25K 18.94 ± 0.09 85K

CPAll 29.24 ± 0.06 21K 30.99 ± 0.04 40K 33.89 ± 0.15 124K 19.43 ± 0.14 12K 20.05 ± 0.12 25K 20.97 ± 0.13 87K
CPNoT 28.72 ± 0.16 15K 30.50 ± 0.12 42K 33.74 ± 0.19 129K 19.46 ± 0.12 12K 19.95 ± 0.12 25K 21.19 ± 0.09 89K

MeritOpt 29.73 ± 0.04 14K 31.42 ± 0.07 14K 33.53 ± 0.27 47K 19.74 ± 0.03 2K 20.23 ± 0.11 3K 21.44 ± 0.13 8K

Table 2: Mean SpBLEU scores and the number of steps required to reach them for baselines and MeritOpt within
the different data sizes of Javanese and Tagalog languages.
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Figure 1: Weights distribution for South East Asian languages. Target languages and data sizes are in captions.

periments, we plan to extend the datasets to other
languages and directions from the benchmark.

4.2 Baselines
For our baselines, we consider fine-tuning to the tar-
get language both with and without various forms

of prior continual pretraining:

• FTAll — Fine-tuning to all languages includ-
ing the target language;

• FTNoT — Fine-tuning to all languages except
the target language;
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• FTOnlyT — Fine-tune to the target language
only;

• CPAll — Continuous Pretraining to all lan-
guages, followed by additional fine-tuning to
the target language;

• CPNoT — Continuous Pretraining to all lan-
guages but the target, followed by additional
fine-tuning to the target language.

We use the M2M100 model with 418M parameters
as our base model (Fan et al., 2020). For Finno-
Ugric languages, special language tokens are added
and learned since the model was not pretrained for
those languages. More training details and configu-
rations are provided in Appendix A.

4.3 Evaluation
We use SpBLEU metrics in our evaluation as
in Sutawika and Cruz (2021), utilizing Sacre-
BLEU (Post, 2018). The generation parameters are
adopted from Xie et al. (2021), employing beam
search with 4 beams, and the temperature set to 1.

5 Results and Discussion

Tables 1 and 2 show that MeritOpt is indeed help-
ful during training: our approach achieves better
performance for most setups and languages. for Ja-
vanese and Tagalog languages (small and medium)
and for Sami languages of comparable sizes (South,
Scolt, and Inari).

Impact of Aggregation Weights. We can see
that the methods assign higher weights to the tar-
get language at first, followed by a drop, while
other weights increase. Therefore, Javanese bene-
fits more from the Indonesian language, while Taga-
log’s, higher-weighted languages are Indonesian
and Malay. Interestingly, while spoken in South
East Asia, the Tamil language does not belong to
the same language family as the others. This fact is
reflected in Figure 1: Tamil always contributes less
than other languages. For Sami languages, North
Sami seems always to be the most beneficial.

No Overfitting. An important observation is that
the algorithm helps to prevent the model from over-
fitting: the weight of the target language decreases
once the model learns the small amount of data
available for the target language; additional lan-
guages serve as regularization to keep the model
converging. Probably, that partially explains the
non-zero weights of Tamil, which does not belong

to the same language family, although being spoken
in South East Asia.

Unrelated Language. To check the hypothesis
that unrelated language serves as regularization,
we conducted an additional experiment and added
the Hungarian language from the Finno-Ugric fam-
ily to training. As shown in Figure 3, its weights
are also non-zero. Moreover, the SpBLEU scores
remained nearly consistent across all MD parame-
ters and Adaptive Batch configurations, supporting
the regularization role of additional languages. To
further extend our experiment and validate our hy-
pothesis, we evaluated the model’s performance on
the Java small dataset by incorporating five unre-
lated languages (Croatian, Serbian, Macedonian,
Estonian, Hungarian) into the training set. The re-
sults in Table 4 demonstrate that the model benefits
from the inclusion of additional languages, even
being unrelated.

Size of the Target Language Dataset. For
Tagalog-large and North Sami, the algorithm re-
lies on the target language dataset more than on
additional languages and does not outperform the
Continuous Pretraining baseline. On the contrary,
for small and medium datasets, the algorithm needs
from 2 to 10 times fewer main gradient steps to out-
perform the baselines.

We assume that this happens because the amount
of data from the target language is enough, and
the algorithm keeps assigning high weights to the
target language and trains the model on the tar-
get language only. Another possible reason for
the inferior performance could be excessive gra-
dient steps involving non-target languages. This
might “distract” the model and fail to provide sig-
nificant benefits. Since at each step, we compute
the stochastic gradients for other languages, too,
the method does not pass the whole dataset of the
target language, given the computational resources
for the experiment. Therefore, the method does not
utilize all potentially useful information from the
target language.

This hypothesis is supported by an additional ex-
periment on the Indonesian language as the target
language with the biggest dataset to see the distri-
bution of the weights for a longer number of steps
(∼ 50K). From Figure 4, we observe the evolution
of corresponding aggregation weights: it keeps
growing during the training, which indicates its sig-
nificantly higher importance on the model quality
than other languages. Once the model learns the
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Figure 2: Weights distribution across Finno-Samic languages. Target languages are mentioned in captions.
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Figure 3: Weights distribution for target Indonesian
language with unrelated Hungarian included.
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Figure 4: Weights distribution for languages with target
Indonesian on small subset.

dataset better, the weight of the Indonesian slightly
decreases and gets stuck, while the weight of the
Malay starts to grow. We assume that these ob-
servations might be useful for further experiments:
languages that stop contributing to the algorithm
convergence can be “dropped” during training.

Adaptive Batch Experiments. We hypothesize
that leveraging high-resource languages could im-
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Figure 5: Weights for target language (Javanese-small)
with different Mirror Descent parameters.

prove gradient approximation by providing more
samples. Based on this, we develop an Adaptive
Batch procedure. This method allocates the total
batch size (512 in our experiments) and samples
batch size from the total size for each language
proportionally to the percentage of each language
present in the dataset. Thus, high-resource lan-
guages receive larger batch sizes. To optimize con-
vergence, we set batch size limits, with a lower
bound of 32 and an upper bound of 128, as shown
to be effective in previous studies (Keskar et al.,
2017; Bengio, 2012).

However, our results indicate that the Adaptive
Batch procedure is rarely beneficial. We believe
this is due to the downside of better gradient ap-
proximation. Our method suggests that assigning
higher weight to high-resource languages due to
their well-estimated gradients may hinder the learn-
ing of the target language. This is illustrated in
Figure 5, where adding an Adaptive Batch leads to
a lower weight for the target language.
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MD
Iterations

Learning
Rate

Adaptive
Batch

SpBLEU

Relevant +Irrelevant

5
0.1

- 19.74 19.79
+ 19.67 19.62

0.01
- 19.72 19.72
+ 19.67 19.81

100
0.1

- 19.70 19.65
+ 19.57 19.59

0.01
- 19.75 19.72
+ 19.74 19.64

Table 3: Scores and Settings Grouped by Mirror Descent
iterations for the Javanese-small dataset.

Languages SpBLEU

South East Asian 19.74
South East Asian + Hungarian 19.79
South East Asian + 5 European 19.98

Table 4: Scores and languages in train for the Javanese-
small dataset.

Mirror Descent Parameters Impact. We con-
duct experiments with various MeritOpt settings,
adjusting the Mirror Descent learning rate to 0.1
and 0.01 and the number of iterations to 5 or 100.
These experiments are performed on the small sub-
set of the South East Asian dataset, using Javanese
as the target language.

As shown in Table 3, the Mirror Descent pa-
rameters have little impact, with no clear trend
emerging5. For 5 iterations, a higher learning rate,
and no Adaptive Batch, the algorithm performs
better when no unrelated language is present. How-
ever, this changes when an unrelated language is
included. For 100 iterations, a lower learning rate,
and no Adaptive Batch, the model consistently
yields better results. Based on those observations,
we have chosen 5 MD iterations with a learning
rate of 0.1 for all experiments due to its high per-
formance and faster computation times.

Theoretical Results. We prove that under cer-
tain assumptions on the underlying optimizer
OptStep, MeritOpt converges to the neighbor-
hood of the solution of the target problem when
(i) the learning rate is small enough, (ii) D̂ is suf-
ficiently large such that f

D̂
is close to fD, and

5We conjecture that (Stochastic) Mirror Descent struggles
to solve the auxiliary problem from Line 6 with sufficiently
good accuracy since it can be viewed as a variant of SGD
for problems with non-Euclidean prox-structure and SGD is
known to perform poorly in NLP tasks (Zhang et al., 2020).
Investigation of other alternatives (e.g., MD version of Adam)
is a prominent direction for future research.

(iii) the auxiliary problem in Line 6 is solved with
a good accuracy. In Appendix C, we provide
missing theoretical details (including the proofs)
and show that SGD, RMSProp, AdaGrad-Norm sat-
isfy our assumptions. We emphasize that the
theoretical results for MeritOpt-RMSProp and
MeritOpt-AdaGrad-Norm are new, since Tupitsa
et al. (2024) provide the theoretical convergence
analysis only for the MeritFed (MeritOpt-SGD)
version.

6 Conclusion

In this paper, we implement the MeritOpt algo-
rithm from the Personalised Federated Learning to
the Low-Resource Machine Translation task. We
show that it can achieve better results than tradi-
tional approaches and requires 2 to 10 times fewer
gradient steps than baselines (e.g., 8K vs. 85K, 12K
vs. 23K). MeritOpt also allows us to observe the
weight distribution between the target and related
languages: Javanese benefits more from the Indone-
sian language, while for Tagalog, the most impor-
tant languages are Indonesian and Malay. Different
weights for different languages also prevent the
model from overfitting: after learning the target
language dataset, its weights are dropped down
while other weights start growing. Another take-
away is about the target dataset size: the bigger
the dataset is, the more the algorithm keeps rely-
ing on it rather than on the auxiliary languages.
This might result in worse model performance and
“distract” the model from convergence.

Limitations

• We report results only on Low-Resource
MT, while a wide variety of NLP tasks are
available. We leave further investigation of
MeritOpt to other NLP tasks for future work.

• We report results only on M2M100, while
numerous LLMs are available. An alterna-
tive model with the MeritOpt algorithm ap-
plied could further improve the results. The
research focuses on the algorithm application
to the LRMT task and not on an exhaustive
search of all LLM models.

• We limit our dataset in terms of size and lan-
guage variety because of high computational
costs and limited resources available.

• Our setup with the limited amount of lan-
guages and training data used is not designed
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to directly compare with the existing ap-
proaches.

• We retain all languages during training, even
those that do not contribute, which affects the
efficiency of the training procedure.

Ethical Statement

In our research, we utilize the M2M100 model,
which has been pre-trained on a diverse MT cor-
pus, including user-generated content. The datasets
we use for additional model training have already
been presented in WMT-21 Shared Task and Finno-
Ugric Benchmark. Although we expect them to
be filtered from harmful content, it is important to
recognize that some biases may still persist in the
model outputs.

This acknowledgment does not undermine the
validity of our methods. We have designed our
techniques to be flexible, allowing them to be ap-
plied to alternative pre-trained models that have
undergone more rigorous debiasing processes. To
the best of our knowledge, aside from the challenge
of mitigating inherent biases, our work does not
raise any additional ethical concerns.
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Eduard Gorbunov. 2024. Federated learning can
find friends that are beneficial. arXiv preprint
arXiv:2402.05050.

Rui Wang, Xu Tan, Renqian Luo, Tao Qin, and Tie-Yan
Liu. 2021. A survey on low-resource neural machine
translation. In IJCAI, pages 4636–4643. ijcai.org.

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020.
Balancing training for multilingual neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8526–8537, Online. Association for Computa-
tional Linguistics.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. 2019. Ada-
Grad stepsizes: Sharp convergence over nonconvex
landscapes. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 6677–
6686. PMLR.

Guillaume Wenzek, Vishrav Chaudhary, Angela Fan,
Sahir Gomez, Naman Goyal, Somya Jain, Douwe
Kiela, Tristan Thrush, and Francisco Guzmán. 2021.
Findings of the WMT 2021 shared task on large-scale
multilingual machine translation. In Proceedings of
the Sixth Conference on Machine Translation, pages
89–99, Online. Association for Computational Lin-
guistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Hongda Wu and Ping Wang. 2021. Fast-convergent
federated learning with adaptive weighting. IEEE
Transactions on Cognitive Communications and Net-
working, 7(4):1078–1088.

Wanying Xie, Bojie Hu, Han Yang, Dong Yu, and Qi Ju.
2021. TenTrans large-scale multilingual machine
translation system for WMT21. In Proceedings of
the Sixth Conference on Machine Translation, pages
439–445, Online. Association for Computational Lin-
guistics.

Jian Yang, Shuming Ma, Haoyang Huang, Dongdong
Zhang, Li Dong, Shaohan Huang, Alexandre Muzio,
Saksham Singhal, Hany Hassan, Xia Song, and Furu
Wei. 2021. Multilingual machine translation systems
from Microsoft for WMT21 shared task. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 446–455, Online. Association for Computa-
tional Linguistics.

Lisa Yankovskaya, Maali Tars, Andre Tättar, and Mark
Fishel. 2023. Machine translation for low-resource
Finno-Ugric languages. In Proceedings of the 24th
Nordic Conference on Computational Linguistics
(NoDaLiDa), pages 762–771, Tórshavn, Faroe Is-
lands. University of Tartu Library.

Manzil Zaheer, Sashank Reddi, Devendra Sachan,
Satyen Kale, and Sanjiv Kumar. 2018. Adaptive

8817

https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.268
https://doi.org/10.18653/v1/2020.acl-main.268
https://doi.org/10.18653/v1/2020.acl-main.268
https://aclanthology.org/2021.wmt-1.52
https://aclanthology.org/2021.wmt-1.52
https://arxiv.org/abs/2402.05050
https://arxiv.org/abs/2402.05050
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2020.acl-main.754
https://proceedings.mlr.press/v97/ward19a.html
https://proceedings.mlr.press/v97/ward19a.html
https://proceedings.mlr.press/v97/ward19a.html
https://aclanthology.org/2021.wmt-1.2
https://aclanthology.org/2021.wmt-1.2
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2021.wmt-1.53
https://aclanthology.org/2021.wmt-1.53
https://aclanthology.org/2021.wmt-1.54
https://aclanthology.org/2021.wmt-1.54
https://aclanthology.org/2023.nodalida-1.77
https://aclanthology.org/2023.nodalida-1.77


methods for nonconvex optimization. Advances in
neural information processing systems, 31.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas
Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar,
and Suvrit Sra. 2020. Why are adaptive methods
good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393.

8818



A Dataset and Model Details

In addition to dataset scaling, we also add a preprocessing step: from a deeper look into the data, we
can see that some translations contain code snippets, HTML, and pairs containing different addresses
and numbers in the input language and output language. To avoid such data, we filter the sentences in
the training set so that (i) input and output length in tokens is not less than 5 tokens and not larger than
256 tokens, as only a negligible portion of the data exceeded this limit; (ii) we keep sentences with the
numbers matching in both input and output; (iii) we keep alphanumeric sentences with basic punctuation
only. We also check that both datasets we apply do not contain personally identifying information or
offensive content.

We used M2M100 as a base model (Fan et al., 2021), MIT Licensed. In CP setting, we pretrained all
models on all languages for a maximum of 10 epochs, with the best-performing checkpoint selected for
later fine-tuning. Fine-tuning was conducted for up to 60 epochs, and the best-performing checkpoint
was reported. The MeritOpt model was trained until the score stopped improving, with a maximum
computation time of four days. The maximum number of epochs was limited by the amount of available
computational resources, as well to perform comparable or even more steps than previous studies on
similar datasets (Tars et al., 2022; Sutawika and Cruz, 2021).

Training parameters included a fixed batch size of 64 and a learning rate of 3e-5. We used a Cosine
Annealing Scheduler with a minimum learning rate of 1e-5. The baseline optimizer was Adam, with
β1 = 0.9 and β2 = 0.98, in line with previous studies (Xie et al., 2021).

Our implementation primarily relied on PyTorch (Paszke et al., 2019) and Transformers (Wolf et al.,
2020) libraries. All our artifacts are licensed under Apache 2.0.

Input Language Total
Filtered Train

Val Test
Small Medium Large

Indonesian 54M 37K 74K 259K 1K 1K
Malay 13M 26K 53K 185K 1K 1K
Tagalog 2M 10K 20K 70K 1K 1K
Tamil 13M 5K 10K 35K 1K 1K
Javanese 3M 776 1.5K 5K 1K 1K

Table 5: Dataset statistics for South East Asian languages. Total denotes the original dataset size in sequences,
Filtered small, medium and large train are the subsets used for experiments.

Input Language Train Val Test

North Sami 61,559 200 500
Inari Sami 8,750 200 500
Skolt Sami 1,998 200 500
South Sami 1,734 200 500

Table 6: Dataset statistics for Finno-Samic languages.

8819



B Illustrative Experiment with Mean Estimation Problem

In this section, we provide an illustrative experiment with the mean estimation problem. That is, the goal
is to solve the following minimization problem:

min
x∈Rd

{
fD(x) := Eξ∼D[∥x− ξ∥2]

}
,

where D := N (0, I) is a standard Gaussian distribution. One can show that the optimal value equals
Eξ∼D∥ξ∥2 = d, which is attained at x∗ = 0. Next, we consider three datasets: D1 is sampled from
the target distribution D, D2 is sampled from close distribution N (µ1, I), where µ = 0.0001 and
1 := (1, . . . , 1)⊤Rd, and D3 is sampled from quite different distribution N (e, I), where e is some
randomly precomputed unit vector. The sizes of the input dataset are: |D1| = 20, |D2| = 1000,
|D3| = 1000. Therefore, this situation resembles training for the low-resource language, when two
high-resource languages are available. We take mini-batch of 10% for each dataset to compute gi(x

t)
in MeritOpt and use simple SGD as OptStep. Target validation dataset D̂ is sampled from D (same
distribution as for D1) and has size |D̂| = 100 (though only mini-batch of 10 samples from D̂ is used at
each iteration to perform a computation of aggregation weight wt+1). To solve the problem in Line 6, we
run MD with learning rate 10.
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Figure 6: Mean Estimation: µ = 0.0001, MD learning rate = 10.

The results are presented in Figure 6. We see that the weight for the first and the third datasets decrease
during the training, while the weight for the second dataset increases and remains the largest one. Such a
behavior is natural since the batchsize for the target dataset is much smaller than for the second dataset (2
and 100 respectively) and since the second dataset comes from very close distribution to the target one
it is more beneficial to use slightly biased but less noisy updates from the second dataset than unbiased
but noisy updates from the first dataset. As for the third dataset, its weight decreases since it comes from
completely different distribution.

Overall, the result of this experiment are quite consistent with the ones we obtained for Javanese
language where the weight for the target language also becomes the smallest after certain number of steps
and the highest weight is assigned to close but different language (Indonesian), see Figure 1.
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C Technical Details and Theoretical Results: Complete Statements and Proofs

C.1 Further Details on Mirror Descent
As we explain in Section 3, the aggregation weights are obtained at each step via approximately minimizing
validation loss as a function of the aggregation weights. More precisely, in Line 6 of Algorithm 1, the
goal is to minimize function φ(w) defined as

φ(w) = fD̂

(
OptStep

(
xt,

n∑

i=1

wigi(x
t), γt

))
, (1)

where fD̂ is a validation loss for the target language, OptStep is a step of optimization method (e.g.,
Adam), xt are model parameters after t steps, γt is a learning rate at step t, and gi(x

t) is a stochastic
gradient corresponding to the language i. Since Stochastic Mirror Descent (SMD) (Nemirovski and Yudin,
1983) with Kulback-Leibler distance as a Bregman divergence is a natural choice for the minimization on
the probability simplex, which is our case, we use SMD to minimize φ(w) on the simplex. The update
rule of SMD, in this settings, can be written (Beck, 2017, Chapter 9) as

wk+1 =
wk exp(−η∇̃φ(wk))

n∑
i=1

wk
i exp(−η[∇̃φ(wk))]i

, (2)

where η is a learning rate for SMD, ∇̃φ(wk)) is a stochastic gradient of φ(w) for the current weights
wk, product of vectors wk exp(−η∇̃φ(wk)) is computed coordinate-wise, and [∇̃φ(wk))]i is the i-th
component of ∇̃φ(wk)).

C.2 Preliminaries
In this section, we provide the details on the theoretical convergence results for MeritOpt. For notational
convenience, we assume that Di comes from distribution Di and denote the corresponding expected loss
function as fi for all i = 1, . . . , n. Therefore, according to the introduced notation f1 and fD denote the
same loss function. Similarly to the setup considered by Tupitsa et al. (2024), we denote the set of indices
such that Di = D1: G := {i ∈ {1, . . . , n} | Di = D1}. In other words, for every i ∈ G dataset Di comes
from the target distribution and, thus, should be beneficial for the training.

Next, we make the following standard assumption about the stochastic gradients.

Assumption 1. For all i ∈ G the stochastic gradient gi(x) is an unbiased estimator of ∇fi(x) with
bounded variance, i.e., Eξi∼Di

[gi(x)] = ∇fi(x) and for some σ ≥ 0

Eξi∼Di

[
∥gi(x)−∇fi(x)∥2

]
≤ σ2. (3)

Let wideal denote a weight vector containing equal non-zero weights only for the datasets from the
target distribution. If Assumption 1 holds, then due to the independence of {gi(x)}i∈G

Eξi

[∥∥∥∥
n∑

i=1
wideal
i gi(x)−∇f1(x)

∥∥∥∥
2
]
= Eξi



∥∥∥∥∥

1
|G|
∑
i∈G

gi(x)−∇f1(x)

∥∥∥∥∥

2

 ≤ σ2

|G| ≡ σ2
∗. (4)

We also assume that the objective is L-smooth

Assumption 2. f1 is L-smooth, i.e., ∀ x, y ∈ Rd

f1(x) ≤ f1(y) + ⟨∇f1(y), x− y⟩+ L
2 ∥x− y∥2. (5)

For the sake of brevity, we will also use the following notation:

xt+1(w) = OptStep

(
xt,

n∑

i=1

wigi(x
t), γt

)
.
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C.3 Generic Scheme of the Proof
The proof for MeritOpt-SGD from (Tupitsa et al., 2024) is based on the assumption that the auxiliary
problem can be solved with δ error:

E
[
f1(x

t+1)|xt, ξt
]
− min

w∈∆n
1

f1
(
xt+1(w)

)
≤ δ, (6)

and the following inequality

min
w∈∆n

1

f1
(
xt+1(w)

)
≤ f1(x

t+1(wideal)), (7)

which holds by the definition of the minimum. These two inequalities together imply

E
[
f1(x

t+1)|xt
]
≤ E

[
f1(x

t+1(wideal))|xt
]
+ δ. (8)

The rest of the proof for MeritOpt-SGD follows the same scheme as for SGD that uses
∑n

i=1w
ideal
i gi(x) as

the stochastic gradient, i.e., as for the method xt+1 = xt − γ
∑n

i=1w
ideal
i gi(x

t) = xt − γ
|G|
∑

i∈G gi(x
t).

We noticed, that convergence result of MeritOpt envelope can be obtained in the case when the analysis
of the method being enveloped uses only two subsequent points and relies on the analysis of the inequality
E[f1(xt+1)] ≤ E[f1(xt)] + ∆t, where ∆t is some additional iteration-dependent term. Then, using (8),
one can show that MeritOpt version of the method decreases expected function value not less then the
ideal update at each iteration (up to the error term of solving the problem in Line 6). In the next two
subsections, we provide the results for MeritOpt-RMSProp and MeritOpt-AdaGrad-Norm.

C.4 Special Case: RMSProp
In this subsection, we consider RMSProp as OptStep, i.e.,

OptStep(xt, gt, γt) = xt − γt
bt
gt, bt =

√
β2b2t−1 + (1− β2)(gt)2 + ϵ,

where all arithmetical operations (multiplication, division, summation, taking the square/square root) are
coordinate-wise. We emphasize that RMSProp can be seen as Adam without momentum (β1 = 0).

We base our proof on the one from (Zaheer et al., 2018), that additionally uses the following assumption.

Assumption 3. Each component of the stochastic gradient gi(x) for i ∈ G is bounded, i.e.,
∥∥∥[gi(x)]j

∥∥∥ ≤ G. (9)

Theorem 1. Let Assumptions 1, 2, 3 hold. If Line 6 is solved with error δ ≥ 0 (see (6)), then
MeritOpt-RMSProp with γt = γ ≤ ϵ

2L and β2 ≥ 1− ϵ2

16G2 after T iterations satisfy

min
t=0,...,T−1

E∥∇f1(x
t)∥2 ≤ 2(

√
β2G+ ϵ)×

[(
f1
(
x0
)
− f1(x

∗)
)

γT
+ σ2

∗

(
γG

√
1− β2
ϵ2

+
Lγ2

2ϵ2

)
+

δ

γ

]
.

Proof. We start with the following inequality from the page 13 of (Zaheer et al., 2018)

E[f1(xt+1(wideal))|xt] ≤ f1(x
t)− γt

2
(√

β2G+ ϵ
)
∥∥∇f1(x

t)
∥∥2 +

(
γtG

√
1− β2
ϵ2

+
Lγ2t
2ϵ2

)
σ2
∗

in a slightly adjusted form. In fact, this inequality holds for any xt and ideally aggregated gradients
n∑

i=1
wideal
i gi(x

t). Applying (8), we get

E
[
f1(x

t+1)|xt
]
≤ f1(x

t)− γt

2
(√

β2G+ ϵ
)
∥∥∇f1(x

t)
∥∥2 +

(
γtG

√
1− β2
ϵ2

+
Lγ2t
2ϵ2

)
σ2
∗ + δ.
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Following the same steps of the rest of the proof from (Zaheer et al., 2018), we obtain

1

T

T−1∑

t=0

E
∥∥∇f1

(
xt
)∥∥2 ≤ 2(

√
β2G+ ϵ)×

[(
f1
(
x0
)
− f1(x

∗)
)

γT
+ σ2

∗

(
γG

√
1− β2
ϵ2

+
Lγ2

2ϵ2

)
+

δ

γ

]
,

where γt = γ ≤ ϵ
2L is used. It remains to notice that min

t=0,...,T−1
E∥∇f1(x

t)∥2 ≤ 1
T

T−1∑
t=0

E
∥∥∇f1

(
xt
)∥∥2.

C.5 Special Case: AdaGrad-Norm
In this subsection, we consider AdaGrad-Norm (Ward et al., 2019) as OptStep, i.e.,

OptStep(xt, gt, γt) = xt − γt
bt+1

gt, bt+1 =
√
b2t + ∥gt∥2.

We base our proof on the one from (Ward et al., 2019), that additionally uses the following assumption.

Assumption 4. Gradients ∇fi(x) are uniformly bounded for i ∈ G:

∥∇fi(x)∥ ≤ G. (10)

Theorem 2. Let Assumptions 1, 2, 4 hold. If Line 6 is solved with error δ ≥ 0 (see (6)), then
MeritOpt-AdaGrad-Norm with after T iterations satisfy

min
t≤T

(
E
[
∥∇f1(x

t)∥ 4
3

]) 3
2 ≤

(
2b0
T

+
4(G+ σ∗)√

T

)
CF ,

where

CF =
δT

γ
+

f1(x
0)− f1(x

∗)
γ

+
4σ∗ + γL

2
log

(
20T

(
σ2
∗ +G2

)

b20
+ 10

)
.

Proof. Notating g̃t = 1
|G|
∑

i∈G gi(x
t) and b̃t+1 =

√
b2t + ∥g̃t∥2 we rewrite the first line of the main proof

from (Ward et al., 2019) as

f1(x
t+1(wideal))− f1(x

t)

γ
≤ −⟨∇f1(x

t), g̃t⟩
b̃t+1

+
γL

2b̃2t+1

∥g̃t∥2

= −∥∇f1(x
t)∥2

b̃t+1

+
⟨∇f1(x

t),∇f1(x
t)− g̃t⟩

b̃t+1

+
γL∥g̃t∥2
2b̃2t+1

.

Applying (6) and (7), we get the following inequality:

f1(x
t+1)− δ − f1(x

t)

γ
≤ −∥∇f1(x

t)∥2
bt+1

+
⟨∇f1(x

t),∇f1(x
t)− gt⟩

bt+1
+

γL∥gt∥2
2b2t+1

.

Then, following the same steps as in the main proof from (Ward et al., 2019), we derive

min
t≤T

(
E
[
∥∇f1(x

t)∥ 4
3

]) 3
2 ≤

(
2b0
T

+
4(G+ σ∗)√

T

)
CF ,

where

CF =
δT

γ
+

f1(x
0)− f1(x

∗)
γ

+
4σ∗ + γL

2
log

(
20T

(
σ2
∗ +G2

)

b20
+ 10

)
.

This finishes the proof.
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Setting North Sami Java Tagalog

Score Time Iters Score Time Iters Score Time Iters

CT 50.19 13H 180K 21.04 2H 37K 33.12 9H 149K

MeritOpt 41.85 24H 16K 21.12 13H 3.5K 32.56 24H 10K
CT + MeritOpt 50.95 25H 186K 21.23 8H 39K 33.65 29H 101K
MeritOpt-Drop 41.43 24H 13K 20.64 2H 1K 33.46 24H 13K
MeritOpt-Cycle 49.72 24H 180K 21.31 14H 60K 32.29 13H 58K

Table 7: Performance comparison for different settings across languages

D Accelerating MeritOpt

In this section, we outline preliminary experiments designed to accelerate our approach. We limit the
training to 24 hours or to 180K iterations due to time and resource constraints. Moreover, XXX... The
simple heuristics are as follows:

• CT + MeritOpt: MeritOpt is applied once the CT stage reaches its peak performance or computa-
tional limit. This heuristic aims to refine the model after it has acquired sufficient knowledge of the
target language in default setting.

• MeritOpt-Drop: During training, a language is dropped at the end of an epoch if its weight falls
below a predefined threshold. This heuristic is intended to avoid unnecessary computations for
languages that do not contribute to model improvement. In our experiments, the threshold was set to
0.15 with 5 languages and 0.2 with 4 languages.

• MeritOpt-Cycle: MeritOpt is applied selectively at certain epochs, while other epochs are trained
solely with top-1 weighted language, determined with MeritOpt. This heuristic seeks to introduce
MeritOpt intermittently, guiding the model updates towards a more beneficial direction by leveraging
multiple languages in a controlled manner.

In our experiments, we observed that the performance of the combined CT + MeritOpt setting, though
noisy and showing minor improvements, did not consistently outperform the individual approaches. For
instance, while spBLEU improved slightly, the fluctuations were significant, making the gains less reliable.
MeritOpt setting showed stable improvement in the last 5K iterations, but performance plateaued. In
contrast, the MeritOpt-Cycle setting reached a plateau quickly, and the last 50K iterations offered no
further gains, with SME still dominating in terms of weight importance.

For the Java dataset, the CT + MeritOpt setup showed unpredictable and noisy behavior, with some
checkpoints marginally outperforming the original, but with only minor improvements. Interestingly, the
weight distribution across languages remained similar to that of the MeritOpt setting, except for Java,
which exhibited more stability as it was already well-learned. In the MeritOpt-Drop setting, Java and
other languages were quickly removed, which led to a sharp decline in performance, likely due to the
exclusion of target languages, despite the validation loss remaining stable.

In the Tagalog experiments, the CT + MeritOpt setup demonstrated steady spBLEU improvements. In
the MeritOpt-Drop setting, Tagalog and other languages were removed later in training, yet the model’s
performance remained stable, likely due to the retention of the target language. Interestingly, this setting
yielded results that outperformed both MeritOpt and CT, although it still fell short of the CT + MeritOpt
approach. Finally, in the MeritOpt-Cycle setting, spBLEU fluctuated but stabilized at a reasonable level.
While the MeritOpt mechanism caused notable gains and losses, all languages held the top-1 position at
some point during training, which added unpredictability.

These results highlight that dropping languages can lead to overfitting, particularly if the target language
is excluded. The Tagalog case appears to be unique, suggesting that permanently disabling languages
could be beneficial only when we are certain they are no longer necessary. Moreover, the MeritOpt-Cycle
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approach often re-prioritized already well-learned languages, potentially hindering performance. We
suggest that loss averaging by batch could be weighted based on the significance of samples as calibrated
by MeritOpt, reducing the contribution of less important samples. Lastly, our results indicate that CT
+ MeritOpt offers limited gains, likely because the model converged to the suboptimal local minima,
however plain MeritOpt converges differently.
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