
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 884–901
November 12-16, 2024 ©2024 Association for Computational Linguistics

RaFe: Ranking Feedback Improves Query Rewriting for RAG

Shengyu Mao♠, Yong Jiang♡∗, Boli Chen♡, Xiao Li♢, Peng Wang♠, Xinyu Wang♡,
Pengjun Xie♡, Fei Huang♡, Huajun Chen♠, Ningyu Zhang♠∗
♠Zhejiang University ♡Alibaba Group, ♢Nanjing University

{shengyu,zhangningyu}@zju.edu.cn , yongjiang.jy@alibaba-inc.com

Abstract
As Large Language Models (LLMs) and Re-
trieval Augmentation Generation (RAG) tech-
niques have evolved, query rewriting has been
widely incorporated into the RAG system for
downstream tasks like open-domain QA. Many
works have attempted to utilize small models
with reinforcement learning rather than costly
LLMs to improve query rewriting. However,
current methods require annotations (e.g., la-
beled relevant documents or downstream an-
swers) or predesigned rewards for feedback,
which lack generalization, and fail to utilize
signals tailored for query rewriting. In this
paper, we propose RaFe, a framework for
training query rewriting models free of anno-
tations. By leveraging a publicly available
reranker, RaFe provides feedback aligned well
with the rewriting objectives. Experimental re-
sults demonstrate that RaFe can obtain better
performance than baselines.

1 Introduction

Large Language Models (LLMs) have demon-
strated strong capacities to solve a variety of tasks
(Zhao et al., 2023). However, they still encounter
the challenges of hallucinations (Ji et al., 2023;
Zhang et al., 2023; Huang et al., 2023) or out-
dated knowledge (Yao et al., 2023; Zhang et al.,
2024). Recently, Retrieval Augmentation Gen-
eration (RAG) (Gao et al., 2023) has become
an important technology to enhance LLMs’ abil-
ities, by incorporating external knowledge. For
instance, in open-domain QA, LLMs can first re-
trieve related documents and then generate an-
swers. Nonetheless, directly retrieving by original
query does not always achieve correct and relevant
documents. Therefore, query rewriting (Efthimi-
adis, 1996; Carpineto and Romano, 2012) has been
widely employed to reformulate the query to ex-
pand the retrieved documents for a better response
as illustrated in Figure 1.

∗ Corresponding Author.

Figure 1: Illustration of query rewriting for RAG. The
left part indicates the normal RAG pipeline, while the
right part presents the query rewriting to expand more
relevant documents for RAG.

Many efforts have been proposed to leverage the
powerful LLMs to generate rewrites (Shen et al.,
2023; Wang et al., 2023) directly. While in practi-
cal applications, it is more prevalent to implement
specific small query rewriting models to avoid the
costly use of LLMs (Ma et al., 2023). To improve
the performance of query rewriting, reinforcement
learning (RL) with feedback (Wu et al., 2022; Chen
et al., 2022) can be utilized as a typical solution.
For instance, Nogueira and Cho (2017) generates
feedback by considering the recall of labeled doc-
uments. Meanwhile, Ma et al. (2023) leverages
evaluation results from question answering (QA)
post-rewriting to generate signals. Additionally,
Peng et al. (2023) employs domain-specific anno-
tated rewriting scores for feedback training.

Note that these feedback-driven query rewriting
methods rely on either annotated labels such as
relevant documents or answers, or pre-designed re-
wards tailored to specific domains. However, they
often lack the utilization of effective and general
signals for query rewriting. Meanwhile, consider-
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able efforts have been made to harness diverse feed-
back mechanisms across various domains (Nathani
et al., 2023; Li et al., 2023). Notably, Liu et al.
(2023b) effectively integrates unit testing feedback
into code generation, yielding significant efficacy.
Drawing from these, in this paper we attempt to (i)
reduce the cost of annotations for feedback; and
(ii) identify a signal that better aligns with the
objectives of the query rewriting task.

To address these issues, we introduce RaFe
(Ranking Feedback improves Query Rewriting),
a novel framework that leverages feedback from
the reranker to train query rewriting models. This
approach is inspired by the reranker module in tra-
ditional information retrieval (IR) systems, which
scores and sorts retrieved documents based on
the query. Intuitively, query rewriting aims to
retrieve documents relevant to the original query,
which aligns perfectly with the goal of the reranker.
Specifically, the reranker is capable of scoring doc-
uments without requiring additional labels. Thus,
we incorporate a reranker to provide feedback for
the query rewriting model.

RaFe comprises a two-stage process. We first
train an initial query rewriting model by standard
supervised fine-tuning. Subsequently, we utilize
the ranking scores from the reranker to conduct
feedback training on the query rewriting model.
RaFe supports both offline and online RL feedback
training. Empirically, we demonstrate that utilizing
a general, publicly available reranker, RaFe can
drive the training of the query rewriting model,
indicating the effectiveness and potential gener-
alizability of the proposed approach. The main
contributions of our paper can be summarized as
follows:

• We propose RaFe, a novel query rewriting
framework that utilizes feedback from the
reranker, an especially fitting signal for the ob-
jective of retrieving more relevant documents.

• RaFe does not necessitate annotated labels
or particularly designed scores, ensuring the
generalizability of the training framework.

• We validate the effectiveness of our pro-
posed approach on cross-lingual datasets
across wide settings with a general and public
reranker, we further conduct a comprehensive
investigation of what makes a better query
rewriting and how ranking feedback works.

2 Method

2.1 Task Formulation
Within the process of Retrieval Augmented Gener-
ation (RAG), when inputting an original query q, a
set of relevant documents D = [d0, d1, ..., dk] will
be retrieved through a search engine, and the re-
trieved documents are utilized to enable the model
to better accomplish the corresponding task (in this
paper, we discuss the task of Open-domain Ques-
tion Answering). Query rewriting is to reformulate
the original query q into another form to better re-
trieve relevant passages. We aim to obtain a better
rewrite model Mθ that can rewrite q as:

q′ = Mθ(q), (1)

here q′ is the rewritten query that is used to re-
trieve documents D′ for completing subsequent
tasks. Figure 2 shows the overview of our proposed
framework, RaFe for query rewriting training.

2.2 Initial Supervised Fine-Tuning
Before leveraging the ranking feedback, we first
initialize the rewrite model with a cold start super-
vised fine-tuning to gain the rewrite ability. Specif-
ically, we prompt the LLMs to produce the rewrite
data, The rewrites generated from LLMs1 are de-
noted as Tall = {(q, q′)|q′ ∈ Q′}, here Q′ is the
rewrite set of original query q. We split the training
instances into two parts Tall = [Tsft : Tf], here Tsft
and Tf indicates the instances we use for SFT and
feedback, respectively, to separate the query for
SFT and feedback and conduct a fair comparison
in the following experiments. We train the rewrite
model Mθ with standard SFT loss as follows:

Lsft = −
∑

q′∈Q′

∑
t
logMθ(q

′
t|q′<t, q). (2)

Note that for each query, we mix all correspond-
ing rewrites together in the dataset for training, to
enhance the diversity of generation by our trained
model, since in real-world applications, different
rewrites are required for a single search query to
address different aspects or interpretations.

2.3 Feedback Training
The evaluation of query rewriting is notoriously
difficult due to the absence of direct quality assess-
ment methods (Zhu et al., 2023), so previous feed-
back for QR typically relies on the annotated pas-
sages (Nogueira and Cho, 2017; Wu et al., 2022).

1We prompt Qwen-max for all the pre-generated rewrites
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Figure 2: The overview of RaFe. The entire procedure consists of two stages: the initial SFT, and subsequent
feedback training. RaFe obtains ranking feedback aligned with the goal of query rewriting without annotated data
and enables leveraging the feedback in two ways. Offline training: Constructing good-bad pairs from offline-
generated data. Online training: Scoring queries generated in real-time and complete feedback training.

Throughout the traditional IR pipeline, documents
expanded by query rewriting are typically subjected
to a reranking process. Intuitively, the reranker can
serve as a natural feedback for query rewriting.
Given a reranker model Mr, the process of scoring
a document d with query q can be formulated as
Mr(q, d). The ranking score of a rewrite q′ can be
denoted as follows:

S(q, q′) =
1

|D′|
∑

d′∈D′ Mr(q, d
′), (3)

here D′ indicates the documents retrieved by q′,
and we constrain |D′| ≤ 5 for computing the scores
on top-5 documents. In this way, we can provide
reliable feedback for training rewriting models. As
illustrated in Figure 2, our proposed method can be
applied to both offline and online feedback training.

Offline Feedback For offline feedback, we lever-
age the ranking score of each document retrieved
by a rewritten query to construct the preference
data. Specifically, we set a threshold to distinguish
the good and bad rewrites formulated as µ, which
is computed as the average ranking score for all
training instances as follows:

µ =
1

|Tf|
∑

(q,q′)∈Tf
S(q, q′). (4)

Then for every rewrite q′ with a score exceeding
the threshold µ, we regard it as a good rewrite for
the original query q; otherwise, it is deemed a bad

rewrite. In this way, we obtain all the preference
pairs for open domain QA in the form (q, q′g, q

′
b).

For the offline feedback training, we use
DPO (Rafailov et al., 2023) and KTO (Kawin et al.,
2023). DPO directly leverages the preference pairs
to optimize the model, while KTO is a method
that can optimize the model from feedback, only
needs the signal of whether a rewrite q

′
is good

or not, rather than needing pairs, formulated as
(q, q

′
; ρ), ρ ∈ [good, bad]. The specific formula-

tion of Lkto is in Eq 6, and the detailed explanation
of the KTO is demonstrated in Appendix A.2.1.

Online Feedback The ranking score can also
serve as an online feedback signal. We utilize the
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) algorithm to implement online feed-
back training. The training process includes rewrit-
ing, retrieving, scoring and ultimately providing
feedback, as illustrated in Figure 2(2b). The details
of the PPO loss and implementation are provided
in Appendix A.2.1.

3 Experimental Setup

As we attempt to improve query rewriting for better
RAG, we conduct our experiments on the typical
RAG scenarios, Open-Domain Question Answer-
ing (ODQA). The process of RAG for ODQA can
be formulated as F([D : q]), where F denotes the
LLMs, q is the original query from datasets and D
is the documents concatenated for augmentation.
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Method

EN ZH

FreshQA NQ TriviaQA HotpotQA FreshQA WebQA
QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5

w/o retrieval 41.70 - 43.74 - 74.99 - 34.80 - 40.98 - 73.95 -
OQR 61.87 27.48 51.36 32.35 79.63 50.32 42.75 17.73 43.70 16.24 81.29 77.25

SUBSTITUTE-Raw

LLM-Rewrite 57.38 25.23 48.62 29.83 78.43 48.10 40.92 15.32 40.65 15.42 80.56 74.26
Query2Doc 56.52 26.08 46.12 27.65 77.22 50.58 38.85 16.26 42.90 15.20 81.35 77.63
SFT(Tsft) 60.53 25.72 49.86 30.08 78.34 47.77 42.04 16.46 42.44 15.56 77.76 72.65
SFT(Tall) 60.55 24.88 50.39 30.40 78.63 47.92 42.66 16.89 42.33 15.21 77.80 74.61
RaFe(PPO) 62.21 27.72 50.83 31.52 78.56 49.18 43.82 17.64 43.28 16.31 81.28 77.90
RaFe(DPO) 62.67 27.92 51.14 32.25 79.84 50.67 43.82 18.91 45.25 16.92 80.61 75.37
RaFe(KTO) 62.12 28.12 51.61 32.71 79.51 51.12 43.27 18.28 45.03 16.40 81.17 76.98

EXPAND-Raw

LLM-Rewrite 61.17 27.52 51.56 31.79 80.20 50.29 44.50 18.01 45.13 16.98 81.30 78.12
Query2Doc 61.46 27.64 50.75 30.83 80.54 50.04 44.49 18.75 46.68 17.44 81.33 79.48
SFT(Tsft) 62.01 26.76 50.13 30.63 80.42 50.21 44.93 18.78 47.15 17.82 81.26 71.95
SFT(Tall) 62.21 26.36 51.79 31.45 80.57 50.24 44.89 18.99 47.51 17.54 81.49 72.48
RaFe(PPO) 62.43 28.31 51.63 31.81 80.32 50.01 45.28 18.87 47.53 18.22 82.45 80.15
RaFe(DPO) 62.39 28.16 52.30 32.53 80.64 50.92 45.59 19.25 47.25 17.92 81.73 78.85
RaFe(KTO) 62.65 28.50 52.48 32.58 80.88 51.24 45.91 19.52 47.93 18.11 82.16 77.66

Table 1: The results showcase the performance in SUBSTITUTE-Raw and EXPAND-Raw settings. “QA” refers to
results obtained by Qwen-max, and “w/o retrieval” denotes generating answers directly. Results surpassing the
OQR are highlighted in bold to represent the best-performing, while those underlined indicate the second-best.

3.1 Dataset

To comprehensively validate the effectiveness and
generalizability of our method, we conduct cross-
lingual experiments. Specifically, we evaluate
ReFe on both English and Chinese datasets.

English Datasets For English data, we use
several open-domain QA datasets including
NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), HotpotQA (Yang et al., 2018). For
NQ and TriviaQA, we follow the split from previ-
ous work (Karpukhin et al., 2020), and the default
split for HotpotQA2. We randomly gather 60k in-
stances from the training set of the three datasets
to conduct Tall for training rewrite models. As for
evaluation, we collect the test set of NQ and Triv-
iaQA, and the development set of HotpotQA as
the held-in evaluation datasets. Additionally, we
use FreshQA (Vu et al., 2023) for out-of-domain
evaluation.

Chinese Datasets For Chinese data, we gather
several open-source queries to conduct the query
set, the sources are listed in 6. We use WebQA (Li
et al., 2016) for the in-domain evaluation, while
FreshQA (Vu et al., 2023) (translated) for the out-
of-domain evaluation. The process of translation

2https://huggingface.co/datasets/hotpot_qa/
viewer/fullwiki

can be found in Appendix A.2.2.

3.2 Evaluation Settings

In practical retrieval scenarios, query rewriting
is commonly used to expand the retrieved docu-
ments based on the original query, followed by a
re-ranking of the expanded documents. Thus, we
validate RaFe in two experimental settings.

SUBSTITUTE Directly use the documents D′ re-
trieved by rewrite q′ for evaluation instead of the
documents D retrieved by query q.

EXPAND Employing both D and D′ for evalua-
tion. We generate two rewrites q′0, q

′
1 for the EX-

PAND setting with their retrieved D′
0, D

′
1.

To further simulate the role of query rewriting in
real-world scenarios, our experiments also include
the performance under two following settings:

Raw Concatenating top-5 retrieved documents
in the default order. For EXPAND setting, the
raw documents order is determined by sequentially
and cyclically selecting the top documents from
D,D′

0, D
′
1.

Ranked Concatenating top-5 documents after re-
ranking all the retrieved documents. As regard to
EXPAND setting, all retrieved documents from both
the query and rewrites are merged for ranking.
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Method

EN ZH

FreshQA NQ TriviaQA HotpotQA FreshQA WebQA
QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5

OQR 62.56 30.88 51.50 35.68 80.17 52.57 43.21 18.32 44.67 17.27 81.37 78.27

SUBSTITUTE-Ranked

LLM-Rewrite 59.24 27.34 49.75 32.27 78.53 50.43 41.48 16.37 42.85 16.26 80.53 76.32
Query2Doc 58.84 28.32 45.62 30.59 77.26 52.01 42.26 17.73 43.81 16.61 81.22 79.92
SFT(Tsft) 60.69 28.42 50.99 34.01 78.35 50.19 42.26 17.64 43.44 16.56 77.72 74.65
SFT(Tall) 61.42 28.40 50.93 32.54 78.15 50.33 42.66 17.88 44.40 16.20 78.16 75.61
RaFe(PPO) 63.01 30.56 51.26 34.61 98.86 51.33 42.57 18.45 43.77 16.79 81.46 76.90
RaFe(DPO) 62.89 30.28 51.97 35.89 80.41 53.54 43.77 19.07 45.49 17.58 80.53 76.37
RaFe(KTO) 62.71 31.00 51.86 35.62 80.23 53.09 44.77 19.82 45.30 17.36 81.14 77.98

EXPAND-Ranked

LLM-Rewrite 62.34 31.14 51.55 36.34 80.79 54.93 45.73 20.85 45.83 17.52 82.29 78.21
Query2Doc 63.06 31.84 51.83 37.16 80.28 54.47 45.82 23.05 46.58 18.29 83.35 80.75
SFT(Tsft) 63.16 31.56 51.75 37.44 80.17 54.20 45.18 22.28 47.61 18.86 82.08 79.15
SFT(Tall) 63.27 28.44 51.94 37.68 80.88 54.25 45.84 22.09 46.95 18.63 82.75 79.43
RaFe(PPO) 64.96 33.54 52.36 38.44 81.38 55.27 46.73 22.39 48.83 19.66 83.58 80.93
RaFe(DPO) 63.98 33.20 52.74 38.57 81.74 55.60 46.53 22.78 48.72 18.58 83.04 79.83
RaFe(KTO) 64.85 33.72 52.86 38.37 81.97 55.67 46.79 23.35 48.96 19.25 82.96 79.52

Table 2: Results of SUBSTITUTE-Ranked and EXPAND-Ranked settings. “OQR” is evaluated after ranking.

We utilize the Exact Match (EM) metric to evalu-
ate the general QA performance. Especially, we use
Rouge-L (Lin, 2004) to evaluate the false premise
set in FreshQA. Given our work focus on open-
domain QA, there are no gold documents or rele-
vant annotations, we evaluate the retrieval by de-
termining whether the retrieved documents contain
the correct answer. We report the Precision@K and
the mean reciprocal rank (MRR) in the results.

3.3 Baseline

Original Query Retrieval (OQR) Retrieve with
the original query and utilize the documents by the
default returned ranking from the search engine.

LLM Rewrite Directly enable the LLMs to
rewrite the original query with a few-shot prompt.
In our experiment, we prompt Qwen-max to rewrite
the original query.

Query2Doc (Wang et al., 2023) A method cre-
ates pseudo-documents through few-shot prompt-
ing of LLMs and then the query is expanded with
the generated pseudo-documents for retrieving.
The used prompts are shown in Appendix A.5.

SFT Use the pre-generated rewrites to directly
train the rewrite model. SFT(Tsft) represents the
rewrite model trained specifically on the Tsft, while
SFT(Tall) denotes the model trained on Tall.

3.4 Implementation

Retriever We use an anonymous internal search
engine for open domain to retrieve documents for
the Chinese datasets, and Google Search for the
English datasets. Specifically, we utilize the title
and the summary snippet of the searched page as
the retrieved documents for retrieval augmentation.

Base Model We employ Qwen-max (Bai et al.,
2023) to generate responses and conduct the eval-
uation with Qwen1.5-32b-chat. Query rewriting
models are trained with the Qwen-7b-base.

Reranker For a general RAG task like open-
domain QA, If our approach yields positive results
with a general reranker, it will perform even better
when transferring to a specific domain (where a
domain-specific reranker is available). Thus, we
employ a publicly available bge-reranker3 (Xiao
et al., 2023) to conduct open-domain QA experi-
ments, which serves to demonstrate the effective-
ness of the methods we designed.

4 Results

4.1 Main Result

From Table 1 and Table 2, we can observe that
RaFe outperforms other query rewriting baselines
and OQR across almost all settings in retrieval and
question-answering metrics. It can be noted that

3https://huggingface.co/BAAI/
bge-reranker-base
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Methods FreshQA NQ
Raw Ranked Raw Ranked

OQR 61.87 62.56 51.36 51.50

SUBSTITUTE

SFT(Tall) 60.55 61.42 50.39 50.93
Precision(DPO) 60.43 61.03 49.32 50.65
Precision(KTO) 60.54 61.34 49.76 50.12
LLM(DPO) 61.95 62.45 50.94 51.44
LLM(KTO) 62.32 62.39 51.34 51.54
RaFe(KTO) 62.12 62.71 51.61 51.86

EXPAND

SFT(Tall) 61.42 63.27 51.79 51.94
Precision(DPO) 61.56 62.84 50.34 51.29
Precision(KTO) 61.79 63.15 50.69 51.32
LLM(DPO) 62.43 63.53 51.63 52.43
LLM(KTO) 61.87 64.08 51.89 52.23
RaFe(KTO) 62.65 64.85 52.48 52.86

Table 3: Results compared with different feedback, Pre-
cision and LLM indicates the retrieval feedback and
LLM feedback, respectively.

the performances of most methods decrease slightly
compared to OQR under the SUBSTITUTE setting,
where RaFe also shows marginal improvements.
The weak performance might be attributed to that
rewriting tend to deviate from the original query
in some challenging cases. We provide a deeper
analysis in the Appendix A.4.1.

While under the EXPAND setting, the majority of
baseline methods perform better than under SUB-
STITUTE setting. Notably, RaFe achieves signifi-
cant improvements in the Expand-Ranked setting,
where the QA results surpass all other baselines in-
cluding OQR by 2%-3%. A similar conclusion can
be drawn from Table 8. By comparing results be-
tween Table 1 and Table 2, it can be found that even
with feedback provided to the query rewriting mod-
els through the use of rerankers, the ranked results
continue to show a substantial increase in perfor-
mance, which are further illustrated in Figure 4. It
suggests that in practical applications of RAG, it
may yield the greatest benefit by employing query
rewriting with the EXPAND-Ranked setting. More
retrieval results are shown in Appendix A.3.1.

4.2 Compared with Other Types of Feedback

Previous work on training query rewrite models
for the RAG (Ma et al., 2023) has leveraged LLMs
performance on QA tasks as the feedback signal.
Many works construct feedback based on retrieval

metrics from annotated documents (Wu et al., 2022;

Methods Feedback Annotation Cost

LLM QA Results yes 78h
Precision Retrieval yes 0.01h
RaFe Reranker no 0.67h

Table 4: The comparison of different types of Feedback.
Annotation indicates whether the labeled data is needed
for the feedback signals. The Cost means the time for
constructing the feedback for 30k instances.

Nogueira and Cho, 2017). To thoroughly assess
the efficacy of our approach, we also experiment
with these types of feedback. We obtain good-bad
pairs (i.e. true for good and false for bad) for of-
fline training introduced in Sec 2.3. We use Qwen-
32b-chat to conduct the LLM feedback. For the
retrieval feedback, we utilize the results of Prec@5
to obtain good-bad pairs. The results are shown
in Table 3. Additionally, we provide a compari-
son between reranker feedback and other feedback,
demonstrated in Table 4.

The results show that RaFe outperforms the
other two types of feedback. Precision feedback
yields the worst results, which may be attributed
to the rudimentary construction of precision in our
dataset—merely considering whether the answer
is present within the document. LLM feedback
also demonstrates competent performance in the
SUBSTITUTE setting. However, from Table 4, we
notice that under an equivalent data volume, the
cost of employing LLM to construct feedback sub-
stantially exceeds that of the other two feedback.

5 Analysis

5.1 How RaFe makes rewriting better?

In this section, we present illustrative case studies
to intuitively compare different rewrites and the
original query in Figure 3. The benifits of RaFe
can be summarized into three types.

(A): RaFe performs better in preserving the
semantics of the original query. As shown in
Figure 3 (A), it can be observed that RaFe, after
alignment through reranker, can rewrite queries in
a way that better preserves the semantics of the
original query. In contrast, the rewrite by SFT
directly shifts the focus of the query from which
athlete to which competition.

(B): RaFe’s rewrites improve the format of the
query for retrieval purposes. RaFe’s rewrite is
capable of transforming an uncommon term “recip-
ient” into “winner”. Although SFT rewrites also re-
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Figure 3: Three types of examples, including the original query and rewrites from SFT and RaFe. The Prec@5
results of queries and rewrites are presented, and “Correct” denotes that whether the prediction is correct or not.
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Figure 4: The performance of different rewrite models
before and after all the documents are reranked under
EXPAND setting. The number displayed on each bar rep-
resents the specific improvement from Raw to Ranked.

place “recipient” with “winner”, it changes “team”
from a sports competition context to “squad”, a
term commonly used in military, police, or other
contexts, thereby introducing potential ambiguity.

(C): RaFe’s rewrites sentences for better un-
derstanding. This kind of case is not easily dis-
cernible as good or bad based on intuition; however,
RaFe’s rewrite demonstrates better performance in
retrieval results. Such cases show why we require
feedback to enhance the QR effectiveness, as we
always fail to articulate how a query could be for-
matted to better suit a retriever.

5.2 How does the Reranker Feedback Work?

To investigate how reranker works for query rewrit-
ing, we first ascertain the ability of the publicly

Methods Prec@5 Prec@10 MRR

Original Query 41.41 39.76 54.11
Bad Rewrite 30.74 28.13 43.64
Good Rewrite 46.14 44.34 59.17

Table 5: The comparison of retrieval results between
original query and good/bad rewrites.
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Figure 5: The results of different rewrite nums in EX-
PAND setting. We list the result from 0 to 5 rewrites.
The rewrites are generate by RaFe(KTO).

available reranker to rank on unseen datasets.
The comparing results are presented in Figure 4.

It can be clearly seen that all methods yield better
QA performance after documents are ranked on all
the datasets. This indicates that the reranker’s pat-
tern for document sorting acts as a positive signal
for the retrieval system. Meanwhile, we can ob-
serve that RaFe performs the better improvements
after ranked, which further demonstrates the effec-
tiveness of reranker feedback.

Moreover, we validate the effectiveness of
reranker in constructing good and bad pairs within
Tf. We compare the precision of documents re-
trieved by different queries in Table 5. It is obvious
that the documents retrieved by good rewrites ex-
hibit significantly higher precision compared to
those retrieved by the original query, which in-
dicates that the reranker is capable of effectively
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distinguishing between rewrites that can retrieve
high-quality documents and those that cannot. We
also provide some examples in Appendix A.4.2.

5.3 How Many Rewrites is Optimal for RAG?

In this section, we delve deeper into the impact that
varying numbers of rewrites have on the final per-
formance, since in practical applications of query
rewriting, a balance must be struck between the
quantity of generated rewrites and performance ef-
ficiency, given that generating more rewrites could
potentially result in more response time. We gen-
erate different numbers of rewrites, the results are
depicted in Figure 5. The QA results peak when
there are 4-5 rewrites, suggesting that employing
more rewrites can yield considerable benefits by
retrieving more relevant top documents. However,
Prec@5 nearly approaches the best around 2-3
rewrites. When ranking all passages, the perfor-
mance ceiling is attained with merely 2 rewrites.
Considering the time cost, 2-3 rewrites may benefit
the most for practical RAG.

Meanwhile, it can be observed that there’s a drop
when increasing the rewrites from 4 to 5, we pro-
vide further analysis in Appendix A.4.5.

6 Related Work

6.1 Query Rewriting

Query rewriting is a critical technique within the
retrieval domain (Carpineto and Romano, 2012;
Zhu et al., 2023). With the groundbreaking ad-
vancements in scaling-up model capabilities, query
rewriting has also played a pivotal role in enhanc-
ing the abilities of LLMs in RAG (Khattab et al.,
2022; Press et al., 2023; Yan et al., 2024). Many
works (Wang et al., 2023; Shen et al., 2023; Ye
et al., 2023) directly leverage LLMs’ strong capa-
bilities to expand or rewrite queries. Nonetheless,
in practical application scenarios, a smaller rewrit-
ing model is preferred to avoid the costly requests
for LLMs. At the same time, feedback training is
the most commonly employed method to enhance
the smaller rewriting models. Nogueira and Cho
(2017) incorporates the ranking signals from anno-
tated passages for better results, as well as previous
works on conversational query rewrite (Wu et al.,
2022; Mo et al., 2023; Chen et al., 2022). Ma et al.
(2023) first generates answers from LLMs and then
uses the QA evaluation results as the training sig-
nals. Peng et al. (2023) leverages search scoring
functions intrinsic to the e-commerce framework to

assess rewrite quality, informing feedback signals,
which is exceedingly domain-specific, limiting its
applicability to other domains.

These works depend on using particularly de-
signed scores or annotated labels for feedback sig-
nals, while our proposed method can generically
deliver feedback based on ranking results, without
needing annotated passages.

6.2 Learning From Feedback

Recent advancements in Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022) have been instrumental in aligning the gen-
erative capabilities of large models with human
preferences, significantly prompting the creation of
strong LLMs (OpenAI, 2023). Therefore, a large
number of studies about feedback alignment have
been emerging (Zheng et al., 2023; Wang et al.,
2024; Rafailov et al., 2023; Yuan et al., 2023; Dong
et al., 2023; Kawin et al., 2023). Some research
efforts are concentrated on devising methods to pro-
vide new forms of feedback (Lee et al., 2023; Shinn
et al., 2023; Madaan et al., 2023; Pang et al., 2023;
Liu et al., 2023a; Akyürek et al., 2023; Nathani
et al., 2023). Xu et al. (2023) propose to train
models from judgment language feedback. Li et al.
(2023) designs two types of ranking feedback draw-
ing from LLMs, to improve the performance.

Despite all these works, the exploration of feed-
back in rewriting is currently limited to direct feed-
back from LLMs (Ma et al., 2023) and domain-
specific scoring (Peng et al., 2023). Such feedback
approaches are costly and fail to utilize the effec-
tive signals from the IR system. While Le et al.
(2022) and Liu et al. (2023b) effectively leverage
the feedback from Unit Test in the domain of code
generation, we investigate more appropriate feed-
back signals for query rewriting in this paper, the
reranker feedback.

7 Conclusion and Future Work

This paper proposes a novel feedback training
framework named RaFe for query rewriting, based
on the effectiveness of the reranker in enhancing
document ranking during the information retrieval
process. By leveraging the feedback signals from
reranker, RaFe is capable of effectively and gener-
ally conducting feedback training for rewrite mod-
els, yielding great improvements. Experimental re-
sults indicate that our method achieves exemplary
performance across cross-linguistic datasets. In the
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future, we plan to conduct joint training of reranker
and rewrite models, which may yield substantial
benefits for RAG.

Limitations

Although our experiments employ a general
reranker as the source of feedback signals, there
are still some limitations. (1) The Lack of Cross-
Domain Validation. As constrained by the lack
of domain-specific data, we lack the validation of
separately trained rerankers on datasets pertinent
to a specific domain. (2) Reliance on the Effec-
tiveness of Rewriting as a Bottleneck. Although
we can achieve some improvements by using pub-
licly available rerankers, this enhancement may be
limited by the capability of the reranker.
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A Appendix

A.1 Feedback Training Loss

A.1.1 DPO Loss

Ldpo = −E
(q,q′g ,q

′
b)∼Tf

[log σ

(β log
Mθ(q

′
g|q)

Mref(q
′
g|q)

− β log
Mθ(q

′
b|q)

Mref(q
′
b|q)

)], (5)

where β is the temperature parameter for DPO,
Mθ is the rewrite model to be updated, and Mref
is the fixed model during the training phase.

A.1.2 KTO Loss
The KTO (Kawin et al., 2023) (Kahneman-Tversky
Optimization) method is based on prospect the-
ory (Tversky and Kahneman, 1992), which tells
how human decides according to uncertain out-
comes. The theory is proposed by the economists
Kahneman & Tversky. Compared to DPO, the
training based on KTO only needs the signal that
whether a rewrite q

′
is good or not, formulated as

(q, q
′
; ρ), ρ ∈ [good, bad]. And the Lkto is com-

puted as follows:

Lkto = E(q,q′ ;ρ)∼Tf
[w(q

′
)(1− ĥ(q, q

′
; ρ))],

g(q, q
′
; ρ) = β log

Mθ(q
′ |q)

Mref(q
′ |q)−

Eq′∼Tf
[βKL(Mθ||Mref)],

h(q, q
′
; ρ) =

{
σ(g(q, q

′
; ρ)) if ρ is good

σ(−g(q, q
′
; ρ)) if ρ is bad

,

w(q
′
) =

{
λgood if ρ is good
λbad if ρ is bad

. (6)

The default values for λgood and λbad are set
to 1. When there is an imbalance between the
number of good and bad samples, specific values
are determined using the following formula:

λgoodngood

λbadnbad
∈ [1,

4

3
] (7)

A.1.3 PPO Loss
When implementing PPO training, we indicate the
action at at step t as generating the next token

q̂
′
t, while the current state st = (q, q̂

′
<t) is com-

posed of the original query and generated rewrite
tokens. Here we directly use the ranking score as
a reward, and by adding a KL-divergence regular-
ization (Ramamurthy et al., 2023; Carpineto and
Romano, 2012), the reward is computed as follow:

R(st, at) = Sreranker(q
′ |q)− βKLKL(Mθ||Mref)

(8)
and then with a value network Vϕ initialized from
Mθ, the advantages function follows GAE (Schul-
man et al., 2016) can be formulated as:

δt = R(st, at) + Vϕ(st + 1)− Vϕ(st),

A(st, at) =
∑∞

t′=0
λt

′
δt+t′

(9)

and the final objective function is composed of
value loss and policy loss (Zheng et al., 2023).

Lθ = E(st,at)∼Mθ
[min(

Mθ(st, at)

Mref(st, at)
A(st, at),

clip(
Mθ(st, at)

Mref(st, at)
, 1− ϵ, 1 + ϵ)A(st, at))],

Lϕ = E(st,at)∼Mθ
(Vϕ(st)−Rt)

2,

Lppo = Lθ + Lϕ

(10)

A.2 Training Details

Language Source Num

ZH

baike 6552
webqa 16486

sougouqa 9488
squadzen 6294

balle 9601
coig 15080

EN
hotpotqa 12471
triviaqa 28083

nq 19445

Table 6: Data Source of the Training Instances for Open
Domain QA.

A.2.1 Implementation

All model training is completed on a single ma-
chine with 4×A100 GPUs. And the training
prompt for the rewrite is listed in Table 15.

SFT We train the rewrite model with 2 epochs
and set the learning rate to 5e-5.
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Method

EN ZH

FreshQA NQ TriviaQA HotpotQA FreshQA WebQA
Prec@10 MRR Prec@10 MRR Prec@10 MRR Prec@10 MRR Prec@10 MRR Prec@10 MRR

OQR 26.34 38.43 30.41 45.59 48.66 61.70 15.49 29.25 15.38 24.32 74.97 84.48

SUBSTITUTE-Raw

LLM-Rewrite 24.31 35.18 27.27 41.74 46.35 59.89 13.44 25.86 15.64 22.00 73.86 83.87
Query2Doc 24.42 35.95 26.05 37.82 48.71 59.24 14.96 25.54 14.98 24.23 75.77 85.80
SFT(Tsft) 24.43 36.13 28.75 43.81 45.51 59.69 14.48 28.27 15.27 24.94 70.83 80.09
SFT(Tall) 24.13 34.69 28.45 43.08 45.67 59.68 14.73 28.78 14.25 23.40 72.10 82.73
RaFe(PPO) 25.73 37.23 29.44 44.16 46.59 60.45 15.10 29.32 15.44 26.36 72.47 84.64
RaFe(DPO) 26.42 28.75 30.18 45.34 48.20 61.91 16.42 31.14 16.20 25.01 74.47 83.87
RaFe(KTO) 26.59 39.19 30.78 45.92 48.86 62.09 15.75 29.93 15.65 25.97 73.47 84.60

EXPAND-Raw

LLM-Rewrite 26.28 38.46 30.88 44.42 48.96 61.80 16.25 28.72 16.24 24.79 76.27 86.09
Query2Doc 26.76 38.48 29.99 44.77 48.78 60.44 17.15 30.18 17.51 25.80 77.93 89.05
SFT(Tsft) 25.78 39.07 30.40 44.38 48.62 61.93 17.04 30.51 17.02 26.64 69.80 88.68
SFT(Tall) 25.48 39.14 30.59 44.44 48.86 61.89 17.24 30.56 16.62 25.75 70.35 88.86
RaFe(PPO) 27.12 39.25 30.46 45.42 48.67 61.73 17.24 30.41 17.82 26.41 76.21 89.12
RaFe(DPO) 26.98 38.85 31.18 45.45 49.63 61.96 17.38 30.43 16.20 25.01 74.42 89.05
RaFe(KTO) 27.80 39.56 31.22 45.73 49.82 62.02 17.67 30.53 17.66 26.86 74.98 89.10

Table 7: The retrieval results of SUBSTITUTE-Raw and EXPAND-Raw settings.

Method FreshQA NQ
Raw Ranked Raw Ranked

w/o retrieval 32.83 - 36.67 -
OQR 39.79 41.13 42.53 44.16

SUBSTITUTE

LLM-Rewrite 35.24 36.75 40.24 40.27
Query2Doc 34.97 35.63 40.05 41.32
SFT(Tsft) 40.07 40.66 42.27 43.24
SFT(Tall) 38.92 40.01 42.34 43.80
RaFe(PPO) 41.15 42.13 42.57 44.23
RaFe(DPO) 38.18 39.73 42.82 44.84
RaFe(KTO) 40.46 41.77 43.78 44.90

EXPAND

LLM-Rewrite 37.24 39.14 43.40 44.43
Query2Doc 38.78 39.29 44.13 45.07
SFT(Tsft) 39.49 39.29 43.54 44.17
SFT(Tall) 39.91 41.68 43.89 44.21
RaFe(PPO) 40.05 42.64 44.39 44.87
RaFe(DPO) 40.41 42.37 44.49 45.34
RaFe(KTO) 40.74 43.79 44.56 45.64

Table 8: The QA results on Qwen1.5-32b-chat.

PPO The PPO implementation is carried out ac-
cording to the TRL repo4(von Werra et al., 2020).
In line with the empirical configurations in previ-
ous work (Zheng et al., 2023), we set the batch size
to 32, and conduct the training for 1000 optimiza-
tion steps, which is approximately equivalent to
1.067 epochs. The clip range parameter ϵ, and the
coefficient βKL for the KL divergence in Eq 8, are

4https://github.com/huggingface/trl

both set to 0.2 as defaulted.

DPO & KTO We conduct the offline training
for 1 epoch on all the good-bad rewrite data, with
a learning rate of 5e-6. We set the temperature
parameter β to 0.1, following the default setting of
the previous implementation5

A.2.2 Dataset Details
We list the sources and numbers of training in-
stances in Table 6.

Initial Training Set of Rewrite Model For the
open-domain QA task, we use qwen-max (Bai et al.,
2023) to conduct the data production for both En-
glish and Chinese dataset.

The Construction of Translated FreshQA We
first translate the entire set of 500 FreshQA test
questions, and then manually review and filter
each translation to identify those that were rela-
tively more relevant to the Chinese internet. Ulti-
mately, we obtained a set of 293 Chinese-translated
FreshQA dataset.

A.3 Additional Experimental Results

A.3.1 The Retrieval Results
We report complete retrieval results of Prec@10
and MRR in this section. The results of SUBSTI-
TUTE-Raw and EXPAND-Raw are shown in Table 7,
while the results of SUBSTITUTE-Ranked and EX-
PAND-Ranked are in Table 9.

5https://github.com/ContextualAI/HALOs
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Method

EN ZH

FreshQA NQ TriviaQA HotpotQA FreshQA WebQA
Prec@10 MRR Prec@10 MRR Prec@10 MRR Prec@10 MRR Prec@10 MRR Prec@10 MRR

OQR 26.34 43.92 30.41 49.06 48.66 64.28 15.49 31.03 15.38 26.67 74.97 87.92

SUBSTITUTE-Ranked

LLM-Rewrite 24.31 40.31 27.27 47.28 46.35 62.79 13.44 27.20 15.64 24.53 73.86 85.23
Query2Doc 24.42 39.53 26.05 42.55 48.71 61.18 14.96 27.24 14.98 25.29 75.77 88.23
SFT(Tsft) 24.43 42.28 28.75 48.06 45.51 62.86 14.48 30.58 15.27 26.94 70.83 80.71
SFT(Tall) 24.13 41.17 28.45 47.87 45.67 62.94 14.73 30.19 14.25 21.39 72.10 80.26
RaFe(PPO) 25.73 43.14 29.44 48.52 46.59 63.52 15.10 30.60 15.44 26.15 72.47 86.77
RaFe(DPO) 24.42 43.19 30.18 48.97 48.20 64.52 16.42 31.52 16.20 25.46 74.47 85.54
RaFe(KTO) 26.59 43.08 30.78 49.48 48.86 65.17 15.75 32.28 15.65 26.50 73.47 85.89

EXPAND-Ranked

LLM-Rewrite 29.45 42.14 32.42 48.97 52.14 64.78 18.32 32.06 18.02 26.32 77.23 87.12
Query2Doc 30.50 44.51 32.73 49.21 52.25 64.88 19.24 33.66 18.18 26.64 79.81 88.81
SFT(Tsft) 30.52 44.62 34.02 49.39 52.55 66.06 19.29 33.03 18.87 27.55 77.02 87.86
SFT(Tall) 23.71 41.31 34.36 49.64 52.65 66.14 19.34 33.22 18.16 27.79 77.21 87.90
RaFe(PPO) 30.28 44.29 35.10 50.37 52.63 65.86 19.66 33.92 18.56 29.17 79.26 88.47
RaFe(DPO) 30.62 44.54 35.22 50.10 53.55 66.05 19.77 33.81 16.19 25.46 78.18 88.28
RaFe(KTO) 31.14 45.24 35.18 50.54 53.09 66.46 19.89 33.75 18.90 27.43 77.84 88.09

Table 9: The retrieval results of SUBSTITUTE-Ranked and EXPAND-Ranked settings.

Method

FreshQA NQ

Raw Ranked Raw Ranked
QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5

w/o retrieval 41.70 - - - 43.74 - - -
OQR 34.08 11.86 34.98 13.48 50.13 24.14 50.91 28.27

SUBSTITUTE

SFT(Tall) 32.44 11.28 34.28 12.90 48.24 22.84 50.17 27.43
Prec Feedback 34.31 11.92 35.53 13.32 48.12 23.54 49.31 27.28
LLM Feedback 33.64 11.52 35.38 13.28 50.16 23.38 50.47 27.98
RaFe(KTO) 34.36 12.44 35.48 13.60 50.33 23.86 50.87 28.36

EXPAND

SFT(Tall) 33.31 11.00 35.58 13.44 49.66 23.32 50.33 27.27
Prec Feedback 33.83 11.76 36.20 14.68 49.42 23.12 50.94 28.17
LLM Feedback 33.64 11.88 36.50 14.44 50.47 23.76 51.24 28.12
RaFe(KTO) 34.31 12.20 36.39 14.92 50.78 23.81 51.49 28.62

Table 10: Result conducted by dense retriever.

Comparing the results between SUBSTITUTE

and EXPAND, it can be found that methods with
lower retrieval results under the SUBSTITUTE set-
ting tended to show greater improvement under
EXPAND. However, the retrieval results for RaFe
do not exhibit great improvement under the EX-
PAND-Raw setting. Further comparison between
the QA results and retrieval metrics reveals that,
generally, the improvement trends in retrieval re-
sults align with those in QA performance.

A.3.2 QA Results of Qwen-32b
To further demonstrate the results of our methods,
we conduct experiments on different sizes of mod-
els. Specifically, we choose Qwen1.5-32b-chat
for evaluation. The results are shown in Table 8.
The results indicate that RaFe consistently outper-
forms across almost all settings. Moreover, it is
observed that compared to Qwen-max for QA, the
32B model exhibits lower performances.

Method

FreshQA NQ

Raw Ranked Raw Ranked
QA Prec@5 QA Prec@5 QA Prec@5 QA Prec@5

OQR 61.87 27.48 62.56 30.88 51.36 32.35 51.50 35.68

SUBSTITUTE

SFTllama 32.44 11.28 34.28 12.90 48.24 22.84 50.17 27.43
SFTqwen 60.53 25.72 60.69 28.42 49.86 30.08 50.99 34.01
RaFellama 61.79 27.93 62.37 30.15 51.73 32.14 51.77 35.27
RaFeqwen 62.12 28.12 62.71 31.00 51.61 32.71 51.97 35.89

EXPAND

SFTllama 60.58 26.04 62.72 32.12 50.41 31.33 51.57 37.13
SFTqwen 62.01 26.76 63.16 31.56 50.13 30.63 51.75 37.44
RaFellama 62.43 28.53 63.77 33.45 51.63 31.43 52.45 37.73
RaFeqwen 62.65 28.50 64.85 33.72 52.48 32.58 52.86 38.37

Table 11: Results with different backbones.

In the SUBSTITUTE-Raw setting of the NQ
dataset, utilizing Qwen-max does not yield great
results. However, a significant improvement can be
observed with Qwen-32b. This may suggest that
for some cases beyond the capability coverage of
qwen-32b, query rewriting can benefit the retrieval
augmentation. As models increase in size, their in-
herent capabilities may become sufficient to handle
these cases effectively, negating the need for query
rewriting.

A.3.3 Results with Dense Retireval
To widely validate our method, we extend the exper-
iment on dense retrievers. We conduct additional
experiments with the retriever (Contriever) and the
corpus (Wikipedia) used in Self-Rag (Asai et al.,
2023) to rebuild the ranking feedback for training
the rewrite model. The experimental results are
presented in Table 10.

From the results, it can be found that most
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Figure 6: The results under SUBSTITUTE setting on
FreshQA with a different number of documents.

rewrite baselines do not perform as well as the
original query under substitution, which might be
attributed to the fact that dense retrievers use em-
beddings for retrieval, and the rewritten query’s rep-
resentation certainly varies from that of the original
query. While our method’s rewrites still outperform
in most settings.

Moreover, retrieval with a fixed corpus does not
yield better results than web search retrieval, espe-
cially for changing questions (i.e. freshqa, the rag
results are lower than w/o retrieval), where it tends
to introduce more noise or outdating knowledge.

A.3.4 Results with Different Backbone
For a more comprehensive evaluation, we imple-
ment RaFe on llama3-8b-base. The experimental
results are presented in Table 11. It can be easily
observed that our method also works on Llama,
surpassing other rewrite baselines.

A.3.5 Top-k Documents Results
Additionally, we explore the performance of our
proposed method when concatenating a different
number of documents. We experiment with the
Chinese version of the FreshQA. The results pre-
sented in Figure 6 reveal that when solely the first
document is utilized, the retrieval using the orig-
inal query yields the best results. As the number
of concatenated documents increases, RaFe consis-
tently outperforms both SFT and the original query
results.

A.4 Additional Analysis
A.4.1 The Relatively Weak Performance
From the results, it can be observed that there are
only marginal improvements in some datasets, es-
pecially in SUBSTITUTE-Raw setting. Taking the

Case Set Model OQR RaFe

Good
Qwen-max 59.10 59.30
Qwen-32b 60.12 59.98

Bad
Qwen-max 5.37 5.73
Qwen-32b 11.21 11.69

Table 12: The Prec@5 results of NQ datasets answered
by different sizes of Models under SUBSITUTE-Raw
setting. Good indicates the cases correctly answered by
both OQR and RaFe, while Bad refers to both incorrect.

NQ dataset as an example, we attempt to investigate
the difference between. The NQ dataset is quite
hard, so for challenging cases, the minor reformula-
tion of key phrases could cause the wrong retrieval.
For instance, comparing Original Query: “what is
the cross on a letter t called?” and RaFe Rewrite:

“What do you call the cross-like symbol on a letter
’t’?”, it can be found in the original query explicitly
using “cross on a letter t” to a specific term related
to typography. The rewritten query adds complex-
ity and potential vagueness with a “cross-like sym-
bol”, which may mislead search engines towards
broader symbol recognition or confuse with other
types of crosses, thereby reducing the precision of
the search results.

Additionally, the results on smaller models re-
vealed that RaFe could achieve noteworthy im-
provements even in SUBSTITUTE-Raw results.
Thus, we obtain the cases answered both correctly
and wrong by different size models. As shown
in Table 12, the average prec@5 on ‘good’ cases
is comparable between models of different sizes.
However, in ‘bad’ cases, smaller models exhibit
higher average precision. In contrast, when compar-
ing the the results between Qwen-max and Qwen-
32b, the improvements from RaFe diminish. This
suggests that the benefits RaFe brings in simple
cases are reduced as the model’s parameter in-
creases. Meanwhile, the deviations in more chal-
lenging cases are retained, which could lead to less
impressive results. This further implies that query
rewriting for RAG might be better suited for the
EXPAND setting, to broaden the scope of the query
to increase the chances of retrieving relevant infor-
mation.

A.4.2 Good-Bad Pairs Cases
In this section, we delve deeper into how rerankers
take effect by presenting case studies. We inves-
tigate cases of how rerankers distinguish between
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Figure 7: Two examples of good-bad rewrite pairs, each
containing an original query, the good rewrite and bad
rewrite. The “Retrieved” sign indicates whether the
top 5 documents contain the answer or not.

good-bad pairs. Figure 7 provides two examples.
In the first example, the original query pertains to

the only European country where wild porcupines
reside. The good rewrite simplifies to a more direct
question: “In which unique European country do
porcupines live in the wild?” This rewrite is clear
and precise. In contrast, the bad rewrite, “What’s
the sole European nation with a thriving porcupine
populace in the wilderness?” Although conveying
similar information, it appears excessively verbose
and unnecessarily complex in its wording, resulting
in failure in retrieval.

The second example’s original query asks about
the height of the Zhongyuan Pagoda in Henan
Province, China. The good rewrite poses the same
question in a more concise manner: “Height of
Zhongyuan Pagoda in Henan?” This succinct
rewrite may be better suited for rapid information
retrieval. The bad rewrite, on the other hand, is:
“Where is the Zhongyuan Pagoda located?” It fails
to correctly rephrase the original question, as it
shifts the focus from “height” to “location”, caus-
ing a deviation from the original query’s intent.
These cases demonstrate that the reranker’s scoring
of retrieved documents can effectively differentiate
between good and bad rewrites.

A.4.3 Additional Case for Better Format
Rewriting

We provide one more case in this section. The orig-
inal question used the phrase “woman in music” to

Figure 8: An example includes the original query and
rewrite from SFT and RaFe. The label “Retrieved”
denotes whether the answer is present within the top 5
retrieved documents, and “Correct” denotes whether
the prediction is correct.

inquire about the highest-earning female musician
in Forbes’ Celebrity 100 list in 2020, which may
not have been as intuitive for search engines, result-
ing in a failure to retrieve the documents. While
the RaFe rewrite directly refines “woman in mu-
sic” into “woman musician”, rephrasing the ques-
tion with vocabulary more suitable for retrieval
purposes.

In contrast, the rewrite from SFT also conveys a
clearer expression of “female musician”, but its for-
mat more closely resembles a headline or newspa-
per title, which may not be as suitable for a search
query as a direct interrogative format. Addition-
ally, it does not clearly express that the search is
specifically for the year.

A.4.4 Different Performances for Feedback
Training

In our experiments, it can be observed that KTO >
DPO > PPO across most settings, which we believe
may be related to the number of training instances.

When conducting the ‘good bad rewrites’, we
encounter instances where all rewrites were either
labeled as bad or good, leading to samples that can
not be paired, and thus reducing the training data
for DPO. While the KTO training process does not
require paired preference data, it only needs the
preference labels (i.e. good or bad) for training. So
the actual amounts of training instances for KTO is
larger. Compared to PPO’s training process, where
each iteration only generates a single rewrite for
feedback optimization, the number of samples used
to optimize the rewriting model is lower.

Moreover, we have found that online PPO train-
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Method
Epoch Nums

0.1 0.3 0.5 0.7 0.9 1

PPO 0.5056 0.1213 0.0449 0.0083 0.0497 0.0093
DPO 0.6023 0.3856 0.2891 0.1232 0.0729 0.0657
KTO 0.5005 0.3214 0.2416 0.2142 0.1819 0.1787

Table 13: The training loss with different feedback train-
ing methods.

Method
Rewrite Nums

0 1 2 3 4 5

valid num 9.09 15.42 20.26 24.38 27.95 30.89
total num 9.16 18.31 27.37 36.53 45.68 54.83

valid ratio(%) 99.17 84.19 74.03 66.73 61.19 56.34

Table 14: The numbers of valid documents and total
documents as the rewrite number grows.

ing is more unstable compared to offline training,
with a pattern collapse phenomenon (the model can
not generate coherent text) occurring between ap-
proximately 0.7 to 0.8 epochs. However, from ad-
ditional experiments we conducted, offline models
did not collapse until approximately 1.5-2 epochs.

We further present the loss for different training
methods within one epoch in Table 13. PPO’s loss
demonstrates noticeable instability after 0.7 epochs,
indicating its unstable training pattern, which has
been detailedly investigated by Zheng et al. (2023).

A.4.5 Why the Prec@5 Drops as Rewrite
Number Grows?

It can be observed in Figure 5 that the prec@5
drops when the number increases from 4 to 5. In
this section, we further analyze this phenomenon.
We count the number of all documents retrieved
and the valid (non-repetitive) documents with dif-
ferent numbers of rewrites, presented in Table 14. It
can be found that, although the number of rewrites
increases, the quantity of duplicate documents also
grows, which means that performance may plateau
at a peak value. As seen in the table, when the
quantity of rewrites grows, the increase in valid
documents slows down, and the proportion of ef-
fective documents decreases, leading to a plateau
in recall improvement.

Regarding the decrease in Prec@5, the main rea-
son is that our experiments are mainly conducted
on the top 5 documents. As the reranker’s per-
formance is limited, within the scope of the top
5, the reranker may sometimes misplace the doc-
uments that, while related to the question, do not
contain the correct answer, to a higher place. We
provide a case in Figure 9. However, when com-

Figure 9: A case for the misplacing caused by reranker.

paring prec@10 among the different numbers of
rewrites, the overall trend still shows an increase,
although the magnitude of this increase diminishes.
Therefore, we believe that in practical applications,
having 2-3 rewrites might be more appropriate.

A.5 Prompts
In this section, we list the prompt we used in this
paper. The instruction prompt for the rewrite model
is shown in Table 15, and the prompt for evaluation
is in Table 16. The few-shot prompts used for
Query2Doc are derived from Wang et al. (2023).

Prompt

Instruction: output the rewrite of input query

Query: [ORIGINAL QUERY]

Output: [TARGET]

Table 15: The instruction prompt for rewriting models,
both training and inference.

Prompt

USER
The following information may help answering questions:
<TOP-K DOCUMENTS>

LLMs
Sure, I have noted the information above. Is there anything I
can assist you with or any questions I can help answer?

USER
<QUESTION>

Table 16: The evaluation prompt when employing
Qwen-max for open-domain QA.
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Prompt

Please provide a rewrite to express the same query based on the
given query. Here are some example

Query: what state is this zip code 85282?
Output: Welcome to TEMPE, AZ 85282. 85282 is a rural zip code
in Tempe, Arizona. The population is primarily white, and mostly
single. At $200,200 the average home value here is a bit higher
than average for the Phoenix-Mesa-Scottsdale metro area, so this
probably isn’t the place to look for housing bargains.5282 Zip
code is located in the Mountain time zone at 33 degrees latitude
(Fun Fact: this is the same latitude as Damascus, Syria!) and -112
degrees longitude.

Query: why is gibbs model of reflection good
Output: In this reflection, I am going to use Gibbs (1988) Re-
flective Cycle. This model is a recognised framework for my
reflection. Gibbs (1988) consists of six stages to complete one
cycle which is able to improve my nursing practice continuously
and learning from the experience for better practice in the future.n
conclusion of my reflective assignment, I mention the model that
I chose, Gibbs (1988) Reflective Cycle as my framework of my
reflective. I state the reasons why I am choosing the model as well
as some discussion on the important of doing reflection in nursing
practice.

Query: what does a thousand pardons means
Output: Oh, that’s all right, that’s all right, give us a rest; never
mind about the direction, hang the direction - I beg pardon, I beg a
thousand pardons, I am not well to-day; pay no attention when I
soliloquize, it is an old habit, an old, bad habit, and hard to get rid
of when one’s digestion is all disordered with eating food that was
raised forever and ever before he was born; good land! a man can’t
keep his functions regular on spring chickens thirteen hundred
years old.

Query: what is a macro warning
Output: Macro virus warning appears when no macros exist in
the file in Word. When you open a Microsoft Word 2002 doc-
ument or template, you may receive the following macro virus
warning, even though the document or template does not contain
macros: C:\<path>\<file name>contains macros. Macros may con-
tain viruses.

Query: {}
Output:

Table 17: The few-shot prompt for Query2Doc when
generating pseudo documents from LLMs adopted from
(Wang et al., 2023).
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