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Abstract

Diffusion models exhibit promising capacity
for generating high-quality text. However, ow-
ing to the curved nature of the generation path,
they necessitate traversing numerous steps to
guarantee high text quality. In this paper, we
propose an efficient model FMSeq!, which
utilizes flow matching to straighten the gen-
eration path, thereby enabling fast sampling
for diffusion-based seq2seq text generation.
Specifically, we construct transport flow only
on the target sequences to adapt the diffusion-
based model to flow matching. Furthermore,
we explore different settings and identify target-
parameterization, self-conditioning, and time-
difference as three effective techniques to im-
prove the generation quality under a few steps.
Experiments on four popular tasks demonstrate
that FMSeq generates texts of comparable qual-
ity to the SOTA diffusion-based DiffuSeq in
just 10 steps, achieving a 200-fold speedup.

1 Introduction

Sequence-to-sequence (seq2seq) text genera-
tion (Wu et al., 2016; Sutskever et al., 2014; Bah-
danau et al., 2014) is a fundamental setting in
NLP, encompassing a wide range of practical down-
stream tasks including machine translation (Bah-
danau et al., 2014; Wu et al., 2016), text summa-
rization (Rush et al., 2015; Nallapati et al., 2016),
and conversational modeling (Shao et al., 2017).
Existing text generation methods predominantly
utilize the autoregressive (AR) approach (Vaswani
et al., 2017; Radford et al., 2019), which generates
target tokens one by one. While this method cap-
tures sequential dependencies and hence produces
high-quality texts, it is time-consuming. There-
fore, non-autoregressive (NAR) generation meth-
ods have been proposed. These methods generate
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Figure 1: BLEU Scores of different models for the
paraphrase task on the QQP dataset. Our FMSeq beats
all the models when using a single sampling step and
achieves comparable performance to DiffuSeq (2000
steps) with only 10 steps.

all tokens in parallel, significantly reducing infer-
ence latency (Gu et al., 2017, 2019). However,
NAR models generally underperform AR ones on
text generation accuracy due to the issue of condi-
tional total correlation (Huang et al., 2022).

More recently, a new NAR generative paradigm,
diffusion models (Ho et al., 2020; Song et al.,
2020) has exhibited remarkable generative per-
formance across various domains (Dhariwal and
Nichol, 2021; Rombach et al., 2022; Chen et al.,
2020; Hu et al., 2024b) and are increasingly gain-
ing recognition in the field of NLP (Li et al., 2022;
Gong et al., 2022). DiffuSeq (Gong et al., 2022)
represents a pioneering effort in leveraging diffu-
sion models for seq2seq text generation, demon-
strating that diffusion model-based methods can
achieve generation performance on par with AR
models owing to their robust modeling capabilities.

However, as a class of NAR methods, diffusion
models’ sampling speed is not fast. To achieve
a higher BLEU score than GPT2-large (Radford
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et al., 2019), DiffuSeq requires 1000 sampling
steps, which makes the number of tokens gener-
ated per second only half of GPT2-large. A re-
cently proposed method, flow matching (Lipman
et al., 2022; Liu et al., 2022) tries to speed up the
sampling via straightening the generation path and
has greatly improved the generation efficiency of
diffusion-based models across multiple fields, in-
cluding image generation (Lipman et al., 2022; Hu
et al., 2024c; Dao et al., 2023), point cloud gen-
eration (Wu et al., 2023), audio synthesis (Guo
et al., 2023) and beyond (Hu et al., 2023; Gui et al.,
2024). However, in the field of text generation,
when the standard diffusion process of DiffuSeq is
directly replaced with flow matching, the quality of
the generated texts significantly declines, rendering
the flow matching-based model unusable, which is
evidenced in Hu et al. (2024a).

In this paper, we find that the root of the above is-
sue is the objective of recovering source sequences,
which is not suitable for flow matching (see Section
3). Therefore, we eliminate this objective and con-
struct transport flow only on the target sequences.
Then we design a combined loss to fit the trans-
port flow and simultaneously keep the trainable
embedding from collapsing. To further improve
the generation quality of FMSeq with a few steps,
we explore different settings and identify target-
parameterization, self-conditioning (Chen et al.,
2022), and time-difference as three effective tech-
niques. Experiments on four popular tasks demon-
strate that FMSeq enables faster sampling com-
pared to other models while generating texts of
comparable quality. As shown in Fig. 1, in the
paraphrase task FMSeq beats all the models on
BLEU score when using a single sampling step and
achieves comparable results with DiffuSeq (2000
steps) with only 10 steps.

In summary, our work makes the following con-
tributions: (a) we utilize flow matching in seq2seq
text generation and propose an efficient generative
model FMSeq; (b) we explore different settings
and propose three simple but effective techniques
to further enhance the quality of generated texts
with only a few sampling steps; (c) experiments
show that FMSeq generates texts of comparable
quality to DiffuSeq in just 10 steps, achieving a
200-fold speedup.

2 Related Work

2.1 Diffusion Models for Text Generation

The primary difficulty in integrating diffusion mod-
els into NLP lies in the discrete nature of text,
which contrasts with the continuous space in which
diffusion models operate. There are two primary
approaches to tackle this issue: discrete diffusion
models (Hoogeboom et al., 2021; Austin et al.,
2021) and embedding diffusion models (Li et al.,
2022). Discrete diffusion models generalize the dif-
fusion process to a discrete state space. In the for-
ward process, each token has a probability of being
corrupted to an absorbing or random token, and the
reverse process refines the noisy token sequences.
In contrast, embedding diffusion models operate
within a continuous embedding space. These em-
beddings are trained end-to-end, as opposed to be-
ing inherited from pre-trained language models,
resulting in improved generation performance (Li
et al., 2022; Gong et al., 2022). Compared to dis-
crete diffusion models, embedding diffusion mod-
els leverage the benefits arising from advancements
in continuous diffusion techniques within the realm
of image processing, thereby enhancing controlla-
bility and flexibility (Strudel et al., 2022). Hence,
we also operate on learnable continuous embedding
space.

2.2 Flow Matching for Text Generation

To accelerate the sampling speed of diffusion mod-
els, flow matching (Lipman et al., 2022; Liu et al.,
2022) reformulates the standard diffusion process.
Instead of diffusing the data distribution through ei-
ther SDE or intricate ODE (Song et al., 2023), flow
matching transforms noise distribution into data
distribution with probability flow that is as straight
as possible: the transformation path follows linear
interpolation between the data and noise. With a
straighter generation path, flow matching requires
only a few Euler discretization steps to produce a
data sample of satisfactory quality.

Flow matching has been utilized in multiple
fields to improve the generation efficiency of
diffusion-based models (Lipman et al., 2022; Wu
et al., 2023; Guo et al., 2023) and FlowSeq (Hu
et al., 2024a) is the first work to integrate it into
text generation. Building upon the foundation laid
by DiffuSeq (Gong et al., 2022), FlowSeq intro-
duces a combination of velocity estimation loss on
both the source and target sequences and anchor
loss (Gao et al., 2022a) to make flow matching-
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based models generate readable texts. Although
FlowSeq requires only a single step to generate
texts, the quality of generation on some tasks is
much lower than DiffuSeq, e.g., paraphrase (14.30
BLEU vs 24.13 BLEU). Moreover, when we in-
crease the number of generation steps to 10, the
quality of generation becomes worse unexpectedly
(5.00 BLEU). Different from FlowSeq, we propose
to construct transport flow only on the target se-
quences and the final obtained model FMSeq can
generate texts of comparable quality to DiffuSeq
on all the tasks and support step-quality trade-off.

3 Preliminary and Analyses

3.1 Preliminary

Diffusion models consist of two processes: in the
forward process they incrementally introduce noise
into the data using Gaussian perturbations and in
the reverse process they generate samples by re-
moving the noise through iterative denoising steps.
Denoting the data distribution as pgaa(2), diffusion
models start by diffusing pga(z) with a stochas-
tic differential equation (SDE) (Song et al., 2020;
Karras et al., 2022):

dz; = (2, t)dt + o(t)dey, (1)

where ¢t € [0,7], T > 0 is a fixed constant, y(-,-)
and o(-) are the drift and diffusion coefficients
respectively, and {& };c|o,r) denotes the standard
Brownian motion. Let the distribution of z; be de-
noted as p;(z) and a generation path in the reverse
process can be solved with the reverse form of 1
or Probability Flow ordinary differential equation
(PFODE) (Song et al., 2020):

1
dz; = |p(z¢, t) — ia(t)QVIngt(zt) dt. (2)

The generation path of both SDE and PFODE is
highly curved, and hence the model necessitates
traversing numerous steps to mitigate path distor-
tion and ensure the quality of generated data.

Flow matching tries to accelerate sampling via
straightening the generation path. It reformulates
the standard diffusion process and exploits linear
interpolation to model the probability flow between
noise distribution and data distribution:

z; = (1 —t)zo + tz1, 3)

where ¢ € [0,1], 2o ~ Pdaa(2z) and z; ~ N(0,I).
The generation path follows the ODE dz; = (z; —
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=
o
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Figure 2: Estimated velocity on three parts of the input
sequences. On the target sequences the estimation is
near to zero, which is far from the true velocity.

zo)dt, which is non-causal since updating z; re-
quires the information of the destination zy. By
setting the velocity field v(z;, t) to drive the flow
to follow the direction (z; — zg) as much as pos-
sible, the linear path follows a new ODE flow
dz; = v(z,t)dt, eliminating the dependency on
z1 and rendering it causal.

3.2 Problem Statement

In sequence-to-sequence text generation, there is a
source sequence w” = {w{, ..., wk }, and a target
sequence w¥ = {w?, ..., wy}. The objective is to
generate w¥ given w”.

3.3 Analyses

DiffuSeq models this problem with a classifier-free
diffusion process and learns the joint distribution
of w® and w¥ in its implementation”. In the for-
ward process, only w¥ is noised and w* remains
unchanged, and so the model only learns to easily
repeat the input w”, while the learning of target
sequences is much more difficult, which requires
estimating the distribution of wY.

When we apply this setting to flow matching, the
model needs to estimate the velocity of w* and w¥.
The velocity of w” is zero since it just needs to stay
on the spot but the velocity of w¥ is nonzero and
difficult to learn, which transforms the noise distri-
bution into the data distribution conditioned on w”.
The estimation of zero velocity makes the model
degenerate and reduces the model’s representation
capacity. In Fig. 2, we probe the estimated veloc-
ity when the target sequences are still noisy and
observe that it is very close to the true velocity on
the source sequences and the padding with simple
patterns, but on the target sequences with complex
patterns, it is still close to zero, which is far from
the true velocity. Therefore, the objective of source

“https://github.com/Shark-NLP/DiffuSeq.git
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sequence recovery is not suitable for flow match-
ing.

4 Method

We propose FMSeq to utilize flow matching into
seq2seq text generation, the workflow of which is
shown in Fig. 3.

4.1 FMSeq

We employ an encoder-only Transformer (Vaswani
et al., 2017) to model the conditional distribution
p(w¥|w”) and the sample is w* = w*®Y, je,
the concatenation of w”* and w¥Y. Denoting the
embedding function as EMB(-) and the embedding
matrix ¢, we operate on zg = EMB(w?) and the
generated embedding of target part y is rounded
into discrete tokens by multiplying ¢” .

In contrast to DiffuSeq and FlowSeq, the trans-
port flow is only constructed on yo = EMB(wY):

yt = (1 —t)yo + ty1, 4)

where t € [0,1] and y; ~ N(0,I). With such a
flow, yo can be recovered starting from y; using the
ODE dy; = v;dt, where vy = y| — yg is constant.
We encourage the model to estimate the velocity
according to z; = X @ y, where the condition
x9 = EMB(w”) remains unchanged. Denote the
model as ug and then the flow matching loss is:

Lot = By (xoyo | [00(26, ) = (y1=y0) |2 (5)

Flow matching loss backpropagates gradients
to both the embedding matrix and the model pa-
rameters, which can easily cause the embedding
matrix to collapse since when all word vectors are
the same, the data distribution becomes a Dirac dis-
tribution that is very easy to model. Therefore, we
additionally introduce a rounding loss to regularize
the embedding learning. (Li et al., 2022):

Lr = —E4, log py(w*|2o). (6)

The rounding loss is minimal when all the word
embeddings are orthogonal to each other, and hence
this approach can effectively alleviate embedding
collapse. The final end-to-end training loss is:

LeE = Et,yl,(xo,yo)mu@(ztvt) - (YI - y0)H2

— log py(w|z0)].
(7N

4.2 Training and Sampling Methods

Parameterization. A variant of v-parameterized
flow matching is yo-parameterized, and there is
no essential difference between them since they
can be obtained from each other linearly (yo =
y: — tvy). We test both variants and find that the
y-parameterized model performs better, which is
adopted in the experiments.

Self-Conditioning. Self-conditioning (SED) is
first proposed in Analog Bits (Chen et al., 2022) to
improve the sample quality of Bit diffusion mod-
els, and the following research finds that it also
yields improved results for continuous diffusion
models. We find that it is also helpful to FMSeq.
In the yg-parameterized case, we directly take the
estimated y as the self-condition and add another
input z. = xg @ y into the model. The approxima-
tion error of ¥ always exists, especially in the early
stages of training, and hence we skip the estimation
and set z. = xg ¢ 0 with some probability (e.g.,
50%), which is equivalent to the model without
self-condition and can also help to remain compu-
tationally efficient.

Time Difference. It is worth noting that when ¢ is
close to zero, the noisy y( can be perfectly rounded
to w¥, so the model cannot learn enough effective
information at small time steps. As shown in Fig. 4,
we can see that with initialized embedding, the
word error rate (wer) after rounding is always zero
until ¢ = 0.5. Even with the learned embedding,
wer starts to be greater than zero after ¢ = 0.16.
This results in that during sampling, the forward
evaluations at small ¢ are of little use. To tackle
this issue, we propose a time difference mechanism:
replace the input ¢ with ¢t + At to fully utilize the
ability of the model at large time steps.

Putting it together. We summarize the training
and sampling process of FMSeq in Algorithm 1
and 2.

S Experiments

5.1 Experimental Setup

Tasks and Datasets. Seq2seq text generation
covers a wide range of tasks, and we choose four
typical and popular tasks:

* Paraphrase aims to generate an alternative sur-
face form in the same language to express the
same semantic content. We adopt the widely
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Figure 3: Workflow of FMSeq. We utilize embedding to map the discrete token space into a continuous space. The
forward process diffuses the target embedding along a linear path, and the model fits the velocity of the target part
conditioned on clean source embedding and noisy target embedding.
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Figure 4: Word error rate (WER) at different time steps
in the forward process. The lower the WER is, the closer
to lossless the rounded noisy embeddings are.

used QQP dataset 3, sourced from the commu-
nity question answering forum Quora, with
147K positive pairs.

* Question generation aims to generate ques-
tions given an answer as input. We use the
dataset Quasar-T (Dhingra et al., 2017) pre-
processed by (Gong et al., 2022), consisting
of 119k training samples and 10k testing sam-
ples.

* Open domain dialogue aims to generate in-
formative responses given a dialogue con-
text. We use Commonsense Conversation
Dataset (Zhou et al., 2018), which is extracted
from Reddit single-round dialogues, with over
3 million conversational pairs.

* Text simplification aims to revise the complex
text into sequences with simplified grammar
and word choice. We use the dataset proposed
by Jiang et al. (2020), which consists of 677K
complex-simple sentences with revision align-
ment.

3https://www.kaggle.com/c/quora-question-pairs

Algorithm 1 Training

1: repeat
2: (w®,wY) ~ pgaw, padded and embedded into (%o, y0)
3: t ~ Uniform([0, 1])
4: y1 ~N(0,1I)
5: 1 ~ Uniform([0, 1])
6: zr =x0 @ [(1 —1)yo + ty1]
7.y =ug(z, %0 B 0,t)ifr > 0.5else 0
8: Take gradient descent step on

(Ilua(ze, %0 & 9.1) — yol?) — log ps (W 20)
9: until converged

Algorithm 2 Sampling

Input: N steps, xo, y1 ~ N (0, 1), time difference At
Yy =w(xo®y1,x0®0,1),y: =y1,t' =1
for t = %,,% do

V=3 — ¥t =t

¥ =ug(x0 Dy, %0 By, min(l,t + At))
: end for
: Output: y

AR~

Baselines. We compare FMSeq to two groups of
baselines, covering both autoregressive (AR) and
non-autoregressive (NAR) architectures. The first
group of methods adopts encoder-decoder Trans-
former (Vaswani et al., 2017) which is well-studied
for seq2seq tasks and another decoder-only GPT2-
large (Radford et al., 2019) which is a finetuned
pre-trained language model (PLM) demonstrating
great success in almost all seq2seq tasks. For the
NAR group of baselines, we consider three iter-
ative NAR models: Levenshtein distance-based
LevT (Gu et al., 2019), diffusion model-based Dif-
fuSeq (Gong et al., 2022) and a recently proposed
flow matching-based FlowSeq (Hu et al., 2024a).

Evaluation. We evaluate the generated se-
quences from two aspects: quality and diversity. To
evaluate quality, standard BLEU (Papineni et al.,
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2002) and ROUGE (Lin, 2004) are utilized for
string-based similarity and BERTScore (Zhang
et al., 2019) for sentence-based similarity. As for
diversity, we adopt widely used unique unigram
(dist-1).

Implementation Details. Our model adopts the
same architecture as DiffuSeq and FlowSeq, which
is based on the 12 layers of encoder-only Trans-
former with 12 attention heads. The time step em-
bedding is incorporated in a similar way to the
position embedding. The maximum length of z is
128, with embedding dimension d = 128, diffu-
sion steps 7' = 2,000. We train the model for the
same number of iterations with a smaller batch size
of 1024.

To improve the quality of generation, we adopt
the widely used Minimum Bayes Risk (MBR) de-
coding strategy (Koehn, 2004). We first generate 10
candidate samples from different random noise and
select the best output sequence that achieves the
minimum expected risk under the negative BLEU
score.

5.2 Main Results

As presented in Table 1, it can be concluded that
FMSeq achieves comparable or even higher gen-
eration quality than other baselines with only 10
sampling steps. Furthermore, FMSeq outperforms
several baselines on three of the four tasks, even
when the number of sampling steps is reduced to
one.

As we can see from Table 1, compared to Dif-
fuSeq (2000 steps), FMSeq (10 steps) outperforms
in at least one quality metric across all four tasks.
The performance gap between them across all tasks
is small. It is worth noting that in the question gen-
eration task, FMSeq (10 steps) even achieves better
overall performance than DiffuSeq (2000 steps).
These results demonstrate that FMSeq achieves a
200-fold speedup to DiffuSeq. Compared to the
conventional NAR model LevT, FMSeq (10 steps)
significantly outperforms it, achieving relative im-
provements of over 50% in both the BLEU score
for the question generation task and the ROUGE-L
score for the open-domain dialogue task. These
results highlight the substantial potential of flow-
matching-based NAR models. Furthermore, even
when compared with AR models, FMSeq (10 steps)
still delivers comparable performance and achieves
better overall performance in question generation
and text simplification tasks.

When we focus on single step generation, it can
be seen that FMSeq is comparable to FlowSeq
(wins on question generation and paraphrase tasks,
but loses on open-domain dialogue and text sim-
plification tasks). Compared to other baselines,
FMSeq (1 step) still outperforms NAR-LevT in
question generation and text simplification tasks
(BLEU and R-L).

Generation diversity is an additional advantage
of the diffusion-based model, and from the value
of dist-1, we can see that FMSeq, based on flow
matching, inherits this. We further demonstrate this
point with some generated samples in Table 2.

5.3 Sampling Steps vs Generation Quality

We further study the generation quality of DiffuSeq,
FlowSeq and FMSeq with different sampling steps,
and the results in the paraphrase task are shown in
Table 3. We can see that even when the number of
steps is increased to 100, the generation quality of
DiffuSeq is still very poor. It is worth noting that
the generation quality of FlowSeq inconsistently
decreases when the sampling steps increase, the
root of which is that its proposed anchor loss en-
courages the model to infer the original dataset by
a single step and more steps lead to error accumu-
lation. Among these models, FMSeq is the only
model to support efficiency-quality trade-off with
a few steps.

5.4 Ablation Study

Parameterization and Self-Conditiong. Table
4 shows the effectiveness of yg parameterization
and the self-conditioning mechanism. Across
all evaluated tasks, the best setting is ypo-
parameterization with self-conditioning, and alter-
ations to v-parameterization or the removal of self-
conditioning result in a degradation in generation
quality, particularly pronounced in the paraphrase
task.

Time difference. We vary the time difference pa-
rameter At from 0.0 to 1.0 linearly and At = 0.0
means that we eliminate this mechanism in the
sampling process. The generation quality for dif-
ferent values of At is shown in Table 5 and we
can see that when At = 0.0, the performance on
all the metrics is almost the worst. The generation
quality reaches the best around At = 0.5, which
is consistent with the observation in section 4.2.
The initialized random embedding makes the noisy
y+ be rounded into the original w¥ losslessly until
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Tasks Methods | NFE| | BLEUT R-Lt Scoret | dist-11 | Len
Transformer-base | - 0.1663 0.3441 0.6307 0.9309 10.3
GPT2-large FT - 0.1110 0.3215 0.6346 0.9670 10.0

Question NAR-LevT - 0.0930 0.2893 0.5491 0.8914 6.9
Generation DiffuSeq 2000 0.1731 (2) 0.3665(3) 0.6123(4) | 0.9056 (3) | 11.5
FMSeq (Ours) 10 0.1810 (1) 0.3669 (2) 0.6189 (3) | 0.8966 (4) | 12.8
FlowSeq 1 0.1620 0.3700 0.5730 0.8330 11.8
FMSeq (Ours) 1 0.1630 0.3544 0.5954 0.8951 12.3
Transformer-base | - 0.2722 0.5748 0.8341 0.9748 11.2

GPT2-large FT - 0.2059 0.5415 0.8363 0.9819 9.5

Paraphrase NAR-LevT - 0.2268 0.5795 0.8344 0.9790 8.9
p DiffuSeq 2000 0.2413 (3) 0.5880 (1) 0.8365(1) | 0.9807 (2) | 11.2
FMSeq (Ours) 10 0.2430 (2) 0.5514(4) 0.8115(5) | 0.9670(5) | 11.8
FlowSeq 1 0.1430 0.4610 0.6690 0.8620 11.9

FMSeq (Ours) 1 0.2150 0.5333 0.7468 0.9244 94
Transformer-base | - 0.0189 0.1039 0.4781 0.7493 19.5
GPT2-large FT - 0.0125 0.1002 0.5293 0.9244 16.8

ggfr?ain NAR-LevT - 0.0158 0.0550 0.4760 0.9726 4.1
Dialoeue DiffuSeq 2000 0.0139 (3) 0.1056(3) 0.5131 (2) | 0.9467 (3) | 13.6
& FMSeq (Ours) 10 0.0136 (4) 0.1113(2) 0.4786 (3) | 0.9065 (5) | 21.5
FlowSeq 1 0.0110 0.1190 0.3450 0.7090 30.7

FMSeq (Ours) 1 0.0011 0.0495 0.3157 0.9991 2.75
Transformer-base | - 0.2693 0.4907 0.7381 0.8886 18.5
GPT2-large FT - 0.2693 0.5111 0.7882 0.9464 154

Text NAR-LevT - 0.2052 0.4402 0.7254 0.9715 8.3
Simplification ~ DiffuSeq 2000 0.3622 (1) 0.5849 (1) 0.8126(1) | 0.9264 (4) | 17.7
FMSeq (Ours) 10 0.3190 (2) 0.5590(2) 0.7916 (2) | 0.9333(3) | 17.6

FlowSeq 1 0.2628 0.5130 0.7075 0.8897 17.3

FMSeq (Ours) 1 0.2270 0.4580 0.6636 0.8026 16.1

Table 1: The overall results of different methods on different seq2seq tasks. The first group of
methods is autoregressive and the second group is non-autoregressive, including classic LevT and
diffusion-based models. We rank the performance of DiffuSeq and FMSeq (10 steps) for ease of
comparison. NFE means the number of forward evaluations.

Statement: The Japanese yen is the official and only currency recognized in Japan.

Question: What is the Japanese currency?

GPT2-large FT

* What is the basic unit of currency for Japan?
* What is the Japanese currency

* What is the basic unit of currency for Japan?

NAR-LevT

* What is the basic unit of currency for Japan ?
* What is the basic unit of currency for Japan ?
* What is the basic unit of currency for Japan ?

DiffuSeq

* What is the Japanese currency

* Which country uses the “yen yen” in currency
* What is the basic unit of currency?

FMSeq

* What is the basic unit of currency for Japan?
* Which country uses the "yen" for currency

* What is the Japanese currency

Table 2: Sample outputs in Quasar-T test set, conditioned on the same x.

Steps 1 10 20 50 100
DiffuSeq 0/0/0.262 0/0/0.260 0/0/0.262 0/0/0.260 0/0.002/0.258
FlowSeq | 0.143/0.461/0.669  0.050/0.181/0.459  0.060/0.191/0.472  0.058/0.184/0.471  0.051/0.182/0.464
FMSeq 0.215/0.533/0.745  0.243/0.551/0.811  0.244/0.551/0.809  0.247/0.555/0.812  0.249/0.559/0.819

Table 3: Sampling Steps vs Generation Quality in the paraphrase task. BLEU?1/ R-L1/ Scoret are listed.
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Task Paraphrase Question Generation  Text Simplification
Yo-parameterization w/ SED 0.243/0.551/0.811 0.181/0.367/0.619 0.319/0.559/0.792
v-parameterization w/ SED 0.211/0.534/0.768 0.155/0.345/0.572 0.303/0.534/0.768
Yo-parameterization w/o SED | 0.215/0.523/0.779 0.178/0.359/0.606 0.309/0.545/0.775

Table 4: Ablation study of parameterization and self-conditioning. BLEU1/ R-L1/ Scoret are listed.

At 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

BLEUT | 0.2265 0.2316 0.2444 0.2438  0.2487 0.2485 0.2395 0.2354 0.2386 0.2385 0.2378
R-LT 0.5326 0.5413 0.5561 0.5521 0.5565 0.5594 0.5576 0.5527 0.5547 0.5534  0.5538
Scoret | 0.7975 0.8075 0.8140 0.8130 0.8150 0.8188 0.8155 0.8123 0.8118 0.8120 0.8114
dist-17 | 0.9646 09684 0.9705 0.9673 0.9697 0.9713 09702 0.9702 0.9706 0.9716 0.9671

Table 5: The generation quality with different time difference parameters in the paraphrase task.

t = 0.5, and so the model capacity is insufficient
at these small time steps. Since the objective of
the model is always to estimate velocity or target,
both of which are constant, we can fully utilize the
model at large time steps to improve the generation
quality. Note that the generation quality does not
keep increasing with increased At and a possible
reason is that the model tries to recover the tar-
get sequences only based on the source sequences
when ¢ is close to 1 and starts to refine the gener-
ated texts when ¢ is relatively small (y; cannot be
rounded losslessly).

5.5 Anisotropy of Embedding

= Paraphrase

Open domain dialogue
= Question generation
== Text simplification

Anisotropy of Embeddig
o o o o
o o o o
S B 2 2
& S & S

0.000 q

4K 5K 8K 14K
Training Steps

Figure 5: The anisotropy of embedding during training
in all the tasks. Low anisotropy means that all the token
embeddings are discriminative from each other.

To validate the effectiveness of rounding loss, we
calculate the anisotropy of embedding, which is
the mean of cosine similarity across all word
pairs (Gao et al., 2022b). The lower the anisotropy,
the better the embedding, making different words
more distinguishable from each other. We show
the change of embedding anisotropy during train-
ing in Fig. 5 and the result demonstrates that after
training, the anisotropy score in all these tasks is
near zero and the largest value is only around 0.025
(in paraphrase task). Therefore, the rounding loss
effectively alleviates embedding collapse.

5.6 Generation Path

The key factor for FMSeq’s superior performance is
that the generation path is straightened. We demon-
strate this by visualizing the generation paths of
FMSeq and DiffuSeq. Since a point on the path rep-
resents all the token embeddings of a sentence, and
these token embeddings are high-dimensional, we
employ t-SNE (Van der Maaten and Hinton, 2008)
to project them into a two-dimensional space, and
the result is shown in Fig. 6, confirming the effec-
tiveness of our proposed method.

e Starting Noise =~ —— Generation Path

FMSeq

Ending Data
DiffuSeq

Dimension 2

Dimension 1 Dimension 1

Figure 6: Differences between generation paths of FM-
Seq (ours) and DiffuSeq.

6 Conclusion

In this paper, we propose FMSeq, a novel seq2seq
text generation model based on flow matching. We
find that the objective of recovering the source se-
quences adopted in the diffusion-based model is
unsuitable to flow matching and construct transport
flow only on the target sequences. To fit the trans-
port flow and simultaneously keep the trainable
embedding from collapsing, we design a combined
loss. To further improve the generation quality
of FMSeq under a few steps, we explore different
settings and identify target-parameterization, self-
conditioning, and time-difference as three effective
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techniques. Experiments in four popular NLP tasks
demonstrate that FMSeq generates texts of compa-
rable quality to DiffuSeq in just 10 steps, achieving
a 200-fold speedup.

Limitations

Due to the random matching of the data and noise,
the occurrence of intersections among linear paths
is inevitable. The final learned velocity fields
rewire the individual trajectories passing through
the intersection points to avoid crossing, while also
inducing curvature in the generation path. To fur-
ther straighten the generation path and improve
the performance of the one-step model, rectifica-
tion (Liu et al., 2022) and other methods (Lee et al.,
2023) can be utilized in our work. Therefore, flow
matching-based models have the potential to out-
perform classic NAR models (Gu et al., 2019) on
both quality and speed.

From an ethical perspective, the generated sen-
tences may include inappropriate content that may
potentially necessitate additional review by human
inspectors.
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Appendix
A Inference Speed

running time (second/batch) inference speed (tokens/second)

FMSeq with 10 steps 1.05
FMSeq with 100 steps 7.58 923.89
DiffuSeq with 2000 steps 254.48 24.26

6481.32

Table 6: The running time and the inference speed of
FMSeq and DiffuSeq.

In diffusion models, the input and output sizes re-
main consistent at each inference step, making the
practical runtime nearly linear with the number of
forward evaluations (NFE). Since FMSeq uses the
same architecture as DiffuSeq (and FlowSeq), we
can conclude that FMSeq with 10 inference steps
achieves a 200-fold speedup compared to DiffuSeq
with 2000 steps, without the need to compare run-
ning time directly. To further address any concerns,
we test the practical running time and inference
speed of FMSeq with 10 steps and DiffuSeq with
2000 steps, and the result is shown in Table 6.

B Further Ablation Study

BLEUT R-L1 Bert-Scoret
FMSeq 0.243  0.551 0.811
w/o partial flow 0.067 0.332 0.601
w/o targte-parameterization  0.211 0.534 0.768
w/o SED 0215  0.523 0.779
w/o time-difference 0.227  0.533 0.798

Table 7: The effects of each part in FMSeq (NFE = 10
in the paraphrase task).

We conduct further ablation study to further re-
veal which part contributes most to the success of
FMSeq, and the results are shown in Table 7. The
results demonstrates that partial flow contributes
most to the success of FMSeq, which is introduced
in detail in section 3.3 and 4.1, while the other
three techniques including target-parameterization,
SED, and time-difference are introduced to further
enhance the performance of FMSeq. In another
words, partial flow makes flow matching work and
the other three techniques make flow matching
work better.

C Machine Translation Task

The detailed result can be found at https://
github.com/Peacer68/FMSeq.git.
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