
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 8592–8614
November 12-16, 2024 ©2024 Association for Computational Linguistics

LPZero: Language Model Zero-cost Proxy Search from Zero

Peijie Dong1, Lujun Li2, Xiang Liu1, Zhenheng Tang3,2

Xuebo Liu4, Qiang Wang4, and Xiaowen Chu1,2

1HKUST-GZ, 2HKUST, 3HKBU, 4HIT-SZ
pdong212@connect.hkust-gz.edu.cn, lilujunai@gmail.com,

xliu886@connect.hkust-gz.edu.cn, zhtang@comp.hkbu.edu.hk,
{liuxuebo,qiang.wang}@hit.edu.cn, xwchu@ust.hk

Abstract

In spite of the outstanding performance, Neural
Architecture Search (NAS) is criticized for mas-
sive computation. Recently, Zero-shot NAS has
emerged as a promising approach by exploiting
Zero-cost (ZC) proxies, which markedly reduce
computational demands. Despite this, existing
ZC proxies heavily rely on expert knowledge
and incur significant trial-and-error costs. Par-
ticularly in NLP tasks, most existing ZC prox-
ies fail to surpass the performance of the naive
baseline. To address these challenges, we intro-
duce a novel framework, LPZero, which is the
first to automatically design ZC proxies for vari-
ous tasks, achieving higher ranking consistency
than human-designed proxies. Specifically, we
model the ZC proxy as a symbolic equation and
incorporate a unified proxy search space that
encompasses existing ZC proxies, which are
composed of a predefined set of mathematical
symbols. To heuristically search for the best
ZC proxy, LPZero incorporates genetic pro-
gramming to find the optimal symbolic com-
position. We propose a Rule-based Pruning
Strategy (RPS), which preemptively eliminates
unpromising proxies, thereby mitigating the
risk of proxy degradation. Extensive experi-
ments on FlexiBERT, GPT-2, and LLaMA-7B
demonstrate LPZero’s superior ranking ability
and performance on downstream tasks com-
pared to current approaches.

1 Introduction

Traditional neural network design (Krizhevsky
et al., 2012), heavily dependent on expert knowl-
edge and experience (He et al., 2016), is both time-
intensive and prone to trial-and-error. Neural Ar-
chitecture Search (NAS) emerged to automate and
refine this process by identifying optimal architec-
tures from a set of possibilities using various strate-
gies. However, early NAS methods (Zoph and Le,
2017; Real et al., 2019) require extensive compu-
tation, which limits their wide accessibility. For

Proxy Name Formula

Activation Distance S = log|KH |
Synaptic Saliency S =

∂L
∂W

⊙W

Jacobian Cosine S =
[
JnJ

t
n − I

] 1
20

Synaptic Diversity S =

∥∥∥∥
∂L
∂W

∥∥∥∥⊙ ∥W∥nuc

Attention Confidence S = max(Att(h, (xn)))
Softmax Confidence S = max(Sft(h, (xn)))

Attention Importance S =

∣∣∣∣∂Att(I)
∂L(I)
∂Att(I)

∣∣∣∣

SNIP S =

∣∣∣∣
∂L
∂W

⊙W

∣∣∣∣

GraSP S = −
(
H

∂L
∂W

)
⊙W

Fisher S =
∂L
∂A

×A

LogSynflow S = W ·
∣∣∣∣log

∣∣∣∣
∂L
∂W

∣∣∣∣
∣∣∣∣

Synflow S =
∂L
∂W ⊙W

GradNorm S = || ∂L
∂W ||F

Table 1: Overview of handcrafted Zero-cost proxies for
Transformers, notating KH as the Kernel Matrix, J as
the Jacobian w.r.t. Mini-Batch Input I , Att as attention
head, Sft as softmax output, A as activation, and H as
the Hessian matrix.

instance, NASNet (Zoph and Le, 2017) requires
500 GPUs for four days.

To alleviate this issue, recent advancements in
Zero-shot NAS (Lin et al., 2021; Li et al., 2023;
Mellor et al., 2021; Abdelfattah et al., 2021; Ying
et al., 2019; Krishnakumar et al., 2022; Zhou et al.,
2022) aim to significantly reduce training costs by
employing Zero-cost (ZC) proxies, which circum-
vent the traditional training process and decrease
computational demands. Zero-shot NAS predicts
the performance of neural network architectures
without the need for actual training, using models
that are randomly initialized. This approach en-
ables rapid and efficient estimation of architecture
performance, eliminating the time and resources

8592

typically consumed in training processes. To evalu-
ate the effectiveness of ZC proxies, Spearman’s ρ
or Kendall’s τ are utilized to measure the congru-
ence between the performance rankings predicted
by ZC proxies and ground truth derived from fully
trained models. A high-ranking correlation indi-
cates the reliability of ZC proxies in forecasting the
potential success of architectures.

However, existing ZC proxies (Serianni and
Kalita, 2023; Javaheripi et al., 2022) are heav-
ily dependent on in-depth expert knowledge and
a repetitive trial-and-error, which can be both
time-intensive and demanding in terms of effort.
For instance, Attention Confidence (Serianni and
Kalita, 2023) utilizes normalization techniques to
refine attention mechanisms for enhanced perfor-
mance. Meanwhile, pruning-based proxies such
as SNIP (Lee et al., 2019), Fisher (Turner et al.,
2020), GraSP (Wang et al., 2020), GradNorm (Ab-
delfattah et al., 2021) and Synflow (Tanaka et al.,
2020) involve complex combination of mathemat-
ical operations that critically influence their rank-
ing capabilities. Notably, LogSynflow (Cavagnero
et al., 2023) implements logarithmic operations to
address gradient explosion issues inherent in Syn-
flow. Furthermore, we observe that most of the
existing proxies cannot surpass the baseline perfor-
mance, measured by the number of parameters, as
presented in Table 2 and 3.

This limitation raises a fundamental but critical
question: How to devise new proxies efficiently
and automatically for language models?

To answer this question, we break it down to two
steps: (1) Devise a unified proxy search space
for existing ZC proxies. (2) Employ genetic pro-
gramming for discover new proxies.

For the first step, we revisit the existing ZC
proxies, as detailed in Table 1, and design a com-
prehensive proxy search space that encompasses
current ZC proxies. Specifically, we formulate the
ZC proxies as symbols. Then, these proxies are
categorized into six types based on the input type:
Activation (A), Jacobs (J), Gradients (G), Head (H),
Weight (W) and Softmax (S), illustrated in Figure 1.
Within this unified framework, we select two types
of inputs, denoted as θ, from these categories. Each
input undergoes transformation through n unary op-
erations f(·), and the results are combined using
a binary operation g(·). This process generates a
candidate proxy, φ(f, g, θ), for our proxy search
space. More details can be found in Appendix H.

For the second step, we propose a LPZero
framework, denoting Language model Proxy
Search from Zero. As illustrated in Figure 2, we
initially select p candidate proxies to establish the
population and assess their ranking consistency
within the FlexiBERT benchmark. Through tour-
nament selection, we identify two promising par-
ent proxies (φn,m). Subsequently, we perform
crossover and mutation operations to generate the
offspring proxy φq. To evaluate its ranking consis-
tency Spearman ρq, we employ this proxy to score
each architecture Ωi with φq(Ωi) and compare the
results with their respective ground truth gti (e.g.,
average accuracy). Given the sparsity of the proxy
search space, we advocate for a Rule-based Prun-
ing Strategy (RPS) aimed at eliminating ineffective
proxies, thereby enhancing search efficiency. Our
main contributions are:

• We design a comprehensive and high-quality
proxy search space that encompasses most of
the existing ZC proxies tailored for language
models. To the best of our knowledge, we
are the first to present an automatic ZC proxy
framework for language models.

• We introduce a Rule-based Pruning Strategy
(RPS) to prevent proxy degradation and im-
prove search efficiency.

• Experiments on FlexiBERT, GPT-2 and
LLaMA substantiate the superiority of the
proxies identified by our LPZero, indicating
the effectiveness of our proposed approach.

2 Related Work

Zero-shot NAS has gained prominence as a
computation-efficient alternative to previous NAS
methods (Zoph et al., 2018; Liu et al., 2019; Pham
et al., 2018; Cai et al., 2018). It can estimate the
performance of candidate architectures without ex-
tensive training. Existing ZC proxies rely heavily
on experts and handcrafted heuristics. For instance,
NWOT (Mellor et al., 2021) leverages the local Ja-
cobian values across various images to construct an
indicator for the model’s capability. ZenNAS (Lin
et al., 2021) assesses candidate architectures by em-
ploying the gradient norm of input images. Zero-
cost NAS (Abdelfattah et al., 2021) introduces
pruning-based metrics as ZC proxies, which en-
compass indicators including GradNorm (Abdelfat-
tah et al., 2021), SNIP (Lee et al., 2019) and Syn-
flow (Tanaka et al., 2020), etc. These proxies eval-

8593

Figure 1: Proxy Search space of LPZero framework. Figure 2: Genetic programming process of LPZero.

uate the significance of network parameters and
aggregate layer-wise values to estimate the overall
performance. The above proxies mainly focus on
convolution-based networks, recent efforts (Seri-
anni and Kalita, 2023) first apply ZC proxies to
transformer-based networks, including RNN and
BERT, and propose the FlexiBERT benchmark.
LiteTransformerSearch (Javaheripi et al., 2022)
proposes to employ the number of decoder param-
eters as ZC proxies on the GPT-2 benchmark.

Automatic Design for ZC Proxies. Several stud-
ies explore how to search for ZC proxies automat-
ically, notably EZNAS (Akhauri et al., 2022) and
EMQ (Dong et al., 2023b). EZNAS introduces
a proxy search space dedicated to convolution-
based networks, achieving commendable perfor-
mance across various benchmarks (Ying et al.,
2019; Dong and Yang, 2020). However, its ef-
fectiveness is notably diminished when applied to
Transformer-based networks. On the other hand,
EMQ (Dong et al., 2023b) develops a specialized
proxy search space tailored for mixed-precision
quantization proxies for Convolution-based net-
works. Our LPZero framework can be applied
to Transformer-based architectures, particularly
language models, and shows superior and more
promising performance.

NAS for LLMs. Large Language Models
(LLMs), such as LLaMA (Sarah et al., 2024), are
becoming increasingly large, with model sizes rang-
ing from 7B to 70B (Zhang et al., 2023). This
rapid growth in model scale poses challenges for di-
rectly applying supernet-based NAS methods (Cai
et al., 2020; Yu et al., 2020) to LLMs. To address
this issue, recent works, including LoNAS (Munoz
et al., 2024) and LLaMA-NAS (Sarah et al., 2024),
leverage elastic Low-Rank Adaptation (LoRA) (Hu

et al., 2022) to transform a pre-trained LLM into a
supernet. This approach enables the practical appli-
cation of NAS techniques to LLMs by reducing the
search space and computational requirements. In
this paper, we further enhance the efficiency of the
sub-network search process by employing LPZero
as a cost-effective performance estimator.

3 Methodology

3.1 Proxy Search Space
The search spaces of most AutoML ap-
proaches (Real et al., 2020; Liu et al., 2019)
are specifically designed for particular purposes
and not suitable for proxy search. Previous auto
loss search methods (Li et al., 2021b,a; Gu et al.,
2022) take the output of network y and ground
truth ŷ as input (scalar), which is relatively easy
to handle. However, for the ZC proxies search
problem, we involve more operations that take
scalar, vector, and matrix as input, which might
deduce the shape mismatching problem. The
complete operations are presented in Table 7 of
Appendix A.

LPZero aims to identify the most suitable ZC
proxy to accurately assess network performance.
The primary objective is to optimize Spearman’s
rank correlation coefficient (ρ), which measures the
ranking consistency of each ZC proxy. Thus, our
training-free approach is formulated as follows:

φ∗ = argmax
φ∈S

(ρ(φ)), φ = φ(f, g, θ). (1)

where φ represents the candidate ZC proxies within
the proxy search space S . Each proxy φ is defined
as a function of unary and binary operations (f and
g) applied to input parameters θ.
Zero-cost Proxy Representation. The ZC proxy
φ is represented as a Symbolic Expression (SE). As

8594

Figure 3: Illustration of Crossover and Mutation.

Algorithm 1 LPZero Algorithm
1: Input: Initial population size p, number of generations

G, crossover rate Cr , mutation rate Mr

2: Output: ZC proxy with highest Spearman
3: Initialize population with p random ZC proxies
4: for g = 1 to G do
5: Evaluate fitness of each proxy in the population
6: Pick top R ratio as pool Q
7: Select parents φn,m randomly from Q
8: CrossOver φq = CrossOver(φn, φm) with probabil-

ity Cr .
9: Mutation φq = Mutate(φq) with probability Mr

10: if RPS(φq) is valid then
11: Add offspring to population
12: else
13: Jump to Line 8 and regenerate offspring φq

14: end if
15: Evaluate fitness of new offspring φq

16: Keep the top-p proxies for the next generation
17: end for
18: return the proxy with the highest Spearman

illustrated in Figure 1, the algorithmic expression
can be represented by the combination of unary
operations f(·) and binary operations g(·). There-
fore, SE can be represented as φ(f, g, θ), where
inputs x1 and x2 is chosen from six candidates θ,
including Activation (A), Jacobs (J), Gradients (G),
Head (H), Weight (W) and Softmax (S).
Primitive Operations. Table 7 summarizes the
primitive operation set K used in the proxy search
space. This set comprises 20 unary operations
and four binary operations, facilitating informa-
tion exchange across dimensions. These operations
are non-parametric, meaning they do not have ad-
justable parameters, making them highly efficient
and effective in various computational tasks. Unary
operations act on a single input, while binary op-
erations operate on pairs of inputs. Notably, f19
and f20 are unique unary operations; f20 signifies
a pass-through where the input is returned without
any modification, and f20 represents a pruning op-
eration that results in the removal of the branch,
effectively returning nothing. By incorporating this

diverse set of operations, our proxy search space
can explore a wide range of function transforma-
tions, enabling the discovery of novel architectures
and enhancing the flexibility of our approach.
Analysis for the Proxy Search Space. In Figure 1,
we illustrate the proxy search space by showcas-
ing two proxies depicted in red and yellow lines,
demonstrating the variability and richness of archi-
tectural configurations. With a total of 20 unary
operations and 4 binary operations available, the
proxy search space is expansive, yielding a combi-
natorial space of C2

6 × 202× 4 = 24, 000 potential
ZC proxies. This vast space enables the explo-
ration of a wide spectrum of architectural designs,
allowing for the discovery of innovative solutions
tailored for the specific requirements of NLP tasks.

3.2 LPZero Framework

Inspired by the AutoML (He et al., 2021; Li et al.,
2019), genetic programming is employed as the
core mechanism for our search algorithm. It lever-
ages the principles of natural selection and genetic
evolution to optimize models and hyperparame-
ters. Figure 2 illustrates the search pipeline of our
LPZero framework. At initialization, we uniformly
sample p ZC proxies from the proxy search space
to get the initial population. Then, we measure the
ranking correlation on the architecture search space
to measure the predictability of each proxy. Then,
for each iteration, we conduct tournament selec-
tion to pick R ratios from a population (R = 10%
by default) as promising candidates, and then ran-
domly sample two of them as parents φn,m. Then,
the parents are utilized to perform crossover and
mutation with a probability of Cr and Mr respec-
tively to get the offspring. To verify the effective-
ness of offspring, we sample S candidate architec-
tures from the architecture search space and com-
pute the ranking correlation of ground truth and
proxy score. As the proxy search space is very
sparse with a large number of unpromising or even
invalid ZC proxies, we propose early-stopping to
filter out the candidates.
Crossover and Mutation. Each symbolic expres-
sion consists of two branches and one aggregation
node. These branches represent the individual com-
ponents or operations within the proxy architecture,
while the aggregation node combines the outputs
of these branches to form the final proxy score.
As shown in Figure 3, we present the illustration
of CrossOver and Mutation. During the crossover

8595

operation, two parents are selected, and genetic
information is exchanged between them to gen-
erate offspring. This process involves swapping
segments of the parents to create new combinations
of operations and architectures. Conversely, the
mutation operation introduces random alterations
to the genetic makeup of a single SE, potentially
introducing novel architectures into the population.
Rule-based Pruning Strategy. The Rule-based
Pruning Strategy in the LPZero framework serves
a crucial role in managing the computational chal-
lenges posed by the expansive and sparsely popu-
lated proxy search space. It works to promptly iden-
tify and discard unpromising or invalid ZC proxies,
thereby conserving computational resources and
expediting the search for optimal solutions. By
utilizing predefined criteria as presented in Ap-
pendix D this strategy evaluates the viability of
candidate proxies. Those failing to meet the spec-
ified criteria are removed from the population, re-
ducing the proxy search space and focusing compu-
tational efforts on promising candidates. Overall,
this strategic filtering process enhances the effi-
ciency and effectiveness of the LPZero framework,
facilitating swifter progress toward the discovery
of high-quality proxy architectures.
Searched Zero-cost Proxy. Based on the LPZero
framework, we present the searched ZC proxy tai-
lored for the different tasks, including GPT-2, Flex-
iBERT, and LLaMA benchmark, characterized by a
unique combination of structural and operational el-
ements. The architecture of this proxy is delineated
as follows: the input structure comprises heads
and activation functions, and the tree structure uti-
lizes operations such as element-wise reversion,
element-wise power, Frobenius norm, log softmax,
etc. For more operations, refer to Table 7. For these
three tasks, we present the searched ZC proxies in
Appendix B.

4 Experiments

In this section, we first detail the experimental
setup and implementation details of LPZero. Then,
we present the ranking correlation evaluation on
FlexiBERT and GPT-2 benchmark. Subsequently,
we assess LPZero’s performance by examining the
ranking correlation in the FlexiBERT and GPT-2
benchmarks. After that, we report the performance
on commonsense tasks for LLaMA-7B model. Fi-
nally, we conduct an ablation study to evaluate the
impact of our genetic programming framework, the

Proxy Name τ ρ

Synaptic Diversity (2022) 0.021 0.175
Head Importance (2023) 0.050 0.171
Activation Distance (2021) 0.081 0.123
Jacobian Cosine (2020) 0.116 0.149
SNIP (2019) 0.119 0.173
GraSP (2020) 0.122 0.179
GradNorm (2021) 0.133 0.197
Fisher (2020) 0.139 0.209
Synaptic Saliency (2020) 0.157 0.266
Synflow (2020) 0.322 0.471
LogSynflow (2023) 0.334 0.491
No.Params. (2021) 0.454 0.590
Attention Confidence (2023) 0.475 0.666
EZNAS (2022) 0.483 0.698
LPZero (Ours) 0.511 0.748

Table 2: Ranking correlation of Zero-cost proxies on
the FlexiBERT benchmark over 500 architectures with
Kendall’s τ and Spearman’s ρ.

Rule-based Pruning Strategy (RPS), and other com-
ponents including the number of unary operations
and the initial population size.

4.1 Implementation Details

Datasets. FlexiBERT (Serianni and Kalita, 2023)
is built on the GLUE benchmark (Wang et al.,
2018). We adopt the average performance of the
tasks as ground truth to measure the ranking consis-
tency. We employ OpenWebText (Gokaslan et al.,
2019) to search for ZC proxies on the FlexiBERT
benchmark. For the GPT-2 benchmark, we conduct
experiments on the WikiText-103 dataset (Merity
et al., 2016). For LLaMA, we conduct experi-
ments on eleven commonsense reasoning datasets:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2019), ARC (Clark et al., 2018) and
OBQA (Mihaylov et al., 2018).
Criteria. The effectiveness of ZC proxies is mea-
sured by Kendall’s τ and Spearman’s ρ, with values
from -1 to 1, where higher values indicate that the
proxies accurately predict the rankings of neural ar-
chitectures compared to fully trained models. For
commonsense reasoning tasks, we employ accu-
racy as criterion.
Benchmarks. We employ two language bench-
marks to measure the ranking consistency, includ-
ing FlexiBERT and GPT-2 Benchmark. FlexiB-
ERT Benchmark (Serianni and Kalita, 2023) is
a challenging benchmark that encompasses over

8596

Figure 4: Spearman’s ρ and Kendall’s τ Correlation of training-free proxies with GLUE Score across 500 architec-
tures randomly sampled from FlexiBERT benchmark.

Proxy Name τ ρ

Jacobian Cosine (2020) 0.227 0.362
EZNAS (2022) 0.489 0.704
No.Params (2021) 0.582 0.737
Synflow (2020) 0.632 0.730
Activation Distance (2021) 0.644 0.818
Attention Confidence (2023) 0.676 0.850
Fisher (2020) 0.691 0.872
GraSP (2020) 0.765 0.922
GradNorm (2021) 0.834 0.958
LogSynflow (2023) 0.836 0.962
Synaptic Diversity (2022) 0.841 0.957
Decoder.Params (2022) 0.847 0.967
Synaptic Saliency (2020) 0.855 0.970
SNIP (2019) 0.858 0.970
Head Importance (2023) 0.861 0.971
LPZero (Ours) 0.886 0.980

Table 3: Ranking correlation of Zero-cost proxies on the
GPT-2 benchmark over 200 architectures with Kendall’s
τ and Spearman’s ρ.

107 architectures (Refer to Appendix A). We adopt
the GPT-2 Benchmark (Javaheripi et al., 2022) on
WikiText-103, which provides 1054 architectures
(Refer to Appendix A). For LLaMA search space,
we follow the settings in LoNAS and list the details
in Appendix A
Genetic Programming Settings. The configura-
tion of our genetic programming algorithm is as
follows: The total number of generations, denoted
as G, is established at 1,000, with the initial popula-
tion size, p, set to 80 individuals. The probabilities
for crossover and mutation operations are both set

at Cr = 0.5 and Mr = 0.5, respectively. The
selection pressure, represented by the ratio R, is
fixed at 10%. A consistent seed of 42 is utilized
to ensure reproducibility across experiments. All
experiments are conducted on A6000 and H800.
During genetic programming, we only require a
mini-batch of input (batch size of 128, 16, 32 for
BERT, GPT-2 and LLaMA) to calculate the input
statistics.

Following EZNAS (Akhauri et al., 2022), we
assess the ranking consistency by sampling 50 ar-
chitectures. Upon finalizing the search proxy, we
proceed to evaluate its performance by applying
it to two distinct datasets: FlexiBERT, comprising
500 architectures, and GPT-2, encompassing 200
architectures. The whole search process requires
10 GPU hours.

Training and Evaluation. We leverage the open-
source code by Serianni and Kalita (2023) and Ab-
delfattah et al. (2021) to implement the FlexiBERT
and various proxies as shown in Table 1. We fur-
ther use the source code in Javaheripi et al. (2022)
to implement the GPT-2 benchmark and we collect
the benchmark data from their open-sourced reposi-
tory. To assess ranking consistency, we sample 500
architectures from the FlexiBERT benchmark, with
findings presented in Table 2. Similarly, for the
GPT-2 benchmark, we sample 200 architectures to
evaluate their ranking consistency, as detailed in
Table 3.

8597

Figure 5: Performance comparison of evolution search
with and without the Rule-based Pruning Strategy (RPS)
and random search across iterations.

Figure 6: Performance comparison of different size of
population.

4.2 Ranking Evaluation

Performance on FlexiBERT As illustrated in Ta-
ble 2, we benchmark Kendall’s τ and Spearman’s
ρ of 14 ZC proxies over 500 architectures from
the FlexiBERT benchmark. The baseline (number
of parameters) serves as a competitive counterpart
and most of the proxies fail to surpass the base-
line. Our LPZero model demonstrates superior
ranking consistency, as evidenced by the values of
τ = 0.51 and ρ = 0.75 for the respective coeffi-
cients. Furthermore, we elucidate the correlation
between GLUE scores and ZC proxies through Fig-
ure 4, which contrasts LPZero with the existing ZC
proxies (Serianni and Kalita, 2023) in their study on
training-free evaluation methods. This comparison
clearly illustrates that our methodology exhibits
the highest-ranking consistency among the evalu-
ated frameworks. For additional experiments on
FlexiBERT, refer to Appendix G.

Performance on GPT-2 As illustrated in Table 3,
we benchmark Kendall’s τ and Spearman’s ρ of
15 ZC proxies over 200 randomly sampled ar-
chitectures from the GPT-2 benchmark. The ad-
ditional proxy (Javaheripi et al., 2022) is “De-

coder.Params”, which represent the parameter of
the decoder in GPT-2 models. Our LPZero achieves
the SOTA performance among all ZC proxies,
achieving τ = 0.87 and ρ = 0.98. Compared with
the FlexiBERT benchmark, the ranking consistency
is much higher than the GPT-2 benchmark.

4.3 Experiments on LLaMA

Due to the substantial computation burden of
LLMs, training a LLaMA model from scratch is
impractical. Inspired by LoNAS (Munoz et al.,
2024)(under MIT license), we utilize low-cost
LoRA as adapters to convert a pre-trained LLM
into a weight-sharing super-network. After get-
ting the super-network, LoNAS explores the sub-
networks by maximizing the heuristics. However,
it is also expensive to evaluate the performance of
subnets on downstream tasks. For instance, evaluat-
ing a sub-network performance on all downstream
tasks in Table 4 requires approximately one hour.
Given a search space of 231 × 531 proxies, it is in-
feasible to evaluate all possible sub-networks. Our
LPZero method significantly alleviates this issue.
It serves as a cost-effective estimator for the perfor-
mance of downstream tasks, requiring only a single
forward pass. As presented in Table 4, the results
of sub-networks identified using the LPZero proxy
surpass those of other counterparts to some ex-
tent. In this experiment, we incorporate the LPZero
framework into LoNAS for efficient search.

We primarily compare structured pruning meth-
ods as baseline, including LoNAS (Munoz
et al., 2024), LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), Wanda (Sun
et al., 2024), FLAP (An et al., 2024), SLEB (Song
et al., 2024), and Shortened LLaMA (Kim et al.,
2024). Structured pruning methods can be regarded
as an approach to identifying subnetworks within a
pre-trained neural network. Consequently, we have
chosen these methods for comparison. Our LPZero
method exhibits satisfactory performance relative
to these counterparts.

Additionally, we present a comparison with the
SuperNet-based NAS method LoNAS to show the
search efficiency of LPZero. As shown in Table 5,
LoNAS requires 2.5 GPU hours to search for a
subnet, achieving an average score of 64.7. In
contrast, In contrast, LPZero requires only 0.5 GPU
hours, achieving a similar average score of 64.2.
This indicates that LPZero can significantly reduce
the evaluation time, which is particularly beneficial

8598

Method Params. BoolQ PIQA HellaSwag WinoGrande Arc-e Arc-c OBQA Avg

LLaMA (2024) 6.7B 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25
SliceGPT (2024) 5.0B - 66.87 63.38 54.16 58.46 34.56 - 55.49
LLM-Pruner (2023) 5.4B 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82
FLAP (2024) 5.5B 69.63 76.82 71.20 68.35 69.91 39.25 39.40 62.08
SLEB (2024) 5.5B - 73.07 58.96 62.47 56.48 33.02 - 56.80
Shortened LLaMA (2024) 5.5B 72.70 75.70 70.40 63.60 69.50 40.10 41.20 61.89
LPZero (Ours) 5.7B 62.17 74.81 52.65 65.43 74.62 57.42 62.17 64.18

Table 4: Performance comparison of different structured pruning-based methods on downstream tasks for LLaMA-
7B. All of methods are conducted based on LLaMA, and we report the performance of LLaMA as baseline. “-”
denotes the data is not available in papers.

Method Params. TFLOPs BoolQ PIQA HellaSwag WinoG Arc-e Arc-c OBQA Avg Search Time

LoNAS-SuperNet 6.7B 1.72 65.8 77.3 57.0 67.6 79.0 61.9 77.4 69.4 -
LoNAS-SubNet 5.6B 1.44 62.9 73.0 51.4 63.9 72.3 58.5 71.0 64.7 2.5 GPU hours
LoNAS-LPZero (Ours) 5.7B 1.46 62.2 74.8 52.7 65.4 74.6 57.4 62.2 64.2 0.5 GPU hours

Table 5: Comparison of search efficiency with LoNAS for the LLaMA-7B model. The search time reported does not
include the evaluation time. LoNAS-SuperNet represents the maximum subnet within the LLaMA model, serving
as the basis for LoNAS-SubNet and LoNAS-LPZero experiments.

#Unary 2 3 4 5

Spearman’s ρ 86.48% 77.47% 75.15% 78.12%
Winning Rate 25.61% 7.96% 8.69% 6.25%

Table 6: Influence of the Number of Unary Operations
on Spearman’s ρ and Winning Rate.

when the evaluation process is time-consuming.
For the efficiency of proxies, refer to Appendix C.

4.4 Ablation Study

Effectiveness of Genetic Programming. As de-
picted in Figure 5, we limit the number of iterations
to 1,000, maintaining an initial population size of
80 throughout the process. The findings reveal that
the Evolutionary Algorithm substantially surpasses
the performance of Random Search. This indicates
that the evolutionary algorithm can heuristically
enhance the speed of the search process, thereby
significantly improving search efficiency.
Effectiveness of Rule-based Pruning Strat-
egy (RPS). As shown in Figure 5, we present the
performance of the RPS. Our findings indicate that
for iterations fewer than 400, RPS not only achieves
higher Spearman’s ρ but also significantly outper-
forms evolutionary search methodologies not in-
corporating RPS, highlighting its critical role in
enhancing search efficiency.
Initial Population Size. As shown in Figure 6,
we compare Spearman’s ρ across initial population
sizes of 80, 100, and 200. The data indicate a
positive correlation between population size and

the initial Spearman: larger initial populations yield
higher Spearman’s ρ at the outset.

Number of Unary. Table 6 presents an abla-
tion study examining the effect of unary operation
counts on Spearman’s rank correlation coefficient
and winning rate. The study shows that a lower
number of unary operations (2) yields the highest
Spearman correlation (86.48%) and winning rate
(25.61%), indicating that large unary operations
may lead to over-complex proxies.

5 Conclusion

In this paper, we present LPZero, an innovative ap-
proach for discovering proxies for language mod-
els without training or expert intervention. Our
LPZero encompasses the design of a comprehen-
sive proxy search space, spanning existing ZC prox-
ies. With genetic programming, we efficiently un-
earth promising ZC proxies within this space. To
expedite the search, we propose a Rule-based Prun-
ing Strategy, eliminating less promising proxies
early in the process. To ascertain the efficacy of
LPZero, we conducted experiments on the FlexiB-
ERT and GPT-2 benchmarks to evaluate the rank-
ing consistency of the searched proxy, demonstrat-
ing the superior ranking capabilities of LPZero.
Furthermore, we assessed LPZero’s performance
on commonsense reasoning tasks, where it exhib-
ited commendable results.

8599

Acknowledgements

This work was partially supported by National Nat-
ural Science Foundation of China under Grant No.
62272122, the Guangzhou Municipal Joint Fund-
ing Project with Universities and Enterprises un-
der Grant No. 2024A03J0616, the Hong Kong
RIF grant under Grant No. R6021-20, and Hong
Kong CRF grants under Grant No. C2004-21G and
C7004-22G.

Limitations

This study undertakes a comprehensive review of
existing Zero-cost (ZC) proxies specifically tai-
lored for Transformer architectures, integrating
them into a unified framework for evaluation. By
benchmarking these ZC proxies within the Flex-
iBERT and GPT-2 benchmarks, we rigorously as-
sess their ranking capabilities through Kendall’s
τ and Spearman’s ρ. This approach allows us to
present a systematic comparison of their effective-
ness in identifying promising language model ar-
chitectures without the need for extensive compu-
tational resources. Our evaluation focuses on the
architectural aspects of language models, aiming
to streamline the search process for efficient and
effective neural network designs.

However, it’s important to note that our research
primarily concentrates on the structural design and
optimization of language models, sidelining en-
hancements in specific functional areas such as
inference capabilities, logical analysis, advanced
language generation, nuanced natural language un-
derstanding, and retrieval and integration of knowl-
edge. These critical components of language model
performance and applicability in real-world ap-
plications are not directly addressed by our cur-
rent framework. Recognizing these gaps, we iden-
tify substantial opportunities for future research to
delve into these aspects. Expanding the scope of
Zero-cost proxy evaluation to include these func-
tionalities could significantly elevate the utility and
comprehensiveness of language models, offering
a more holistic approach to their development and
assessment in the field of artificial intelligence.

Ethics Statement

Our LPZero framework addresses the technical
development of language model architectures,
sidestepping direct ethical or social considerations.
Our work is likely to increase the adoption of NAS

in the NLP domain, providing an economic way to
perform estimation in language models.

Despite this focus, we recognize that the appli-
cation of our findings—aimed at reducing compu-
tational demands and streamlining language model
development—could intersect with broader ethi-
cal issues in natural language processing, such as
data privacy, algorithmic bias, and the potential
for misuse. We advocate for future research to in-
tegrate ethical considerations, scrutinize training
data sources for biases, and ensure the responsible
deployment of language models, acknowledging
their profound societal impact. We acknowledge
the significant capabilities and prospects offered
by artificial intelligence, particularly ChatGPT, in
refining written materials. As we utilize this tech-
nology to enhance paragraphs, we pledge to adhere
strictly to the utmost ethical guidelines, thereby
guaranteeing the preservation of integrity, the re-
spect of intellectual property rights, and the support
of inclusivity. It is important to clarify that our use
of ChatGPT is limited to the refinement of existing
content rather than the generation of new content
for the paper.

References
Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas D. Lane. 2021. Zero-Cost
Proxies for Lightweight NAS. In ICLR.

Yash Akhauri, Juan Pablo Munoz, Nilesh Jain, and Rav-
ishankar Iyer. 2022. EZNAS: Evolving zero-cost
proxies for neural architecture scoring. In NeurIPS.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao
Wang. 2024. Fluctuation-based adaptive structured
pruning for large language models. AAAI.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari
do Nascimento, Torsten Hoefler, and James Hensman.
2024. SliceGPT: Compress large language models
by deleting rows and columns. In ICLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In AAAI, volume 34,
pages 7432–7439.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2020. Once for all: Train one network
and specialize it for efficient deployment. In ICLR.

Han Cai, Ligeng Zhu, and Song Han. 2018. Proxyless-
nas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332.

Niccolò Cavagnero, Luca Robbiano, Barbara Caputo,
and Giuseppe Averta. 2023. Freerea: Training-free

8600

evolution-based architecture search. In WACV, pages
1493–1502.

Luca Celotti, Ismael Balafrej, and Emmanuel Calvet.
2020. Improving zero-shot neural architecture search
with parameters scoring. OpenReview.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. ArXiv,
abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024.
Pruner-zero: Evolving symbolic pruning metric from
scratch for large language models. In ICML.

Peijie Dong, Lujun Li, and Zimian Wei. 2023a. Diswot:
Student architecture search for distillation without
training. In CVPR.

Peijie Dong, Lujun Li, Zimian Wei, Xin Niu, Zhiliang
Tian, and Hengyue Pan. 2023b. Emq: Evolving
training-free proxies for automated mixed precision
quantization. In ICCV, pages 17076–17086.

Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Ex-
tending the scope of reproducible neural architecture
search. In ICLR.

DaYou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting
Cao, Xiaowen Chu, and Ningyi Xu. 2024. BitDis-
tiller: Unleashing the potential of sub-4-bit LLMs via
self-distillation. In ACL, pages 102–116, Bangkok,
Thailand.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
ArXiv, abs/2210.17323.

Yuan Gao, Zujing Liu, Weizhong Zhang, Bo Du, and
Gui-Song Xia. 2024. Optimization-based structural
pruning for large language models without back-
propagation. ArXiv, abs/2406.10576.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Ste-
fanie Tellex. 2019. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus.

Hongyang Gu, Jianmin Li, Guang zhi Fu, Chifong
Wong, Xinghao Chen, and Jun Zhu. 2022. Autoloss-
gms: Searching generalized margin-based softmax
loss function for person re-identification. CVPR,
pages 4734–4743.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In CVPR, pages 770–778.

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. Au-
toml: A survey of the state-of-the-art. Knowl. Based
Syst., 212:106622.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In ICLR.

Mojan Javaheripi, Gustavo de Rosa, Subhabrata
Mukherjee, S. Shah, Tomasz L. Religa, Caio Ce-
sar Teodoro Mendes, Sébastien Bubeck, Farinaz
Koushanfar, and Debadeepta Dey. 2022. Lite-
transformersearch: Training-free neural architecture
search for efficient language models. In NeurIPS.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo
Tu, Mahmoud Safari, and Frank Hutter. 2022. Nas-
bench-suite-zero: Accelerating research on zero cost
proxies. NeurIPS, 35:28037–28051.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60:84–90.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2019. Snip: Single-shot network pruning based
on connection sensitivity. In ICLR.

Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei
Wu, Junjie Yan, and Wanli Ouyang. 2019. Am-lfs:
Automl for loss function search. In ICCV.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and
Radu Marculescu. 2023. Zico: Zero-shot NAS via
inverse coefficient of variation on gradients. In ICLR.

Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao
Huang, and Xizhou Zhu. 2021a. Autoloss-zero:
Searching loss functions from scratch for generic
tasks. CVPR, pages 999–1008.

Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang,
Gao Huang, and Jifeng Dai. 2021b. Auto seg-loss:
Searching metric surrogates for semantic segmenta-
tion. In ICLR.

Lujun Li. 2022. Self-regulated feature learning via
teacher-free feature distillation. In ECCV.

Lujun Li, Yufan Bao, Peijie Dong, Chuanguang Yang,
Anggeng Li, Wenhan Luo, Qifeng Liu, Wei Xue, and
Yike Guo. 2024a. Detkds: Knowledge distillation
search for object detectors. In ICML.

Lujun Li, Peijie Dong, Anggeng Li, Zimian Wei, and
Ya Yang. 2024b. Kd-zero: Evolving knowledge dis-
tiller for any teacher-student pairs. NeuIPS.

8601

https://api.semanticscholar.org/CorpusID:270559363
https://api.semanticscholar.org/CorpusID:270559363
https://api.semanticscholar.org/CorpusID:270559363
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Lujun Li and Zhe Jin. 2022. Shadow knowledge distilla-
tion: Bridging offline and online knowledge transfer.
In NeuIPS.

Lujun Li, Haosen Sun, Shiwen Li, Peijie Dong, Wenhan
Luo, Wei Xue, Qifeng Liu, and Yike. Guo. 2024c.
Auto-gas: Automated proxy discovery for training-
free generative architecture search. In ECCV.

Lujun Li, Zimian Wei, Peijie Dong, Wenhan Luo, Wei
Xue, Qifeng Liu, and Yike. Guo. 2024d. Attnzero:
Efficient attention discovery for vision transformers.
In ECCV.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Ying-
tao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun,
and Ying Wei. 2024. Duquant: Distributing outliers
via dual transformation makes stronger quantized
llms. In NIPS.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen,
Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin. 2021.
Zen-nas: A zero-shot nas for high-performance im-
age recognition. ICCV.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019.
DARTS: differentiable architecture search. In 7th
ICLR, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, volume abs/1806.09055.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. ArXiv, abs/2305.11627.

Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J.
Crowley. 2021. Neural architecture search without
training. In ICML.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Juan Pablo Munoz, Jinjie Yuan, Yi Zheng, and Nilesh
Jain. 2024. LoNAS: Elastic low-rank adapters for
efficient large language models. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 10760–10776,
Torino, Italia. ELRA and ICCL.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le,
and Jeff Dean. 2018. Efficient neural architecture
search via parameter sharing. In ICML.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2019. Regularized evolution for image
classifier architecture search. In AAAI.

Esteban Real, Chen Liang, David So, and Quoc Le.
2020. Automl-zero: Evolving machine learning al-
gorithms from scratch. In ICML.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande. Communi-
cations of the ACM, 64:99–106.

Anthony Sarah, Sharath Nittur Sridhar, Maciej Szankin,
and Sairam Sundaresan. 2024. Llama-nas: Efficient
neural architecture search for large language models.
arXiv preprint arXiv:2405.18377.

Aaron Serianni and Jugal Kalita. 2023. Training-free
neural architecture search for RNNs and transformers.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2522–2540, Toronto, Canada.
ACL.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun
Kim, Yulhwa Kim, and Jae-Joon kim. 2024. Sleb:
Streamlining llms through redundancy verification
and elimination of transformer blocks. ICML.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In ICLR.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and
Surya Ganguli. 2020. Pruning neural networks with-
out any data by iteratively conserving synaptic flow.
NeurIPS, 33:6377–6389.

Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos
Storkey, and Gavin Gray. 2020. Blockswap: Fisher-
guided block substitution for network compression
on a budget. In ICLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020.
Picking winning tickets before training by preserving
gradient flow. In ICLR.

Zimian Wei, Peijie Dong, Zheng Hui, Anggeng Li,
Lujun Li, Menglong Lu, Hengyue Pan, and Dong-
sheng Li. 2024. Auto-prox: Training-free vision
transformer architecture search via automatic proxy
discovery. In AAAI.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. ArXiv, abs/2211.10438.

Liu Xiaolong, Li Lujun, Li Chao, and Anbang Yao.
2022. Norm: Knowledge distillation via n-to-one
representation matching. In The Eleventh Interna-
tional Conference on Learning Representations.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban
Real, Kevin Murphy, and Frank Hutter. 2019. NAS-
Bench-101: Towards reproducible neural architecture
search. In ICML.

8602

http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.18653/v1/2023.acl-long.142
https://doi.org/10.18653/v1/2023.acl-long.142

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Ben-
der, Pieter-Jan Kindermans, Mingxing Tan, Thomas
Huang, Xiaodan Song, and Quoc Le. 2020. Scaling
up neural architecture search with big single-stage
models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting
of the Association for Computational Linguistics.

Longteng Zhang, Xiang Liu, Zeyu Li, Xinglin Pan, Pei-
jie Dong, Ruibo Fan, Rui Guo, Xin Wang, Qiong Luo,
Shaohuai Shi, and Xiaowen Chu. 2023. Dissecting
the runtime performance of the training, fine-tuning,
and inference of large language models.

Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing
Sun, Yonghong Tian, Jie Chen, and Rongrong Ji.
2022. Training-free transformer architecture search.
In CVPR, pages 10894–10903.

Barret Zoph and Quoc V Le. 2017. Neural architecture
search with reinforcement learning. In ICLR.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. 2018. Learning transferable architectures
for scalable image recognition. In CVPR.

Appendix Overview

• Section A: Details of Proxy Search Space.

• Section B: Details of the Searched Proxies.

• Section C: Efficiency of Zero-cost Proxies.

• Section D: Predefined Criteria in RPS.

• Section E: Rank Correlation.

• Section F: Ablation Study of Unary Opera-
tions.

• Section G: Additional Experiments on Flex-
iBERT Benchmark.

• Section H: Additional Related Work.

• Section I: Additional Experiments on more
Language Models.

• Section J: Comparison of LPZero with Previ-
ous Automatic Methods.

A Details of Proxy Search Space

Details of Primitive Operations Table 7
presents a set of primitive operations used in our
framework, which includes 20 unary operations
and four binary operations. The unary operations
cover a wide range of mathematical functions, such
as logarithmic, exponential, trigonometric, and sta-
tistical operations, as well as activation functions
commonly used in neural networks. The binary op-
erations include basic arithmetic operations: addi-
tion, subtraction, multiplication, and division. Each
operation is defined by its input and output argu-
ment types (scalar, vector, or matrix) and the cor-
responding mathematical equation. The input and
output arguments are denoted using a memory ad-
dressing scheme, where the subscript represents
the memory address.

Details of FlexiBERT Table 8 provides a de-
tailed overview of the FlexiBERT benchmark, high-
lighting the diverse range of hyperparameters avail-
able for tuning. FlexiBERT, designed to explore
architectural variations within the BERT model
framework, allows for configurations that span the
specifications of BERT-Tiny and BERT-Mini. Key
architectural elements are outlined along with their
corresponding hyperparameter values, including
hidden dimension sizes, the number of encoder

8603

http://arxiv.org/abs/2311.03687
http://arxiv.org/abs/2311.03687
http://arxiv.org/abs/2311.03687

Op ID Symbols Input Args Output Args Description
Addresses/types Address/type (in equations)

f01 log(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb = log(xa)
f02 abs(log(s1)) a / scalar,vector,matrix b / scalar,vector,matrix yb = | log(xa)|
f03 abs(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb = |xa|
f04 square(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb = (xa)

2

f05 exp(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb = exa

f06 sqrt(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb =
√
xa

f07 relu(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb = max(0, xa)
f08 reciprocal(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb =

1
xa

f09 neg(s1) a / scalar,vector,matrix b / scalar,vector,matrix yb = −xa
f10 norm_fro(s1) a / vector,matrix b / scalar yb = ||xa||F
f11 norm_sum(s1) a / vector,matrix b / scalar yb =

∑N
i xi

a

numel(xa)

f12 norm_l1(s1) a / vector,matrix b / scalar yb = ||xa||1
f13 softmax(s1) a / vector,matrix b / vector,matrix yb =

ex
i
a

∑n
j=1 e

x
j
a

f14 sigmoid(s1) a / vector,matrix b / vector,matrix yb =
1

1+e−xia

f15 log_softmax(s1) a / vector,matrix b / vector,matrix yb = log(f12(xa))
f16 min-max scaling(s1) a / vector,matrix b / vector,matrix yb =

(x−min(xa))
max(xa)−min(xa)

f17 average(s1) a / vector,matrix b / scalar yb =
∑N

i xi
a

N

f18 std(s1) a / vector,matrix b / scalar yb =
√

1
N

∑N
i=1(x

i
a − µ)2

f19 s1 a / scalar,vector,matrix b / scalar,vector,matrix yb = xa
f20 ∅ - - yb = ∅

g01 add(s1,s2) a, b / scalars,vectors,matrices c / scalars,vectors,matrices yc = xa + xb
g02 sub(s1,s2) a, b / scalars,vectors,matrices c / scalars,vectors,matrices yc = xa − xb
g03 mul(s1,s2) a, b / scalars,vectors,matrices c / scalars,vectors,matrices yc = xa · xb
g04 div(s1,s2) a, b / scalars,vectors,matrices c / scalars,vectors,matrices yc = xa/xb

Table 7: Primitive operation set K. Summary of unary (denoted by f) and binary Operations (denoted by g).

layers, types of attention operators, and more. No-
tably, the hidden dimension and the number of en-
coder layers are consistent across the architecture,
whereas other parameters vary across encoder lay-
ers, introducing a high degree of flexibility and cus-
tomization. The table also specifies the conditions
under which different attention operation parame-
ters are applied, depending on the type of attention
operator selected. With a total of 10,621,440 possi-
ble architectures, this proxy search space represents
a comprehensive framework for exploring and iden-
tifying efficient model configurations within the
BERT architecture spectrum.

Details of GPT-2 Table 9 delineates the expan-
sive benchmark leveraged for the GPT-2 architec-
ture optimization, outlining a comprehensive set
of hyperparameters targeted in the exploration pro-
cess. It includes the number of layers (nlayer),
representing the depth of the transformer model;
the dimensionality of model embeddings (dmodel),
indicative of the scale and capacity of the model;
the inner dimension of the feed-forward networks
(dinner), a critical parameter for the model’s ability

to process and integrate information within each
transformer layer; the number of attention heads
(nhead), which impacts the model’s ability to focus
on different parts of the input sequence; and the di-
mensions of adaptive input embeddings (dembed)
along with their associated scaling factors (k), pa-
rameters that offer a novel approach to managing
input representation complexity and efficiency. A
noteworthy aspect of this benchmark is the adaptive
setting of the dinner parameter, which is dynami-
cally adjusted to be at least twice the dmodel size,
a heuristic introduced to mitigate the risk of train-
ing collapse by ensuring sufficient capacity in the
feed-forward networks.

Details of LLaMA In this paper, we employ the
same search space on LLaMA as LoNAS (Munoz
et al., 2024). To convert the pre-trained LLMs
like LLaMA into supernet, LoNAS proposed elas-
tic low-rank adapters to explore the search space.
The details of the search space are presented in Fig-
ure 7. It presents a comprehensive illustration of the
search space for the LLaMA super-network, which
consists of two primary components: the multi-

8604

Architecture Element Hyperparameters Values

Hidden dimension {128, 256}
Number of Encoder Layers {2, 4}
Type of attention operator {self-attention, linear, span-based dynamic convolution}
Number of operation heads {2, 4}
Feed-forward dimension {512, 1024}
Number of feed-forward stacks {1, 3}

Attention operation parameters
if self-attention {scaled dot-product, multiplicative}
if linear transform {discrete Fourier, discrete cosine}

if dynamic convolution convolution kernel size: {5, 9}

Table 8: The FlexiBERT benchmark, with hyperparameter values spanning those found in BERT-Tiny and BERT-
Mini. Hidden dimension and number of encoder layers is fixed across the whole architecture; all other parameters
are heterogeneous across encoder layers. The benchmark encompasses 10,621,440 architectures.

Architecture Element Hyperparameters Values

Number of Layers (nlayer) {2, 3, ..., 16}
Model Dimension (dmodel) {128, 192, ..., 1024}
Inner Dimension (dinner) {256, 320, ..., 4096}
Number of Attention Heads (nhead) {2, 4, 8}
Adaptive Input Embedding Dimension (dembed) {128, 256, 512}
Adaptive Input Embedding Factor (k) {1, 2, 4}

Table 9: The GPT-2 benchmark, covering a broad spectrum of architectural configurations. Once a model dimension
(dmodel) is chosen, the minimum inner dimension (dinner) is set to twice the value of dmodel to avoid training
collapse. This adaptive approach ensures a wide range of effective and efficient architectures, summing up to more
than 1054 unique configurations.

head attention mechanism and the feed-forward
network (FFN).

The left diagram showcases the multi-head at-
tention mechanism, where the input is first trans-
formed into query (Q), key (K), and value (V) ma-
trices through linear transformations. These ma-
trices are then augmented with low-rank adapta-
tion (LoRA) modules, denoted as Q + LoRA, K +
LoRA, and V + LoRA, respectively. The dimen-
sions of these LoRA modules are fixed at [32, 28],
indicating a search space that allows for the explo-
ration of different rank values within this range.
The augmented matrices undergo the standard at-
tention computation, which involves matrix mul-
tiplication and softmax operations, to produce the
output of the multi-head attention mechanism.

The right diagram focuses on the FFN compo-
nent of the LLaMA super-network. In this part, the
input undergoes a series of transformations through
the up and gate matrices. These matrices are en-
hanced with LoRA modules, represented as Up +
LoRA and Gate + LoRA, respectively. The search
space for these LoRA modules is defined by the
dimensions [11008, 9632, 8256, 6880, 5504], al-
lowing for the exploration of various rank config-
urations within this range. The output of the Up
+ LoRA matrix passes through an activation func-

tion, while the Gate + LoRA matrix acts as a gating
mechanism to control the flow of information. The
outputs from both branches are then combined to
form the final output of the FFN component.

In LLaMA-7B based supernet, we treat all 31
transformer layers equally. The search space size is
determined by the possible combinations of LoRA
module dimensions for each layer. With 2 configu-
rations per layer for the multi-head attention mech-
anism and 5 configurations per layer for the FFN
component, the total search space size is 231 × 531.
This large search space allows for a comprehensive
exploration of different LoRA module settings to
find the optimal configuration that maximizes per-
formance while minimizing additional parameters.

B Details of the Searched Proxies

LPZero Proxy for FlexiBERT Benchmark The
mathematical formulation of the searched ZC proxy
on FlexiBERT Benchmark is given by:

φ(θH , θA) =
N∑

i=0

((
1

θH
)2 + log (η (||θA||F)))

where θH denotes the parameters associated with
the heads in the Multi-head Attention, θA repre-
sents the activation values of each block within the
network, and η symbolizes the softmax operation.

8605

Figure 7: Illustration of the search space for the LLaMA super-network. The left diagram depicts the multi-head
attention mechanism, where the query (Q), key (K), and value (V) matrices are augmented with LoRA modules of
dimension [32, 28]. The right diagram represents the feed-forward network (FFN) component, where the up and
gate matrices are enhanced with LoRA modules of dimension [11008, 9632, 8256, 6880, 5504].

The formulated Zero-cost (ZC) proxy equation
effectively evaluates neural architectures by con-
sidering both their structural efficiency and func-
tional performance. The first term prioritizes mod-
els with fewer, yet efficient, parameters in the atten-

tion mechanism
(

1
θH

)2
, highlighting the goal of

Zero-shot NAS towards computational efficiency.
The second term log (η (∥θA∥F)) focuses on the
diversity and distribution of activations, aiming for
architectures that ensure balanced and effective in-
formation processing. Together, these aspects form
a comprehensive approach for the holistic evalua-
tion of architectures in the FlexiBERT benchmark,
which is critical for identifying optimal models for
NLP tasks.

LPZero Proxy for GPT-2 Benchmark The
mathematical formulation of the searched ZC proxy
on GPT-2 Benchmark is given by:

φ(θG, θW) =
N∑

i=1

(|normalize(θG)|

+ log (|mean(θW)|)|)

where θG denotes the parameters associated with
the generator within the GPT-2 architecture, and
θW represents the weights of each layer within the
network.

The formulated Zero-cost (ZC) proxy equation
effectively evaluates neural architectures by consid-
ering both their structural efficiency and functional
performance. The first term |normalize(θG)| em-
phasizes the significance of normalized generator
parameters, highlighting the importance of parame-
ter scaling and stability in the generation process,

which is critical for computational efficiency. The
second term log (|mean(θW)|) focuses on the av-
erage weight magnitudes, aiming for architectures
that ensure balanced weight distributions and ef-
fective learning dynamics. Together, these aspects
form a comprehensive approach for the holistic
evaluation of architectures in the GPT-2 bench-
mark, which is essential for identifying optimal
models for language generation tasks.

LPZero Proxy for LLaMA Benchmark The
mathematical formulation of the searched ZC proxy
on LLaMA Benchmark is given by:

φ(θW1 , θW2) =
N∑

i=1

(
∥θW1∥21

+ (softmax θW2)
1
2

)

where θW1 denotes the first set of weight parame-
ters in the LLaMA architecture, and θW2 represents
the second set of weight parameters.

The formulated Zero-cost (ZC) proxy equation
effectively evaluates neural architectures by con-
sidering both their structural efficiency and func-
tional performance. The first term

(
∥θW1∥21

)
em-

phasizes the importance of the L1-norm squared
of the first set of weight parameters, which encour-
ages sparsity and leads to more efficient models.
The second term (softmax(θW2))

1
2 focuses on the

softmax-transformed second set of weights, aiming
to ensure balanced weight distributions and effec-
tive scaling. Together, these aspects form a com-
prehensive approach for the holistic evaluation of
architectures in the LLaMA benchmark, which is

8606

Model Evaluation Time Kendall Tau

Synaptic Diversity 0.672s 0.021
Activation Distance 0.754s 0.081
Head Importance 0.908s 0.050
Jacobian Cosine 0.916s 0.116
Attention Confidence 0.920s 0.475
GradNorm 0.936s 0.133
Synaptic Saliency 0.944s 0.157
SNIP 0.976s 0.119
GraSP 1.626s 0.122
Fisher 1.794s 0.139
LPZero (Ours) 3.818s 0.511
LogSynflow 5.306s 0.334
Synflow 5.376s 0.322

Table 10: Comparison of evaluation time on FlexiBERT
Benchmark of different ZC proxies.

critical for identifying optimal models for language
modeling tasks.

C Efficiency of Zero-cost Proxies

We evaluate the efficiency of various zero-cost
proxies by measuring their average evaluation time
on the FlexiBERT benchmark. The results are pre-
sented in Table 10, which compares the evaluation
time and Kendall Tau correlation of each proxy.
Among the proxies tested, Synaptic Diversity ex-
hibits the fastest evaluation time at 0.672 seconds,
followed closely by Activation Distance at 0.754
seconds. However, both of these proxies demon-
strate relatively low Kendall Tau correlations of
0.021 and 0.081, respectively, indicating a weaker
relationship between their rankings and the actual
performance of the architectures. On the other
hand, our proposed method, LPZero, achieves the
highest Kendall Tau correlation of 0.511, suggest-
ing a strong agreement between its rankings and
the true performance rankings. This superior corre-
lation comes at the cost of a longer evaluation time
of 3.818 seconds, which is still competitive with
other high-performing proxies such as LogSyn-
flow and Synflow. Our proposed LPZero method
serves as an efficient alternative to evaluating the
performance of architectures on downstream tasks,
which can be highly time-consuming. By leverag-
ing LPZero as a zero-cost proxy, we can effectively
rank and compare different architectures without
the need for extensive evaluation on specific tasks.

D Predefined Criteria in RPS

In mathematics, understanding the relationships
between various operations significantly impacts

the LPZero search space. Table 11 summarizes
the relationships among a set of operations, cate-
gorizing them based on their mathematical interac-
tions. These relationships include inverse functions,
derivatives, equivalence, special cases, and poten-
tial conflicts when certain operations are combined.
This overview helps in recognizing how operations
can complement or conflict with each other, thereby
providing support for RPS.

E Rank Correlation

As a complement to the visualization of
ranking correlation, we follow LiteTransform-
erSearch (Javaheripi et al., 2022) and provide visu-
alizations of GLUE Score Ranking and ZC Proxies
Ranking. It can be observed that potential proxies
are capable of dividing the candidate models into
two clusters at least through ranking. This further
demonstrates the robustness of our LPZero results.

F Ablation Study of Unary Operations

Figure 13 illustrates an ablation study that inves-
tigates the performance of systems with varying
unary operations. It presents four graphs, each plot-
ting performance metrics in 100 iterations for sys-
tems with two to five unary operations. The study
finds that the system with two unary operations
achieves and maintains the highest ’Best SP’ score,
indicating stable, optimal performance. Systems
with more than two unary operations show more
fluctuations in ’Best SP’ and a lower Spearman
rank correlation, suggesting that additional oper-
ations may lead to over-complexity and reduced
performance. Thus, the optimal number of unary
operations for this system is two, balancing com-
plexity and performance.

G Additional Experiments on FlexiBERT
Benchmark

As presented in Table 12, the LPZero model demon-
strated superior performance with the highest aver-
age score of 76.57 among the tested zero-cost (ZC)
proxies. Notably, LPZero excelled particularly in
the SST-2 task, achieving a top score of 85.32, un-
derscoring its effectiveness in sentiment analysis.
In contrast, models such as GraSP and Activation
Distance lagged significantly, with average scores
of 64.40 and 65.51 respectively, indicating chal-
lenges in tasks requiring sophisticated linguistic
understanding. The performance disparity across

8607

OP 1 OP 2 Relationship Description

log exp Inverse ex and log(x) are inverse functions.
abs abs(log) Derivative Absolute value operation applied to log.

square sqrt Inverse Squaring and square root are inverse operations.
ReLU identity Special case ReLU acts as identity for x>0.
inverse identity Inverse for non-zero Multiplicative inverse operation.

norm_sum average Equivalent Norm sum divided by count is average.
softmax log_softmax Derivative Log softmax is the logarithm of softmax.
sigmoid logistic function Equivalent Sigmoid is also known as the logistic function.

min-max scaling normalization Type Min-max scaling is a type of normalization.
standard deviation variance Square root Standard deviation is the square root of variance.

L1-norm abs Generalization L1-norm is a sum of absolute values.
F-norm Euclidean norm Equivalent Frobenius norm for matrices, Euclidean norm for vectors.

-() log Conflict Negation followed by log leads to undefined result for positive inputs.
-() sqrt Conflict Negation followed by sqrt leads to undefined result for positive inputs.

identity (if zero) inverse Conflict Identity ensuring zero input followed by inverse leads to division by zero.
-() (for positive) sqrt Conflict Negation of positive numbers followed by sqrt is undefined.

Table 11: Summary of Predefined Criteria

Figure 8: Correlation of training-free proxies ranking with GLUE Ranking on 500 architectures randomly sampled
from FlexiBERT benchmark.

models highlights the importance of proxy selec-
tion based on task-specific characteristics, suggest-
ing that while LPZero offers robust general perfor-
mance, other proxies may require further refine-
ment to enhance their effectiveness across diverse
NLP tasks.

H Additional Related Work

Activation Distance Activation Distance, specifi-
cally in the context of NWOT (Mellor et al., 2021),
leverages binary activation patterns to measure the
correlation between input data across ReLU (Rec-
tified Linear Unit) layers within a neural network.
This proxy is crucial for understanding how dif-
ferent inputs activate the network’s architecture,
providing insights into the diversity and richness of

the learned representations. The formula provided,

S = log |KH | (2)

where KH represents the kernel matrix, quantifies
the similarity (or distance) between activation pat-
terns. The determinant of the kernel matrix (|KH |)
captures the volume of the space spanned by the
activations, and taking its logarithm transforms this
volume measure into a more manageable scale.
Synaptic Saliency Synaptic Saliency, or Syn-
flow (Tanaka et al., 2020), is a criterion used to
identify the importance of parameters (weights) in
a neural network, aiming to approximate the impact
on the loss function when a specific parameter is
removed. This concept is framed within the equa-

8608

Figure 9: Two Unary Operations. Figure 10: Three Unary Operations.

Figure 11: Four Unary Operations. Figure 12: Five Unary Operations.

Figure 13: Ablation Study of the Number of Unary Operations.

tion,

S =
∂L
∂θ

⊙ θ (3)

where ∂L
∂θ denotes the gradient of the loss function

with respect to the parameters (θ), and ⊙ repre-
sents the Hadamard product, signifying element-
wise multiplication between the gradient and the
parameters themselves. This approach to quanti-
fying parameter importance is designed to prevent
layer collapse during the pruning process of net-
work training, ensuring that the pruning does not
disproportionately affect any single layer which
could result in significant performance degrada-
tion.
Jacobian Score Cosine The Jacobian Score Co-
sine (JSC) (Celotti et al., 2020) is a Zero-cost Proxy
designed to evaluate the sensitivity and stability of
neural network architectures with respect to their in-
put data. By analyzing the Jacobian matrix, which
represents the first derivatives of the network’s out-
puts with respect to its inputs, the JSC offers in-
sights into how small variations in the input can
affect the output, thereby assessing the network’s
robustness and generalization capability. The JSC

is computed using the following formula:

S = 1− 1

N2 −N

N∑

i=1

[
JnJ

t
n − I

] 1
20 , (4)

where S denotes the Jacobian Score, N is the num-
ber of inputs to the network, Jn represents the Ja-
cobian matrix for the nth input, J t

n is the transpose
of Jn, and I is the identity matrix. This equation
calculates the average cosine similarity between
the Jacobian vectors of all pairs of inputs, adjusted
by the identity matrix to normalize self-similarity,
and finally raised to the power of 1

20 to scale the
measure.
Synaptic Diversity The concept of Synaptic Di-
versity within the context of Training-Free Trans-
former Architecture Search (TF-TAS) (Zhou et al.,
2022) represents a novel approach towards evalu-
ating and selecting Vision Transformer (ViT) ar-
chitectures. By circumventing the need for exten-
sive training, this methodology significantly en-
hances computational efficiency in Transformer
Architecture Search (TAS). The TF-TAS scheme,
delineated in the studies by Zhou et al., employs
a modular strategy that assesses ViT architectures
through two theoretical lenses: synaptic diversity

8609

Model QNLI MRPC SST-2 CoLA STS-B MNLI-m QQP AVG

#Params. 82.28 80.39 82.68 43.24 83.99 72.94 86.55 76.01
Fisher (Turner et al., 2020) 80.8 70.34 82.22 23.08 83.85 66.91 83.86 70.15
GradNorm (Abdelfattah et al., 2021) 81.99 79.9 82.11 27.55 84.68 70.95 85.59 73.25
GraSP (Wang et al., 2020) 78.77 72.79 78.90 0.0 81.28 63.93 82.13 64.40
LogSynflow (Cavagnero et al., 2023) 82.96 81.62 83.72 42.69 83.72 72.57 86.90 76.31
Synflow (Tanaka et al., 2020) 81.22 75.00 79.93 5.79 83.8 67.23 83.80 68.11
SNIP (Lee et al., 2019) 82.28 80.39 82.68 43.24 83.99 72.94 86.55 76.01
Synaptic Saliency (Tanaka et al., 2020) 82.81 82.84 83.83 33.45 84.49 70.40 85.28 74.43
Jacobian Cosine (Celotti et al., 2020) 78.11 71.57 76.95 9.35 79.11 62.28 81.32 65.53
Attention Confidence (Serianni and Kalita, 2023) 81.00 76.47 81.08 30.21 83.67 68.36 84.69 72.21
Activation Distance (Mellor et al., 2021) 79.52 73.04 76.95 0.0 82.67 64.25 82.16 65.51
Synaptic Diversity (Zhou et al., 2022) 82.96 81.62 83.72 42.69 84.59 72.57 86.90 76.43
Head Importance (Serianni and Kalita, 2023) 81.33 79.90 80.05 30.90 84.23 67.44 84.24 72.58
LPZero (Ours) 83.34 82.35 85.32 40.80 84.08 73.45 86.68 76.57

Table 12: Comparison of results on FlexiBERT Benchmark of different ZC proxies.

and synaptic saliency, collectively referred to as the
DSS-indicator.

Synaptic Diversity, particularly in relation to
multi-head self-attention (MSA) modules of ViTs,
is instrumental in gauging the performance of these
architectures. This proxy evaluates the heterogene-
ity of synaptic connections by utilizing the Nuclear-
norm as an approximate measure for the rank of
weight matrices within MSA modules. A higher
Nuclear-norm indicates a greater diversity, which
suggests a potential for enhanced performance due
to the ability to encapsulate a broader spectrum
of features and relationships within the data. The
computation of Synaptic Diversity is formalized as
follows:

S =
∑

m

∥∥∥∥
∂L
∂Wm

∥∥∥∥⊙ ∥Wm∥nuc (5)

Here, S symbolizes the synaptic diversity score,
∂L

∂Wm
denotes the gradient of the loss function with

respect to the weights of the m-th MSA module,
and ∥Wm∥nuc is the Nuclear-norm of the weight
matrix, serving as a proxy for the rank and thus the
diversity of the synaptic connections.
Hidden Covariance The Hidden Covariance proxy
provides a sophisticated means to analyze the be-
havior and interaction of hidden states within a spe-
cific layer of a Recurrent Neural Network (RNN)
when processing a minibatch of N input sequences
X = {xn}Nn=1. This proxy is particularly insight-
ful for examining the internal dynamics and depen-
dencies of the hidden states across different time
steps or sequences. Given the hidden state matrix
H(X) for a minibatch, we first compute the covari-

ance matrix C as follows:

C = (H −MH)(H −MH)T , (6)

where MH is the mean matrix derived from the
hidden states, with its elements defined by:

(MH)ij =
1

N

N∑

n=1

Hin, (7)

indicating the average activation across the mini-
batch for each hidden unit. This step captures the
variance and covariance of the hidden states, high-
lighting the variability and correlation of activa-
tions in response to the input batch. Subsequently,
to normalize and interpret the covariance values,
we calculate the Pearson product-moment correla-
tion coefficients matrix R as:

Rij =
Cij√
CiiCjj

, (8)

which standardizes the covariance matrix into a
correlation matrix R, providing a normalized mea-
sure of linear dependencies between pairs of hidden
units.

Building upon the framework established by
Mellor et al. (2021), the final proxy S(H) is de-
rived using the Kullback–Leibler divergence from
the eigenvalues of the kernel of R, computed as:

S(H) = −
N∑

n=1

(
log(λn + k) +

1

λn + k

)
, (9)

where λ1, . . . , λN are the eigenvalues of R, and
k = 10−5 is a small constant added to stabilize the
logarithm and reciprocal operations.

8610

Note that Hidden Covariance is designed for
RNN architectures, which means it is not work-
ing for Transformer-based networks. That is why
we don not report the performance of Hidden Co-
variance on FlexiBERT and GPT-2 benchmark.
Confidence The Confidence proxy (Serianni and
Kalita, 2023) quantifies the average maximum at-
tention (or activation) that a neural network layer,
specifically an attention mechanism, directs to-
wards the most significant features or tokens for a
set of inputs X . This is mathematically articulated
as:

S =
1

N

N∑

n=1

max(Att(h, xn)) (10)

In this expression, S symbolizes the average maxi-
mal attention score across all instances within the
minibatch, where Att(h, xn) signifies the attention
scores calculated for the n-th input by the function
h.
Softmax Confidence Softmax Confidence (Seri-
anni and Kalita, 2023) broadens the notion of Con-
fidence to scenarios where softmax scores, derived
from the softmax function σ, are utilized to gauge
the network’s prediction certainty. The formulation
is given by:

S =
1

N

N∑

n=1

max(σ(h, xn)) (11)

Here, σ(h, xn) computes the softmax probabilities
for the outputs related to the n-th input, and the
max operation selects the highest probability, de-
noting the model’s most confident prediction for
each input. The mean of these maxima across the
minibatch offers a measure of the overall prediction
confidence, valuable for assessing the certainty of
classification decisions by the model.
Importance The Importance proxy (Serianni and
Kalita, 2023) assesses the sensitivity of the cost
function C(X) with respect to the attention mech-
anism Atth(X) for a given input set X . This sen-
sitivity analysis is crucial for understanding the
impact of changes in attention weights on the over-
all performance or cost of the neural network. The
Importance proxy is mathematically represented
as:

S =

∣∣∣∣
∂C(X)

∂Atth(X)

∣∣∣∣ (12)

This equation calculates the absolute value of the
derivative of the cost function relative to the at-
tention weights, quantifying the "importance" of

the attention mechanism in the network’s decision-
making process. A higher value suggests that minor
adjustments to the attention weights could lead to
significant changes in the cost, underscoring the
critical areas of the input that the network focuses
on.
SNIP (Single-shot Network Pruning) (Lee et al.,
2019) introduces a pruning criterion that can be
applied early in the training process, even before
the actual training commences. It is predicated on
the sensitivity of the loss function L with respect to
each parameter θ, modulated by the parameter val-
ues themselves. The SNIP criterion is formulated
as:

S(θ) =

∣∣∣∣
∂L
∂θ

⊙ θ

∣∣∣∣ (13)

where the operation ⊙ denotes the element-wise
product. This expression evaluates the absolute
value of the gradient of the loss function with re-
spect to the parameters, weighted by the parame-
ters themselves. This criterion aids in identifying
parameters that have minimal impact on the loss
function, allowing for their pruning to streamline
the model architecture without significantly com-
promising performance.
GraSP (Gradient Signal Preservation) (Wang
et al., 2020) introduces a pruning methodology
aimed at preserving the gradient flow throughout
the network’s architecture. This strategy identifies
and eliminates parameters that have the least effect
on the gradient flow, thus minimizing their impact
on the network’s ability to learn. The GraSP crite-
rion is quantitatively defined by the equation:

S(θ) = −
(
H

∂L
∂θ

)
⊙ θ (14)

In this formulation, S(θ) denotes the pruning score
assigned to each parameter θ, reflecting its signifi-
cance in maintaining effective gradient flow within
the network. The term H represents the Hessian
matrix, which consists of the second-order deriva-
tives of the loss function L with respect to the pa-
rameters, while ∂L

∂θ is the gradient of the loss with
respect to the parameters. The operation ⊙ signi-
fies element-wise multiplication, and the negative
sign indicates that parameters which contribute neg-
atively to the gradient flow—and therefore poten-
tially hinder learning—are prioritized for removal.

The principal insight of GraSP is its emphasis on
the Hessian-gradient product, which offers a mea-
sure of the influence of parameter changes on the

8611

Table 13: Comparison of LPZero with its counterparts.

Description AutoML-
Zero (2020)

EZNAS (2022) Auto-Prox (2024) EMQ (2023b) LPZero

Task Machine Learning
Program Discov-
ery

Zero-shot NAS Zero-shot NAS Mixed-precision
Quantization

Symbolic Expres-
sion

Targets - CNN ViT CNN LLMs
Params - 0.3-1.5MB 2-25MB 13.4-44.6MB 7B
Retrain No Yes Yes Yes No
Strategy Evolutionary Algo-

rithm
Distributed Evolu-
tionary Algorithm
in Python (DEAP)

Elitism-Preserve
Strategy

Diversity Prompt-
ing Selection

Rule-based Prun-
ing Strategy

Objective Find machine
learning algo-
rithms from
scratch

Find optimal proxy
that can measure
the convolution-
based architectures

Find the optimal
proxy that can mea-
sure the vit-based
architectures

Find the optimal
metric that can bet-
ter rank candidate
bit-width configu-
rations

Find the optimal
symbolic equation
that can predict
the performance of
LLMs

curvature of the loss landscape and, subsequently,
on the dynamics of model training. By focusing on
preserving parameters critical for the integrity of
gradient flow, GraSP enables network pruning in a
manner that is less likely to degrade performance.

In this paper, we have chosen not to incorporate
the Hessian Matrix as part of our analysis due to
its computationally intensive nature. However, it
is worth noting that excluding considerations of
computational load, the inclusion of the Hessian
Matrix could potentially enhance performance sig-
nificantly.
LogSynflow (Cavagnero et al., 2023) introduces a
nuanced variation to the conventional pruning crite-
ria by applying a logarithmic transformation to the
gradients’ magnitude. This adjustment is intended
to enhance the pruning strategy by ensuring a more
nuanced evaluation of parameter importance, espe-
cially for those with small but significant gradients.
The LogSynflow criterion is mathematically ex-
pressed as:

S(θ) = θ ·
∣∣∣∣log

∣∣∣∣
∂L
∂θ

∣∣∣∣
∣∣∣∣ (15)

In this equation, S(θ) represents the score assigned
to each parameter θ based on its importance, where
∂L
∂θ denotes the gradient of the loss function L with
respect to the parameters. The use of the absolute
value of the logarithm of the gradient magnitude
aims to highlight the significance of parameters
that might otherwise be overlooked due to their rel-
atively small gradient values. By multiplying these
logarithmic values by the parameters themselves,
LogSynflow prioritizes the retention of parameters
that are integral to the network’s ability to learn,

thereby facilitating a more informed pruning pro-
cess that minimizes the loss of critical information.

I Additional Experiments on more
Language Models

We add more details over whether the method
has been retrained, particularly regarding the ad-
ditional post-training cost used in these methods.
To clarify these disparities, we present Table 14
and 15 to include descriptions of the additional
post-training costs. Several of the baseline meth-
ods (SliceGPT (Ashkboos et al., 2024), LLM-
Pruner (Ma et al., 2023), FLAP (An et al., 2024),
and Shortened LLaMA (Kim et al., 2024)) include
additional post-training steps that enhance their per-
formance. These structured pruning methods have
incorporated additional post-training, giving them
a potential advantage in performance. Below are
the details:

• SliceGPT (Ashkboos et al., 2024): Uses the
standard PEFT method LoRA to recover the
performance of fine-tuning (termed RFT in
SliceGPT) after structured pruning. Specifi-
cally, SliceGPT employed 8,000 samples from
Alpaca for fine-tuning, which costs around
five GPU hours.

• LLM-Pruner (Ma et al., 2023): Provided
LoRA post-trained results. Even for LLM-
Pruner, our method achieves better perfor-
mance than it.

• FLAP (An et al., 2024): Did not incorpo-
rate LoRA for post-training after pruning but
proposed a new method called Baseline Bias

8612

Method Params. Cost BoolQ PIQA HellaSwag WinoGrande Arc-e Arc-c OBQA Avg.

LLaMA-1 6.7B - 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25
SliceGPT (Ashkboos et al., 2024) 5.0B ~5 - 66.87 63.38 54.16 58.46 34.56 - 55.49
LLM-Pruner (Ma et al., 2023) 5.4B 3 69.54 76.44 68.11 65.11 63.43 37.88 40.00 59.79
FLAP (An et al., 2024) 5.5B ~1 69.63 76.82 71.20 68.35 69.91 39.25 39.40 62.08
Shortened LLaMA (Kim et al., 2024) 5.5B 2,688 72.70 75.70 70.40 63.60 69.50 40.19 41.20 61.89
LLaMA-NAS (Sarah et al., 2024) 5.0B - - - - 63.00 67.2 40.60 - 56.93
SLEB (Song et al., 2024) 5.5B - - 73.07 58.96 62.47 56.48 33.02 - 56.80
LPZero (Ours) 5.7B - 62.17 74.81 52.65 65.43 74.62 57.42 62.17 64.18

Table 14: A comparative analysis of LLaMA-1 based pruning methodologies, including their respective parameters,
additional post-training computational costs (measured in GPU hours), and performance metrics across various
benchmarks.

Params. Cost PIQA WinoGrande Arc-c Arc-e Avg.

LLaMA-2 7B - 78.80 69.06 41.89 74.58 66.08
LLM-Pruner (Ma et al., 2023)(30%) 4.9B 3 71.81 54.06 30.30 63.42 54.89
SliceGPT (Ashkboos et al., 2024)(20%) 5.6B 1 69.42 65.59 37.54 71.84 61.09
OSP (Gao et al., 2024)(30%) 4.9B 2.7 75.41 61.60 35.58 66.31 61.10
LLaMA-NAS (Sarah et al., 2024) 5B - - 63.00 40.60 67.2 56.93
Wanda 2:4 (Sun et al., 2024) - - 70.84 62.27 31.97 57.58 55.65
SLEB (Song et al., 2024) 5.5B - 73.07 58.96 33.02 56.48 55.38
LPZero (Ours) 5.7B 5.7B - 72.69 57.14 57.34 75.04 65.55

Table 15: A comparative analysis of LLaMA-2 based pruning methodologies, detailing their respective parameters,
the additional post-training computational costs (measured in GPU hours), and their performance metrics across
various benchmarks.

Compensation, serving a function similar to
LoRA fine-tuning. From the paper of FLAP,
we find that they only provide the data uti-
lized in the pruning process, which is 1,024
samples with around one GPU hour.

• Shortened LLaMA (Kim et al., 2024): Incor-
porated a tedious post-training process after
pruning, with 2,688 GPU hours to get the final
model.

Similar to LoNAS (Munoz et al., 2024), our
method has no additional post-training process us-
ing LoRA. Similar to LoNAS, LoRA is utilized for
creating the supernet. Our results are more com-
petitive when considering only those methods that
do not involve additional post-training costs. We
will clarify the differences of these methods in the
revision. We highlight (in bold) the highest score
for each task when additional post-training cost
was not involved.

Additionally, we present the results on LLaMA-
2 on Table 15. Specifically, we further investigated
the recent published papers (including OSP (Gao
et al., 2024), LLaMA-NAS (Sarah et al., 2024),
Wanda 2:4 (Sun et al., 2024)) about structured prun-
ing in the following table. We list their performance
as well as their additional post-training cost. Our

LPZero can achieve competitive performance for
LLaMA-2 as base model. We highlight (in bold)
the highest score for each task when additional
post-training cost was not involved.

J Comparison of LPZero with Previous
Automatic Methods

We compare our proposed method, LPZero, with
previous automatic methods for proxy searching,
including AutoML-Zero (Real et al., 2020), EZ-
NAS (Akhauri et al., 2022), Auto-Prox (Wei et al.,
2024), and EMQ (Dong et al., 2023b). The com-
parison is presented in Table 13, which highlights
the key differences and improvements of LPZero
over its counterparts.

The table compares various aspects of these
methods, such as the task they address, the tar-
get models they optimize, the number of param-
eters in the target models, whether retraining is
required, the optimization strategy employed, and
the objective of each method. LPZero stands out
from the other methods in several ways. First, it fo-
cuses on optimizing large language models (LLMs)
with up to 7 billion parameters, which is signifi-
cantly larger than the target models of other meth-
ods. Second, LPZero does not require retraining
the model, which can be computationally expen-

8613

sive and time-consuming. Instead, it employs a
novel rule based pruning strategy to find the op-
timal symbolic equation that can predict the per-
formance of LLMs. In contrast, AutoML-Zero
aims to discover machine learning algorithms from
scratch, while EZNAS (Akhauri et al., 2022) and
Auto-Prox (Wei et al., 2024) focus on neural ar-
chitecture search (NAS) for convolutional neural
networks (CNNs) and vision transformers (ViTs),
respectively. EMQ (Dong et al., 2023b) tackles the
problem of mixed-precision quantization (Lin et al.,
2024) for CNNs. By providing this comparative
analysis, we highlight the unique contributions and
advantages of LPZero in the context of automatic
machine learning optimization methods, particu-
larly its ability to handle large-scale models and its
efficient optimization strategy that eliminates the
need for retraining. Future work could explore the
integration of LPZero with a variety of AutoML
techniques (Dong et al., 2023b,a, 2024; Wei et al.,
2024; Li et al., 2024d,c) to enhance model selection
and hyperparameter tuning. Additionally, combin-
ing LPZero with distillation methods (Li and Jin,
2022; Li et al., 2024b; Li, 2022; Xiaolong et al.,
2022; Li et al., 2024a) could lead to more efficient
model compression while maintaining accuracy. In-
corporating quantization techniques (Frantar et al.,
2022; Xiao et al., 2022; Du et al., 2024) may fur-
ther optimize model inference by reducing size and
computational demands.

8614

