
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 8241–8256
November 12-16, 2024 ©2024 Association for Computational Linguistics

PropTest: Automatic Property Testing for Improved Visual Programming

Jaywon Koo ♣ Ziyan Yang ♣ Paola Cascante-Bonilla3

Baishakhi Ray♡ Vicente Ordonez ♣
♣Rice University 3 University of Maryland ♡Columbia University

{jk125, zy47, vicenteor}@rice.edu
pcascant@umd.edu, rayb@cs.columbia.edu

Abstract

Visual Programming has recently emerged as
an alternative to end-to-end black-box visual
reasoning models. This type of method lever-
ages Large Language Models (LLMs) to gener-
ate the source code for an executable computer
program that solves a given problem. This
strategy has the advantage of offering an in-
terpretable reasoning path and does not require
finetuning a model with task-specific data. We
propose PropTest, a general strategy that im-
proves visual programming by further using an
LLM to generate code that tests for visual prop-
erties in an initial round of proposed solutions.
Our method generates tests for data-type consis-
tency, output syntax, and semantic properties.
PropTest achieves comparable results to state-
of-the-art methods while using publicly avail-
able LLMs. This is demonstrated across differ-
ent benchmarks on visual question answering
and referring expression comprehension. Par-
ticularly, PropTest improves ViperGPT by ob-
taining 46.1% accuracy (+6.0%) on GQA using
Llama3-8B and 59.5% (+8.1%) on RefCOCO+
using CodeLlama-34B.

1 Introduction

Visual reasoning tasks often require multi-hop rea-
soning that goes beyond surface-level observations.
This type or reasoning typically involves complex
multi-step processes, external knowledge, or under-
standing of compositional relationships between
objects or entities. End-to-end vision and language
models based on deep neural networks trained
with huge amounts of data are used to tackle these
tasks (Li et al., 2023; Alayrac et al., 2022; Yu et al.,
2022; Driess et al., 2023; Li et al., 2022a; Wang
et al., 2023). However, these methods often fail
at multi-hop compositional reasoning as they aim
to solve a wide array of reasoning tasks in a sin-
gle forward pass. Recent work has proposed Vi-
sual Programming as a principled way to tackle
visual reasoning (Gao et al., 2023; Surís et al.,

2023; Gupta and Kembhavi, 2023; Subramanian
et al., 2023). These techniques work by leveraging
a Large Language Model (LLM) to generate the
logic of a program in the form of its source code
that can be used to solve the problem. These meth-
ods can combine various tools in complex ways
and offer interpretability and the opportunity to
diagnose failures in their predicted logic.

Visual programming methods that rely on code
generation and program execution to solve a task
still rely on end-to-end pre-trained Vision Lan-
guage Models (VLMs) either as tools that can be
invoked by the program or as a fallback option
when the generated code contains syntax or run-
time errors. In other words, if the generated code
contains errors, then a default end-to-end VLM is
invoked. For these methods to be effective, the
generated source code should produce solutions
that lead to correct results on average more often
than their fallback VLM. However, there are still
many instances where a generated source code con-
tains no syntax or runtime errors, but the logic of
the program produces results that contain incorrect
logic to solve the problem. Some of these are easier
to spot, such as instances where the code returns
the wrong data type, or the wrong type of answer
for the given problem (e.g. answering with a lo-
cation when the question is about a quantity). We
posit that code testing and assertion error checking
which are established practices in software devel-
opment, should also help these types of methods in
guiding them toward better solutions.

We introduce PropTest, a visual programming
framework that generates automatic property test
cases to guide code generation and identify logic
that is likely to contain errors. Fig. 1 showcases
a motivating example for our proposed method.
PropTest first generates property test cases using
an LLM which probes for data type inconsisten-
cies, syntactic errors, and semantic properties of
the results. For instance, in the showcased question

8241

Outputs whether there is an
appliance above the bananas

Generated Code
Baseline

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
banana_patches = image_patch.find("banana”)
if len(banana_patches) == 0:

return image_patch.simple_query("What appliance is above the bananas?”)
banana_patch = banana_patches[0]
appliance_patches = image_patch.find("appliance”)
if len(appliance_patches) == 0:

return "no"
for appliance_patch in appliance_patches:

if appliance_patch.vertical_center > banana_patch.vertical_center:
return "yes"

return "no"

PropTest
Generated Property Test Case

Provides extra check signaling that
the answer should be an appliance

Finds the appliance that is
above the bananas and returns
a name

Baseline: yes

PropTest: microwave

Question: What appliance is
above the bananas?

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines, syntax)
Test case 1:
assert isinstance(result, str), "Expected output to be string."
Test case 2:
assert len(result.split()) in [1, 2], "Expected output to be one or two words"
Test case 3:
assert llm_query(f"Is {result} an appliance?”, long_answer = False) == 'yes’,

"Expected output to be an appliance"
return result

Generated Code

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
banana_patches = image_patch.find("banana")
if len(banana_patches) == 0:

return image_patch.simple_query("What appliance is above the banana?")
for banana_patch in banana_patches:

appliance_patches = image_patch.find("appliance”)
for appliance_patch in appliance_patches:

if appliance_patch.vertical_center > banana_patch.vertical_center:
crop would include the appliance so keep it in the query
return appliance_patch.simple_query("What is the name of the appliance?")

If no appliance is above the banana, pick the first appliance
return appliance_patches[0].simple_query ("What is the name of the appliance?")

Figure 1: Visual programming methods generate code for a program to solve a vision-and-language task such as
VQA. PropTest improves on these methods by automatically generating testing code that probes for several output
properties. This is used as additional information when generating code and checking the correctness of the output
solutions. As a baseline we use ViperGPT under CodeLlama-7B for this example.

What appliance is above the bananas?, the gener-
ated test code anticipates that the answer should be
a Python string data type, that it should be limited
to one or two words, and that the output should be
a type of appliance. We find that this type of tests
consistently help the LLM generate code for the
program that is less likely to contain errors.

PropTest can filter out incorrect outputs result-
ing from errors in logic or failures in dependent
modules and redirect these cases when appropri-
ate to the fallback VLM. Moreover, PropTest pro-
vides additional information about failure cases
and in characterizing the type of errors. Addi-
tionally, previous visual programming methods
rely on closed-source models, making it hard to
reproduce results due to continuous version up-
dates, deprecation of older models (e.g., Codex),
and usage costs (Gupta and Kembhavi, 2023; Surís
et al., 2023; Subramanian et al., 2023). Our main
experiments rely exclusively on public models,
such as CODELLAMA (Roziere et al., 2023) and
LLAMA3 (AI@Meta, 2024), which we expect to
serve as stable baselines for future work on this
area. We evaluate PropTest on three different
tasks: Compositional visual question answering
(GQA (Hudson and Manning, 2019)), External
knowledge-dependent image question answering
(A-OKVQA (Schwenk et al., 2022)), and Visual

grounding (RefCOCO and RefCOCO+ (Yu et al.,
2016)). Our experiments show that property tests
significantly enhance performance across these
benchmarks. We also analyze detailed errors from
a software engineering perspective (assertion, run-
time, and syntax).

Our contributions can be summarized as follows:
• We propose PropTest, a novel framework that

uses automatic property test case generation
for detecting logic, syntax, and runtime errors,
which are used to guide code generation.

• PropTest improves interpretability when er-
rors occur, bridging the gap between LLMs
and VLMs on code generation.

• Our proposed method obtains superior results
on four benchmarks compared to a baseline
model conditioned on four different publicly
available LLMs and one proprietary LLM.

2 Method

We introduce PropTest, a framework for leveraging
property test code generation. A commonly rec-
ommended practice in software development is to
write tests first and then write the code for the logic
of the program so that it passes the tests. This is the
responsible programmer approach to software de-
velopment. We emulate this approach in PropTest
by first generating testing code and then generating

8242

Question
Result

(1)�Property�Test�Case
Generation

LLM

Python�
Code�

(3)�Execution

LLM

Property�
Test�Case

(2)�Code�Generation

Result

VLMs

Property�Test�Case

API�Description

Question

Error

&

&
&

Figure 2: An overview of PropTest. Given an image and a question, the goal is to generate Python code that can be
executed to get an answer. PropTest first calls an LLM to generate test cases based on the inferred properties of the
answer. Then, the generated test cases are used to improve the quality of Python code.

code to solve the task conditioned on the testing
code. Fig. 2 shows an overview of our method.

Let us consider a question such as What kind of
toy is the boy playing with?, we can easily infer
that the answer should be a type of toy. We utilize
this insight to provide information to the code gen-
eration model, narrowing down the search space
rather than only relying on single-step prompt op-
timization. Additionally, generating property test
cases is generally simpler than generating code
because test cases are shorter and more straight-
forward. Creating an easier test case first sets a
baseline to generate more complex code. Property
test cases guide the code generation process and
increase the likelihood of generating accurate and
effective code solutions.

Our framework first generates property test cases
using an LLM by providing a problem statement
as a prompt, e.g., a question, or a referring expres-
sion. The source code for these generated tests
is then added to the prompt of the LLM, along
with the original problem statement and detailed
API documentation of the available tools or mod-
ules. We employ the same API and tools used in
ViperGPT (Surís et al., 2023), which also relies on
generic functions from the Python programming
language. The code generation model then out-
puts the code solution that addresses the problem
statement and returns a plausible result.

We concatenate the generated property test case
and the code solution and apply an execution en-
gine where we also provide the visual input. There
can be a syntax or runtime error inside the gener-
ated main code. An assertion error will occur if
the code output does not pass any of the property
test cases. If execution proceeds without errors,
including syntax, runtime, or assertion errors, the

result is returned, and the process concludes. In
the event of an error, we default to a task-specific
fallback VLM and return.

3 Property Test Case Generation

The purpose of using a property tests is to verify
whether a generated code works as expected and
guide an LLM to generate better code that meets
basic properties. The design of property test cases
varies based on the data type of the answer due to
the different tools (APIs) available for each type.
In this section, we explain in detail the design pro-
cess for prompts used to generate property tests
for visual question answering tasks, where the task
answer is text (section 3.1) and for visual ground-
ing tasks, where the task answer is an image with
bounding boxes (section 3.2).

3.1 Property Tests for Visual Question
Answering

Visual question answering tasks contain queries
that require multi-hop reasoning or external knowl-
edge. To solve these tasks, we propose two prop-
erty test case generation strategies along with cor-
responding in-context prompts to guide the LLM
toward the generation of property tests with similar
logic. We include our prompts in Appendix A.3.
Basic Property Test Case Generation. This type
of test only relies on basic Python functions without
using external APIs or tools. As shown in Fig. 3a,
this approach is effective when the question men-
tions several candidates. Furthermore, this strategy
can be applied to yes-or-no questions, where it
checks the type of the property.
Advanced Property Test Case Generation. For
this type of test cases, we also allow the use of tools
through an API specification, specifically the use

8243

(c) Visual Grounding Property Test Case(b) Advanced VQA Property Test Case(a) Basic VQA Property Test Case

What kind of cuisine is this?

def execute_test(image):
result = execute_command(image)
Test case 1
assert isinstance(result, str),

"Expected output to be string”
Test case 2
assert len(result.split()) in [1,2],

"Expected output to be one or two words"
Test case 3
assert llm_query(f"Is {result} a type of cuisine?",

long_answer=False) == 'yes’,
"Expected output to be a type of cuisine"

return result

Is the soccer player that is to the left
of the ball female or male?

def execute_test(image):
result = execute_command(image)
Test case 1
assert result in [‘female’, ‘male’],

"Expected output to be female or male”
return result

The player facing right with hand up

def execute_test(image):
result = execute_command(image)
Test case 1
assert ‘yes’ in result. simple_query(

“Is there a player?”). lower(),
"Expected output to have a player”

Test case 2
assert bool_to_yesno(result. verify_property(

“player” , “facing right”)),
“Expected output to have a player facing right”

Test case 3
assert bool_to_yesno(result. verify_property(

“player”, “hand up”)),
“Expected output to have a player with hand up”

return result

Figure 3: Three different examples of property test cases generated for visual question answering and for visual
grounding. The execute_command() is the generic name of the generated program code routine and result is the
output from executing it.

of an LLM that can check the output result through
various properties. Particularly, our generated test
code can use an llm_query() function to construct
more advanced assertion statements. Fig. 3b shows
an example where given the question What kind of
cuisine is this?, the first test case checks the return
data type, which should be a Python string. Then
a second assertion checks that the output is just
one or two words in length. The third test case
checks the semantic property of the returned result.
Knowing that the expected answer should be a type
of cuisine, we use LLM queries in the test case
to verify whether the result correctly identifies a
cuisine type. This effectively narrows the expected
result space for the code generation model, helping
it produce more accurate solutions.

3.2 Property Tests for Visual Grounding

Visual grounding tasks require returning a bound-
ing box in an image that corresponds to an input
text query. To construct property test cases for such
tasks, we utilize a set of tools that take images as
inputs. Particularly, our test code can use functions
such as simple_query(), verify_property(),
and bool_to_yesno(). The simple_query()
function is used to answer straightforward ques-
tions about the image, verify_property()
checks whether an object has a given attribute as a
property, and bool_to_yesno() converts boolean
values into "yes" or "no" responses. As shown in
Fig. 3c, given the input referring expression the
player facing right with hand up, our test case be-

gins by confirming if a player is inside the result
bounding box. It then proceeds to verify, in se-
quence, whether the identified player is facing right
with hand up, thus checking whether the given out-
put is likely to reflect the given query.

4 Experiments

We introduce the experimental setup (section 4.1),
and results on different LLMs (section 4.2)

4.1 Experimental Setup

Tasks and Metrics. We validate PropTest on
the Visual Question Answering (VQA) and Vi-
sual Grounding tasks. For VQA, we evaluate
on GQA (Hudson and Manning, 2019), and A-
OKVQA (Schwenk et al., 2022), which contain
complex multi-hop questions that require composi-
tional reasoning. We use exact matching accuracy
as our metric for GQA, where answers must cor-
respond to a single ground truth answer. We use
soft accuracy (SAcc) (Antol et al., 2015) for A-
OKVQA. For Visual Grounding, we use standard
benchmarks, including testA split on RefCOCO
and RefCOCO+ (Yu et al., 2016). The evaluation
metric is the intersection over union (IoU) score.
Model Comparison. Similar to prior work, for
VQA we use BLIP-2 (Li et al., 2023) as our fall-
back VLM, and GLIP (Li et al., 2022a) for Visual
Grounding. The tools and API specifications for
PropTest are consistent with those employed by
ViperGPT (Surís et al., 2023), ensuring a standard-
ized basis for comparison. Therefore, for our exper-

8244

Llama3-8B Llama3-70B CodeLlama-7B CodeLlama-34B Gpt-4o*
37

39

41

43

45

47

49
Ac

cu
ra

cy

40.1

46.1

42.0

45.6

42.5

45.3

44.0

40.4

45.8
45.2

47.0

ViperGPT
PropTest (Ours)
TRoVE

(a) Results on GQA using different LLMs

Llama3-8B Llama3-70B CodeLlama-7B CodeLlama-34B Gpt-4o*
38

40

42

44

46

48

50

52

54

Ac
cu

ra
cy

43.2

48.1

43.7

45.8

41.4

46.3
45.5

47.5 47.9

53.7ViperGPT
PropTest (Ours)

(b) Results on A-OKVQA using different LLMs

Llama3-8B Llama3-70B CodeLlama-7B CodeLlama-34B Gpt-4o*
54

56

58

60

62

64

66

68

70

72

Io
U

61.3

64.4

67.4 67.7

60.5

63.7

61.2

63.9

68.9
69.9

ViperGPT
PropTest (Ours)

(c) Results on RefCOCO using different LLMs

Llama3-8B Llama3-70B CodeLlama-7B CodeLlama-34B Gpt-4o*
46

48

50

52

54

56

58

60

62

64

Io
U

51.4

58.5

56.7
57.4

49.5

55.6

51.4

59.5

61.1

62.5ViperGPT
PropTest (Ours)

(d) Results on RefCOCO+ using different LLMs

Figure 4: Comparison of our method against visual programming methods with different LLMs across two tasks,
four benchmarks. We report Accuracy on two visual question answering benchmarks, and IoU on two visual
grounding benchmarks. GPT-4o* results are only tested on 500 subsamples.

imental comparisons, we compare PropTest with
other code generation models - ViperGPT (Surís
et al., 2023), and end-to-end models including
BLIP-2 (Li et al., 2023) and GLIP (Li et al., 2022a).
The only other publicly available neuro-symbolic
method is the concurrent work from Wang et al.
(2024), which uses CODELLAMA-7B.
Implementation Details. We implement PropTest
using the open-source LLMs including CODEL-
LAMA (7B, 34B) (Roziere et al., 2023) and
LLAMA3 (8B, 70B) (AI@Meta, 2024) for code
generation. The specific implementation details are
described in Appendix A.

4.2 Results

Quantitative Results. One common concern with
previous work is that evaluations performed with
API-based black-box models (e.g. GPT-3.5, GPT-
4) are hard to reproduce and track as there are many
different upgrades on these models. They can also
be discontinued (e.g. Codex), making past work
non-reproducible. Our main experiments are con-
ducted using CODELLAMA and LLAMA3, which
are publicly available and free to use for research
purposes. As part of our work, we will also release

an API-free implementation of ViperGPT. Addi-
tionally, we evaluate PropTest using GPT-4o to
contextualize our work. We limit our evaluation to
500 randomly sampled subsets for each data split,
specifically for GPT-4o.

Our main results are shown in Fig. 4. Over-
all, PropTest shows improvements over ViperGPT
in all settings. The model that provides the most
gain varies by dataset, smaller models such as
CodeLlama-7B and Llama3-8B tend to benefit
more with PropTest (e.g., +6.0% on GQA with
Llama3-8B, +4.9% on A-OKVQA with both LLMs
and +7.1% on RefCOCO+ with Llama3-8B) but
even larger models also show gains, including
GPT-4o. Notably, CodeLlama-34B outperforms or
shows greater improvement over ViperGPT com-
pared to Llama3-70B across all datasets. This is
due to CodeLlama-34B’s training with code, mak-
ing it superior in code generation despite its smaller
size relative to Llama3-70B. We also noticed that
GPT-4o shows the best results on all datasets.

Moreover, PropTest outperforms the fallback
VLMs we rely on, while also providing enhanced
interpretability in all settings. The fallback VLM

8245

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
guy_patches = image_patch.find(”guy")
guy_in_suit_patches = [g for g in guy_patches if g.verify_property(”guy”, ”suit”)]
if len(guy_in_suit_patches) == 0:

guy_in_suit_patches = guy_patches
guy_in_suit_patches.sort(key=lambda guy:guy.horizontal_center)
guy_patch = guy_in_suit_patches[0]
return guy_patch

PropTest: tokyo

Question: What is the largest
city in the nation where this
plane is headquartered?

Baseline: new york

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert isinstance(result, str), "Expected output to be string."
Test case 2:
assert len(result.split()) in [1, 2],

"Expected output to be one or two words"
Test case 3:
assert llm_query(f"Is {result} a city?”, long_answer = False) == 'yes’,

"Expected output to be a city"
return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
guesses = []
plane_location= image_patch.simple_query(" Where is this plane headquartered?")
external_knowledge_query = "What is the largest city in the nation where {} is

headquartered?".format(plane_location)
step_by_step_guess = llm_query(external_knowledge_query)
guesses.append("where is this plane headquartered is{}".format(plane_location) +

", so " + step_by_step_guess)

direct_guess = image.simple_query("What is the largest city in the nation where
this plane is headquartered?")

guess.append(direct_guess)
return process_guesses ("What is the largest city in the nation where this plane is

headquartered?", guesses)

PropTest: yes

Question: Are there either
any chairs or televisions that
are black?

Baseline: no

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert result in [“yes”, “no”], "Expected output to be yes or no"
return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
chairs_patches = image_patch.find("chairs”)
televisions_patches = image_patch.find("televisions”)
black_chairs = []
black_televisions = []
for chair_patch in chairs_patches:

if chair_patch.verify_property("chair”, "black”):
black_chairs.append(chair_patch)

for television_patch in televisions_patches:
if television_patch.verify_property("television”,"black”):

black_televisions.append(television_patch)
return bool_to_yesno(len(black_chairs) > 0 or len(black_televisions) > 0)

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert ”yes” in simple_query(“Is there a guy?”).lower(),

"Expected output to be a guy"
Test case 2:
assert bool_to_yesno(result.verify_property (“guy”, “suit”)),

"Expected output to be a guy in a suit"
return result

Referring expression:
guy in suit

Generated Test Generated Code

Generated Test Generated Code

Generated Test Generated Code

PropTest:

Baseline:

Figure 5: Example results on GQA, A-OKVQA and RefCOCO. We show cases where PropTest succeeds but the
baseline ViperGPT fails. Input questions and answers are shown on the left, generated property test cases in the
middle, and code on the right.

results are 42.4%1 on GQA, 45.1% on A-OKVQA,
55.0% on RefCOCO, and 52.2% on RefCOCO+.
While ViperGPT sometimes underperforms com-
pared to VLMs depending on the LLMs, PropTest
remains robust, performing well on all models, in-
cluding smaller ones.

We did not compare our models to previous vi-
sual programming methods that use closed API-
based LLMs (Yuan et al., 2024; Subramanian et al.,
2023; Chen et al., 2023b), as it would be unfair or
unfeasible due to the different or deprecated LLMs
used in those models.
Qualitative Results. Fig. 5 shows representative
examples of the types of property tests that get gen-
erated and output programs. By leveraging prop-
erty test cases, PropTest generates a code with cor-
rect logic and results on cases that fail to return a
correct answer due to logical errors on ViperGPT.
In addition, we illustrate cases with logical errors
that produce assertion errors in Appendix C. By
checking on logical errors, PropTest provides ex-

1Result under the same setting as ViperGPT, differing from
the original work (Li et al., 2023)

tra interpretability on the reason for failure. More
qualitative results are shown in Appendix B.

5 Error Analysis & Discussion

In this section, we first focus on the question: What
types of errors does the code generation model
produce? We analyze the errors in the generated
code from ViperGPT and PropTest across datasets,
categorizing them into three basic Python errors:
Assertion, Runtime, and Syntax errors. We report
results using Llama3-8B in Table 1.

We first note that code generation models pro-
duce more errors in visual grounding tasks than
in VQA tasks. This is because visual ground-
ing involves stricter assertions in test cases, lead-
ing to a higher frequency of assertion errors. In
visual grounding, all test cases check the result
image_patch for specific properties, and errors
occur when objects or properties are missing. In
contrast, VQA often involves simpler yes-or-no
checks, where incorrect results might still pass the
test. Furthermore, RefCOCO+ has a higher overall
error rate compared to RefCOCO due to its com-

8246

Dataset Method # Errors Assert. Runt. Syntax

GQA ViperGPT 411 (3.3%) - 322 89
PropTest 1264 (10.0%) 1001 227 36

A-OKVQA ViperGPT 11 (1.0%) - 9 2
PropTest 174 (15.2%) 169 3 2

RefCOCO ViperGPT 281 (5.0%) - 240 41
PropTest 871 (15.4%) 617 241 13

RefCOCO+ ViperGPT 435 (7.6%) - 386 49
PropTest 1132 (19.8%) 875 250 7

Table 1: Error Analysis on ViperGPT (Surís et al., 2023)
and PropTest across benchmarks using Llama3-8B in-
cluding runtime and syntax errors.

plex queries. The simpler queries in RefCOCO
make PropTest generate test cases that accurately
identify the target object, resulting in fewer errors.
Detailed analysis with examples is in Appendix C.

We also find that due to additional assertion er-
rors, PropTest has higher overall errors compared to
ViperGPT. Nevertheless, PropTest notably reduces
runtime and syntax errors on three datasets (e.g.,
322 → 227 runtime, 89 → 39 syntax errors in
GQA). This reduction indicates that the inclusion
of property test cases enhances code generation
quality in the aspects of runtime and syntax errors.
However, the increase in assertion errors, leading
to a rise in total errors, implies that PropTest relies
more on the fallback model. This raises the ques-
tion: Does the performance gain of PropTest come
from an increased dependence on VLMs?

To address this, we compare the performance of
ViperGPT and PropTest without using the fallback
model for error handling, as shown in Table 2. We
evaluate “w/o fallback models” in Table 2 over all
cases and count the case as wrong whenever an
error occurs (e.g., assertion, runtime, and syntax
error) or the answer is incorrect. When the case
fails the property test, it will generate an asser-
tion error, and we count it as wrong. Across all
datasets, PropTest either outperforms or performs
on par with ViperGPT, demonstrating that the per-
formance gain is from improved code quality rather
than increased reliance on VLMs.

Now, we move on to another question: How
does running a test case during execution help
when there is an error? To address this, we com-
pare PropTest with an approach where property test
cases are only provided for code generation but are
not executed to catch errors (“w/o running test” in
Table 2). Our findings show that running test cases

w/o VLMs as fallback w/ VLMs as fallback

Dataset ViperGPT PropTest
PropTest

w/o running tests
PropTest

GQA 39.1 43.8 45.8 46.1
A-OKVQA 42.8 42.8 47.3 48.1
RefCOCO 60.1 61.6 63.8 64.4
RefCOCO+ 50.2 55.8 58.1 58.5

Table 2: Ablation study on the reliance on Visual Lan-
guage Models (VLMs) for error handling in generated
code and the impact of executing test cases.

ViperGPT Incorrect Correct

PropTest Correct Incorrect Correct Incorrect

GQA 86 (11.30%) 303 (39.82%) 297 (39.03%) 75 (9.86%)
A-OKVQA 53 (6.74%) 356 (45.29%) 358 (45.55%) 19 (2.42%)
RefCOCO 278 (43.99%) 154 (24.37%) 159 (25.16%) 41 (6.49%)
RefCOCO+ 119 (18.25%) 169 (25.92%) 316 (48.47%) 48 (7.36%)

Table 3: Accuracy comparison of PropTest and
ViperGPT (Surís et al., 2023) when both models gen-
erate outputs with correct types using Llama3-8B. We
show the counts and percentages of each correct/incor-
rect combination.

in the presence of errors increases accuracy, indi-
cating that our generated property test cases are
effective at detecting incorrect code (e.g., +0.8 in
A-OKVQA).

Furthermore, we ask another question: Does the
PropTest improve the quality of the code in cases
where the baseline also generates correct output
types? To tackle this, we compare the results where
both the ViperGPT (Surís et al., 2023) and PropTest
produced correct output types. To extract the sam-
ples where both the ViperGPT and PropTest pro-
duced correct output types, we run generated prop-
erty tests on the outputs of the ViperGPT. We sam-
pled 1000 subsets from each benchmark and gath-
ered the samples where the output of the code solu-
tion passed the property tests in both ViperGPT and
PropTest. We used the code solutions by Llama3-
8B. Since A-OKVQA uses soft accuracy as a met-
ric, we assume the output is correct when the soft
accuracy is larger than 0.5. We consider the result
to be correct if the IoU exceeds a threshold of 0.7
for RefCOCO and RefCOCO+. The results shown
in Table 3 indicate that PropTest consistently out-
performs ViperGPT. Across all benchmarks, there
are more cases where PropTest produces correct
answers while ViperGPT is incorrect, compared to
the reverse scenario. Particularly, in GQA, among
the cases where both models produced correct out-

8247

Method Acc. # Errors Assert. Runt. Syntax

Basic VQA 45.6 732 (5.8%) 469 232 31
Advanced VQA 46.1 1264 (10%) 1001 227 36

Table 4: Error analysis on GQA dataset using basic
and advanced property tests using Llama3-8B, includ-
ing runtime and syntax errors. APIs are used for the
Advanced VQA property test cases, where only basic
Python functions are used in Basic VQA.

put types, PropTest provided correct answers while
the ViperGPT was incorrect in 11.30% of the cases.
Conversely, ViperGPT was correct while PropTest
was incorrect in 9.86% of the cases. These results
demonstrate that even with information about the
type (properties), property tests lead the code gen-
eration process toward more accurate solutions.

6 Property Test Analysis

In this section, we investigate generated property
tests in depth by comparing two types of VQA
property test cases (section 6.1) and evaluating the
generated property test cases (section 6.2).

6.1 Basic vs Advanced Property Tests
Table 4 shows the accuracy and error analysis
of two types of VQA property test cases using
Llama3-8B. Advanced property test cases have
higher accuracy compared to basic tests. Using
advanced property test case generation produces
almost twice as many errors as basic property test
case generation. This is due to an extra seman-
tic property test, which leads to more assertion
errors. Advanced property test cases will be longer
and more complicated than basic test cases, which
causes more syntax errors (e.g., 31 → 36).

6.2 Generated Property Test Evaluation
We first evaluate our generated property tests on
correctness by using the answers. If an answer
passes the generated test, we count it as correct.
We report this as accuracy in Table 5. We also
examine the quality of our property test cases by
using toxicity rate (Chen et al., 2022). If the pro-
duced results pass the test while the answer fails
the test, we assume the test case is toxic. Advanced
VQA property test cases have lower accuracy and
higher toxic rates compared to basic VQA tests be-
cause they generate complicated property test cases
that check semantic properties using tools.

Moreover, we present a 2× 2 confusion matrix
for the advanced property test cases generated on

Method Dataset Acc. Toxic rate

Basic VQA GQA 95.7% 0.03%
Advanced VQA GQA 91.7% 0.04%

Table 5: Accuracy and toxic rate of generated property
test cases on GQA with Llama3-8B. APIs are utilized
in Advanced VQA property test cases, while only basic
Python functions are used in Basic VQA.

Pass Fail
Property Test Case (Advanced)

Co
rre

ct
 R

es
ul

t
W

ro
ng

 R
es

ul
tRe

su
lt

5419
(43.08%)

382
(3.04%)

5895
(46.87%)

882
(7.01%)

Confusion Matrix

1000

2000

3000

4000

5000

Sc
al

e

Figure 6: Confusion Matrix of the generated advanced
property test cases on GQA using Llama3-8B. We show
the counts of correct and incorrect results, further di-
vided by whether they passed or did not pass the gener-
ated property test case.

GQA using Llama3-8B in Fig. 6. We define True
Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) as follows:

• TP: cases where the correct result passes the
property case

• TN: cases where the wrong result fails the
property case

• FP: cases where the wrong result passes the
property case

• FN: cases where the correct result fails the
property case

The matrix shows a high number of false positives,
primarily due to the flexibility of VQA property
test cases. For example, these tests often check
for binary answers (yes or no), which can pass
even if the result is incorrect. The confusion matrix
for the basic property test case and for the visual
grounding test case are provided in Appendix D.

Additionally, we conducted an experiment with
the Oracle property tests on randomly sampled 100
subsets from GQA and RefCOCO. We created the
oracle property tests by manually fixing errors in
the generated property tests using Llama3-8B. As
shown in Table 6, we can see an improvement when
using oracle property tests. Our oracle property

8248

Dataset ViperGPT PropTest PropTest
w. Oracle Property Tests

GQA (Acc.) 42.0 46.0 50.0
RefCOCO (IoU) 48.2 60.4 62.5

Table 6: Comparison of ViperGPT, PropTest, and
PropTest with Oracle Property Tests for GQA (Accu-
racy) and RefCOCO (IoU). We sample 100 subsets from
each benchmark and use Llama3-8B.

tests could still be further refined as we only lim-
ited ourselves to fixing mistakes in the automat-
ically generated property tests. Importantly, this
result shows that better property tests lead to fur-
ther improvement under our method, generating
better code and signaling that PropTest works for
the right reasons.

7 Related Work

End-to-end vision language models (VLMs) are
generally trained on large datasets containing
images paired with text descriptions or instruc-
tions (Li et al., 2023; Alayrac et al., 2022; Yu et al.,
2022; Driess et al., 2023; Li et al., 2022a; Liu et al.,
2023; Guo et al., 2023; Wang et al., 2023). By
learning correlations between visual features and
linguistic patterns, VLMs can understand sophis-
ticated relations between images and text using a
single forward pass through a deep neural network.
These models, however large, are still bounded by
what functions can be learned and encoded in their
model weights.

On the other hand, with the rise of LLMs for
code generation in recent years (Chen et al., 2021;
Roziere et al., 2023; Guo et al., 2024; Nijkamp
et al., 2023; Luo et al., 2023), a recent set of meth-
ods in visual recognition have adopted the use of
these models to solve visual tasks using a hybrid
approach where VLMs and other computer vision
models are used as tools by one of these code gen-
eration LLMs to generate a program that can solve
a given task (Surís et al., 2023; Gupta and Kemb-
havi, 2023; Subramanian et al., 2023). This type
of neuro-symbolic reasoning model was referred
to as Visual Programming by Gupta and Kemb-
havi (2023). These methods lead to an executable
program that decomposes complex visual reason-
ing queries into interpretable steps, which are then
executed to produce results. These methods de-
fine APIs (tools) they use during the execution,
with functions mapped to off-the-shelf vision mod-
ules such as object detectors (He et al., 2017; Li

et al., 2022a), depth estimators (Ranftl et al., 2022),
among many others. These methods benefit from
not needing extra training while enhancing reason-
ing capabilities and interpretability. The perfor-
mance of these methods depends on the tools or
APIs the model leverages and the quality of the gen-
erated code. One line of work focuses on creating
better and more diverse toolsets to improve accu-
racy (Yuan et al., 2024; Chen et al., 2023b; Wang
et al., 2024). Efforts to enhance code quality have
been made by code refinement techniques, incor-
porating various types of feedback, such as visual,
textual, error-related, and human feedback (Gao
et al., 2023). Self-tuning mechanisms have also
been explored to optimize model hyperparameters
automatically (Stanić et al., 2024). Training a code
debugger to detect and fix the code has been inves-
tigated (Wu et al., 2024). Our method builds upon
these findings, aiming to maximize the efficacy of
VLMs (Li et al., 2023, 2022a) through property
testing that is more specific to the visual domain.

Meanwhile, writing test cases is a common tech-
nique used by software developers to avoid writing
code that contains programming errors. Similarly,
it has enhanced code generation in code contest
tasks. Test cases are used to detect errors and
give feedback for self-refinement (Le et al., 2023;
Chen et al., 2023a; Olausson et al., 2023). An-
other line of work generates test cases by mutating
existing test inputs (Li et al., 2022b) or by using
LLMs (Chen et al., 2022). Our research, however,
differs from these methods by generating property
tests that check different properties of the output,
and utilizing these tests as an additional input when
generating code.

8 Conclusion

This paper presents PropTest, a novel framework
for leveraging property test code generation to im-
prove the quality of generated program code in
visual programming. PropTest shows consistent
improvements on VQA and Visual Grounding with
four open-source code generation LLMs. Interest-
ingly, we find that common software development
advice which dictates that we should first write test-
ing code before implementing new functionality,
also applies to LLM-based code generation.

Acknowledgements: Our work was partially
funded by the Ken Kennedy Institute at Rice
University and NSF Award #2221943, #2201710,
#1845893.

8249

9 Limitations

PropTest is an initial work that applies property test
case generation for visual reasoning. Although the
PropTest is a very promising framework for visual
reasoning, there are several limitations that can be
mentioned. First, PropTest requires an extra LLM
inference to generate property test code, which will
require extra time and resources, but we expect that
as faster LLMs are supported in the future, this
becomes less of an issue. Additionally, PropTest
needs to design a specific property test case prompt
depending on the type of the result (image or text).
This can be resolved by adding an LLM that can
design an automatic prompt depending on the task.

Although less common, the code generated for
the property tests themselves could also contain
logical errors which limits their usefulness, and
additionally, the tools they rely upon could also
introduce errors. These limitations can be resolved
by integrating visual programming works focused
on tool generation (Yuan et al., 2024; Wang et al.,
2024) or self-refining (Gao et al., 2023; Stanić et al.,
2024) to enhance the code generation skills. Fi-
nally, although the discussed datasets show strong
performance, numerous visual reasoning tasks,
such as video causal/temporal reasoning, remain to
be explored in future research.

References
AI@Meta. 2024. Llama 3 model card.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716–23736.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2425–
2433.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations (ICLR).

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large

language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023a. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Zhenfang Chen, Rui Sun, Wenjun Liu, Yining Hong,
and Chuang Gan. 2023b. Genome: Generative neuro-
symbolic visual reasoning by growing and reusing
modules. arXiv preprint arXiv:2311.04901.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.
2023. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378.

Minghe Gao, Juncheng Li, Hao Fei, Wei Ji, Guoming
Wang, Wenqiao Zhang, Siliang Tang, and Yueting
Zhuang. 2023. De-fine: Decomposing and refining
visual programs with auto-feedback. arXiv preprint
arXiv:2311.12890.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Jiaxian Guo, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Boyang Li, Dacheng Tao, and
Steven Hoi. 2023. From images to textual prompts:
Zero-shot visual question answering with frozen
large language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10867–10877.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask r-cnn. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV), pages 2961–2969.

Drew A. Hudson and Christopher D. Manning. 2019.
Gqa: A new dataset for real-world visual reason-
ing and compositional question answering. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6693–
6702.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2023. Codechain: To-
wards modular code generation through chain of self-
revisions with representative sub-modules. arXiv
preprint arXiv:2310.08992.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. BLIP-2: bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the International
Conference on Machine Learning (ICML).

8250

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.48550/arXiv.2207.10397
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2311.04901
https://doi.org/10.48550/arXiv.2311.04901
https://doi.org/10.48550/arXiv.2311.04901
https://doi.org/10.48550/arXiv.2303.03378
https://doi.org/10.48550/arXiv.2303.03378
https://doi.org/10.48550/arXiv.2311.12890
https://doi.org/10.48550/arXiv.2311.12890
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1109/CVPR.2023.01080
https://doi.org/10.1109/CVPR.2023.01080
https://doi.org/10.1109/CVPR.2023.01080
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.48550/arXiv.1902.09506
https://doi.org/10.48550/arXiv.1902.09506
https://doi.org/10.48550/arXiv.2310.08992
https://doi.org/10.48550/arXiv.2310.08992
https://doi.org/10.48550/arXiv.2310.08992
https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.48550/arXiv.2301.12597

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022a. Grounded language-image pre-training. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
10965–10975.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022b. Competition-level code generation with al-
phacode. Science, 378(6624):1092–1097.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations (ICLR).

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations (ICLR).

René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. 2022. Towards ro-
bust monocular depth estimation: Mixing datasets
for zero-shot cross-dataset transfer. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
44(3):1623–1637.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answering
using world knowledge. In European Conference on
Computer Vision (ECCV), pages 146–162. Springer.

Aleksandar Stanić, Sergi Caelles, and Michael Tschan-
nen. 2024. Towards truly zero-shot compositional
visual reasoning with llms as programmers. arXiv
preprint arXiv:2401.01974.

Sanjay Subramanian, Medhini Narasimhan, Kushal
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein.
2023. Modular visual question answering via code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 747–761, Toronto,
Canada. Association for Computational Linguistics.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, et al. 2023. Cogvlm: Visual ex-
pert for pretrained language models. arXiv preprint
arXiv:2311.03079.

Zhiruo Wang, Daniel Fried, and Graham Neubig. 2024.
Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks. arXiv preprint
arXiv:2401.12869.

Xueqing Wu, Zongyu Lin, Songyan Zhao, Te-Lin
Wu, Pan Lu, Nanyun Peng, and Kai-Wei Chang.
2024. Vdebugger: Harnessing execution feed-
back for debugging visual programs. Preprint,
arXiv:2406.13444.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models. arXiv preprint arXiv:2205.01917.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C.
Berg, and Tamara L. Berg. 2016. Modeling context
in referring expressions. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part
II, pages 69–85. Springer.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung,
Hao Peng, and Heng Ji. 2024. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Yan Zeng, Xinsong Zhang, and Hang Li. 2022. Multi-
grained vision language pre-training: Aligning texts
with visual concepts. In Proceedings of the 39th
International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Re-
search, pages 25994–26009. PMLR.

8251

https://doi.org/10.48550/arXiv.2112.03857
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.48550/arXiv.2310.03744
https://doi.org/10.48550/arXiv.2310.03744
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2306.09896
https://doi.org/10.48550/arXiv.2306.09896
https://doi.org/10.1109/TPAMI.2020.3019967
https://doi.org/10.1109/TPAMI.2020.3019967
https://doi.org/10.1109/TPAMI.2020.3019967
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2206.01718
https://doi.org/10.48550/arXiv.2206.01718
https://doi.org/10.48550/arXiv.2401.01974
https://doi.org/10.48550/arXiv.2401.01974
https://doi.org/10.18653/v1/2023.acl-short.65
https://doi.org/10.18653/v1/2023.acl-short.65
https://doi.org/10.48550/arXiv.2303.08128
https://doi.org/10.48550/arXiv.2303.08128
https://doi.org/10.48550/arXiv.2311.03079
https://doi.org/10.48550/arXiv.2311.03079
https://doi.org/10.48550/arXiv.2401.12869
https://doi.org/10.48550/arXiv.2401.12869
https://doi.org/10.48550/arXiv.2406.134442
https://doi.org/10.48550/arXiv.2406.134442
https://doi.org/10.48550/arXiv.2205.01917
https://doi.org/10.48550/arXiv.2205.01917
https://doi.org/10.1007/978-3-319-46475-6_5
https://doi.org/10.1007/978-3-319-46475-6_5
https://arxiv.org/abs/2309.17428
https://arxiv.org/abs/2309.17428
https://arxiv.org/abs/2309.17428
https://doi.org/10.48550/arXiv.2111.08276
https://doi.org/10.48550/arXiv.2111.08276
https://doi.org/10.48550/arXiv.2111.08276

A Experimental Details

We provide a detailed description of APIs (tools)
used in PropTest in Section A.1, LLMs in Sec-
tion A.2 and prompts in Section A.3.

A.1 APIs (Pretrained Model) Details

Here, we specify the APIs (tools) we used:
⋄ llm_query(), process_guess(): We use

Llama3-8B-Instruct (AI@Meta, 2024) and set the
model to generate at most 256 tokens, temperature
as 0.6 and top_p as 0.9.
⋄ verify_property(): We use open vocabu-

lary object detector, GLIP (Li et al., 2022a) is used.
We used the same version used in ViperGPT (Surís
et al., 2023).
⋄ best_text_match(): Image-text embedding

model, X-VLM (Zeng et al., 2022) fine-tuned ver-
sion for retrieval on MSCOCO is used, which is
also used in ViperGPT.
⋄ simple_query(): We use BLIP2 (Li et al.,

2023) with Flan-T5 XXL from its official reposi-
tory.
⋄ compute_depth(): The “DPT_Large” version

from the PyTorch hub4 of MiDaS (Ranftl et al.,
2022) was used.
⋄ find(): We use MaskRCNN (He et al., 2017)

for detecting objects and GLIP for detecting peo-
ple.

A.2 LLM Details

LLM Specific Model

Llama3-8B meta-llama/Meta-Llama-3-8B-Instruct
Llama3-70B meta-llama/Meta-Llama-3-70B-Instruct
CodeLlama-7B meta-llama/CodeLlama-7b-Instruct-hf
CodeLlama-34B meta-llama/CodeLlama-34b-Instruct-hf
Gpt-4o gpt-4o-2024-05-13

Table 7: Specific details of the LLMs we use in PropTest.
We used Huggingface versions for public LLMs.

Table 7 shows the specific models used for prop-
erty test case and code generation. We set the tem-
perature as 0 and top_p as 1 to avoid randomness
for all LLMs.

A.3 Prompt Details

In this section, we provide prompts of PropTest.
First, the system prompt we used for property test
case generation is as follows:

You are an expert programming assistant. Only answer with a
function starting with def execute_test.

For the code generation, we used the following
system prompt:
Only answer with a function starting def execute_command.

We used two different prompt templates for test
case generation and two different prompt templates
for code generation. Fig. 7 shows the first prompt
template for property test case generation, used for
GQA. Fig. 8 illustrates the second prompt template,
which was used for property test case generation
in A-OKVQA, RefCOCO, and RefCOCO+. For
RefCOCO and RefCOCO+, we only used the first
line of the guideline.

The first prompt template for code genera-
tion, as depicted in Fig. 9, is applied to both
GQA and A-OKVQA datasets. The API descrip-
tions and in-context examples are derived from
ViperGPT (Surís et al., 2023) but have been short-
ened for brevity. We also employed the same set of
8 in-context examples. For A-OKVQA, only the
first two guideline points were used.

CONTEXT
The 'solve_query' function is a Python function that takes an

image as input and returns an answer to a <<QUERY>> in a
string format.

OBJECTIVE
Create a Python function named `execute_test` that checks the

correctness of the `solve_query` function using the
given <<QUERY>>.

<<EXAMPLES>> are the in-context examples.
Include up to four test cases, each with the comment `# Test

case n:` above the assert statement, starting from 1.
Consider these guidelines when creating the test cases:
1. Keep in mind that the return values do not contain numbers.
2. If the Query is True or False questions, the return values

will be yes or no.
3. If the Query gives options using "or", the return values

will be one of the options.
4. Use the llm_query function to answer informational

questions not concerning the image.

STYLE
technical, in a correct Python format

TONE
clear, precise, professional

AUDIENCE
Developers and engineers who will use the test functions to

verify the correctness of the solve_query function

RESPONSE
Provide the function that start with 'def execute_test(image)'

without any explanation.
Each test case should be commented with `#Test case n:` where

`n` represents the test case number.

###
Here are some <<EXAMPLES>>:
{{{{{{ TEN IN-CONTEXT EXAMPLES GOES HERE }}}}}}
###
Instruction
Generate the the function execute_test for the following query:

<<Query>>: INSERT_QUERY_HERE

Figure 7: First prompt template used to generate a
property test case. In-context examples are omitted
for brevity.

8252

Q: Your task is to write a function using Python containing
tests up to four to check the correctness of a
solve_query function that solves a provided answer to
the query.

You must write the comment "#Test case n:" on a separate line
directly above each assert statement,

where n represents the test case number, starting from 1 and
increasing by one for each subsequent test case.

Here are some examples:

<<<<< TEN IN-CONTEXT EXAMPLES >>>>>

Consider the following guidelines:
- Only answer with a function starting with def execute_test.
- Return value of the solve_query function is a string with

one or two words.
- Use the llm_query function to answer informational questions

not concerning the image.

Query: INSERT_QUERY_HERE

Figure 8: Second prompt template used to generate
a property test case. This template was used for A-
OKVQA, RefCOCO, and RefCOCO+. In-context ex-
amples are omitted for brevity.

from PIL import Image
from vision_functions import find_in_image, simple_qa,

verify_property, best_text_match

<<<<< API DESCRIPTIONS >>>>>

Examples of using ImagePatch

<<<<< 8 IN-CONTEXT EXAMPLES >>>>>

Write a function using Python and the ImagePatch class (above)
that could be executed to provide an answer to the

query.

Consider the following guidelines:
- Use base Python (comparison, sorting) for basic logical

operations, left/right/up/down, math, etc.
- Assertion tests (below) is used to verify the expected

output. Consider these when writing the function.
- Do not return None or "Unknown". If the answer is not found,

return image_patch.simple_query("INSERT_QUERY_HERE") to
ask a question about the image.

Query: INSERT_QUERY_HERE
Assertion tests:
INSERT_ASSERTION_TESTS_HERE

Figure 9: First prompt template used to generate a code.
This template is used for GQA and A-OKVQA. API
descriptions and in-context examples are omitted for
brevity.

Fig. 10 depicts the second template for code
generation, used for RefCOCO and RefCOCO+.
The API descriptions are from ViperGPT, and in-
context examples differ by dataset. Also, for Ref-
COCO+, we used the following guidelines:
Consider these guidelines when creating the function:
- Use base Python (comparison, sorting) for basic logical

operations, left/right/up/down, math, etc.
- Consider the properties of the expected returned `

ImagePatch` object from the << ASSERTION_TESTS >> to
write the function.

- The function must only return an `ImagePatch` object. Do
not return None.

- If the object in the query is not found directly, attempt
to find a person and check if the person possesses or is
associated with the specified object (e.g., wearing

specific clothing).

Context
We are working on a visual grounding task, which involves

identifying and returning the specific area of an image
that corresponds to a given << QUERY >>. Using the <<
IMAGE_PATCH_CLASS >>, we aim to generate a Python
function named `execute_command` to solve this task.

<< IMAGE_PATCH_CLASS >>

{{{{{ API DESCRIPTIONS }}}}}

#####################

Objective
Write a function named `execute_command` using Python and <<

IMAGE_PATCH_CLASS >> to answer the given << QUERY >>.
Use the provided << ASSERTION_TESTS >> to understand the
expected properties of the `ImagePatch` object that the
function should return.

Consider these guidelines when creating the function:
- Use base Python (comparison, sorting) for basic logical

operations, left/right/up/down, math, etc.
- Consider the properties of the expected returned `ImagePatch

` object from the << ASSERTION_TESTS >> to write the
function.

- The function must only return an `ImagePatch` object. Do not
return None.

Here are some <<EXAMPLES>>:

{{{{{ 11 IN-CONTEXT EXAMPLES }}}}}

#####################

RESPONSE
Provide the function that starts with 'def execute_command(

image)' without any explanation.

#####################
START GENERATING CODE
Generate the the function 'execute_command' for the following

<< QUERY >> and << ASSERTION_TESTS >>.
<< QUERY >>: INSERT_QUERY_HERE
<< ASSERTION_TESTS >>:
INSERT_ASSERTION_TESTS_HERE

Figure 10: Second prompt template used to generate
a code. This template is used for RefCOCO and Ref-
COCO+. API descriptions and in-context examples are
omitted for brevity.

B Qualitative Results

We provide additional examples across datasets.
Fig.11 plots the results on GQA and A-OKVQA
and Fig.12 shows results on RefCOCO and Ref-
COCO+.

C Error Analysis

We conduct a deeper analysis of the errors gener-
ated when using Llama3-8B. Fig. 15 shows a case
where a property test case detects a logical error by
raising an assertion error. By checking the prop-
erties of the result, PropTest identifies codes with
incorrect logic and offers additional explanations
for the failure.

A number of runtime errors were detected across
datasets. In GQA, the most common runtime er-
ror was due to incorrect usage of the attributes of
Class ImagePatch, as shown in Fig. 16 (top). Re-
fCOCO frequently encountered List index out

8253

PropTest: meat

Question: From which item
can you get the most protein?

Baseline: eggs

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert isinstance(result, str), "Expected output to be string."
Test case 2:
assert len(result.split()) in [1, 2],

"Expected output to be one or two words"
Test case 3:
assert llm_query(f"Is {result} a food item?”, long_answer = False) == 'yes’,

"Expected output to be a food item"
return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
guesses = []
food_items = image_patch.simple_query(" What are these food items?")
if food_items:

protein_info = {}
for food_item in food_items.split(‘,’):

protein_info[food_item] = llm_query(f "What is the protein content of {food_item}?”)
max_protein = max(protein_info.values(), key=lambda x: int(x.split()[0]))
result = [food_item for food_item, protein in protein_info.items()

if protein = max_protein][0]
return result

else:
return ”No food items found”

PropTest: cabinets

Question: Which kind of
furniture is white?

Baseline: kitchen

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert isinstance(result, str), "Expected output to be string."
Test case 2:
assert len(result.split()) in [1, 2],

"Expected output to be one or two words"
Test case 3:
assert llm_query(f”Is {result} a kind of furniture?”,

long_answer = False) == 'yes’,
"Expected output to be a kind of furniture"

return result

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
furniture_patches = image_patch.find(”furniture”)
if len(furniture_patches) == 0:

return image_patch.simple_query(”Which kind of furniture is white?")
for furniture_patch in furniture_patches:

if furniture_patch simple_query(”Is the furniture white?") == ”yes”:
return image_patch.simple

_query(”What kind of furniture is white?")
return image_patch.simple_query(”Which kind of furniture is white?")

Generated Test Generated Code

Generated Test Generated Code

Figure 11: Example results on GQA and A-OKVQA. We present instances where PropTest is successful, whereas
the baseline does not achieve the desired outcome. Input question and answer is shown on the left, generated
property test case in the middle, code on the right and result on the left bottom.

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert ”yes” in simple_query(“Is there a person?”).lower(),

"Expected output to be a person"
Test case 2:
assert bool_to_yesno(result.verify_property (“person”, “beige hat”)),

"Expected output to be a person with a beige hat"
Test case 3:
assert bool_to_yesno(result.verify_property (“man”, “waving”)),

"Expected output to be a person waving"
return result

Referring expression:
person with beige hat waving

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert ”yes” in simple_query(“Is there a guy?”).lower(),

"Expected output to be a guy”
Test case 2:
assert bool_to_yesno(result.verify_property (“guy”, “hat”)),

"Expected output to be a guy with hat"
return result

Referring expression:
guy on the left with hat def execute_command(image, my_fig, time_wait_between_lines, syntax):

image_patch = ImagePatch(image)
person_patches = image_patch.find(”guy")
guy_patches = [g for g in guy_patches if g.verify_property(”guy”, "hat”)]
if len(guy_patches) == 0:

guy_patches = [image_patch]
guy_patches.sort(key=lambda g: g.horizontal_center)
guy_patch = guy_patches[0]
return guy_patch

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert ”yes” in simple_query(“Is there a man?”).lower(),

"Expected output to be a man"
Test case 2:
assert bool_to_yesno(result.verify_property (“man”, “blue outfit”)),

"Expected output to be a man with blue outfit"
Test case 3:
assert bool_to_yesno(result.verify_property (“man”, “side cut off”)),

"Expected output to be a man with side cut off"
Test case 4:
assert bool_to_yesno(result.verify_property (“man”, “black”)),

"Expected output to be a man with black"
return result

PropTest:

Referring expression:
man with blue outfit on
side cut off with black

Baseline:

None

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
man_patches = image_patch.find(”man")
man_patch = best_image_match(man_patches,

[“blue outfit”, “side cut off”, “black”])
return man_patch

Generated Test Generated Code

Generated Test Generated Code

Generated Test Generated Code

Baseline:

PropTest:

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
person_patches = image_patch.find(”person")
person_patch = best_image_match(person_patches,

[“beige hat”, “waving”])
return person_patch

PropTest:Baseline:

None

Figure 12: Example results on RefCOCO and RefCOCO+. We present instances where PropTest is successful,
whereas the baseline does not achieve the desired outcome. Input question and answer is shown on the left, generated
property test case in the middle, code on the right and result on the right bottom.

8254

Method Dataset Acc. Toxic rate

Visual Grounding RefCOCO 89.0% 0.02%
Visual Grounding RefCOCO+ 84.8% 0.03%

Table 8: Accuracy and toxic rate of generated property
test cases on visual grounding tasks with Llama3-8B.
APIs are utilized in visual grounding property test cases.

Pass Fail
Property Test Case (Basic)

Co
rre

ct
 R

es
ul

t
W

ro
ng

 R
es

ul
tRe

su
lt

5485
(43.61%)

244
(1.94%)

6361
(50.57%)

488
(3.88%)

Confusion Matrix with Counts and Percentages

1000

2000

3000

4000

5000

6000

Sc
al

e

Figure 13: Confusion Matrix of the basic generated
property test cases on GQA using Llama3-8B. We show
the counts of correct and incorrect results, further di-
vided by whether they passed or did not pass the gener-
ated property test case.

of range errors, caused by the failure of the tool
find() to detect an object (Fig. 16 (bottom)).

Moreover, we identified a behavior unique to
Llama3-70B, which tends to generate code with
high time complexity. As illustrated in Fig. 17,
Llama3-70B often employs an exhaustive search
to locate an object, even when a more efficient
method like find() could be used. To handle these
cases, we implemented a timer to raise an error if
the execution exceeds 3 minutes, categorizing such
instances as errors.

D Generated Property Test Case Analysis

First, Table 8 shows the evaluation of our gener-
ated visual grounding property test cases using the
same two metrics as in Table 5. RefCOCO+ has
lower accuracy and a higher toxic rate compared to
RefCOCO, which can be due to the more complex
queries within the RefCOCO+ dataset.

Additionally, we depict a confusion matrix of ba-
sic VQA property test cases on GQA using Llama3-
8B in Fig. 13. The matrix depicts a high number
of false positives because most basic VQA prop-
erty tests check for data type, word length, and
binary answers (yes or no), which can pass despite
incorrect results.

Fig. 14 plots the confusion matrix for visual
grounding property test cases on RefCOCO and

Pass Fail
Property Test Case (RefCOCO)

Co
rre

ct
 R

es
ul

t
W

ro
ng

 R
es

ul
tRe

su
lt

3250
(57.45%)

628
(11.10%)

1536
(27.15%)

243
(4.30%)

Confusion Matrix

500

1000

1500

2000

2500

3000

Sc
al

e

(a) RefCOCO

Pass Fail
Property Test Case (RefCOCO+)

Co
rre

ct
 R

es
ul

t
W

ro
ng

 R
es

ul
tRe

su
lt

2838
(49.56%)

902
(15.75%)

1756
(30.67%)

230
(4.02%)

Confusion Matrix

500

1000

1500

2000

2500

Sc
al

e

(b) RefCOCO+

Figure 14: Confusion Matrix for visual grounding prop-
erty test cases on RefCOCO and RefCOCO+ using
Llama3-8B. We consider the result to be correct if the
IoU exceeds a threshold of 0.7.

RefCOCO+. Half of the dataset falls under true
positives (57.5% on RefCOCO and 50.0% on Re-
fCOCO+), with a low true negative rate (4% on
RefCOCO and RefCOCO+), indicating the high
quality of our generated property test cases. We
observe a high number of false positives, similar to
other datasets. This may be due to instances where,
even if the IoU is below the threshold of 0.7, there
is still an object or property that matches the query.

8255

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert isinstance(result, str), "Expected output to be string."
Test case 2:
assert len(result.split()) in [1, 2],

"Expected output to be one or two words"
Test case 3:
assert llm_query(f"Is {result} a kind of furniture?”,

long_answer = False) == 'yes’,
"Expected output to be a kind of furniture"

return result

Question: Which kind of
furniture is wooden?

Generated Test Generated Code

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
furniture_patches = image_patch.find(”furniture”)
if len(furniture_patches) == 0:

return image_patch.simple_query(”Which kind of furniture is wooden?")
for furniture_patch in furniture_patches:

is_wooden= furniture_patch.simple_query(”Which kind of furniture is wooden?")
if is_wooden == “yes”:

return is_wooden
return image_patch.simple_query(”Which kind of furniture is wooden?")

Assertion Error: Expected output to be a kind of furniture

PropTest Final Result: desk
execute_command result: yes

Answer: desk

Figure 15: Example of failure case on GQA dataset using Llama3-8B where PropTest raises an assertion error. The
final result is produced by BLIP-2 (Li et al., 2023). PropTest provides extra interpretability on the reason for failure
by producing assertion errors.

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
bottle_patches = image_patch.find(”bottle")
green_patches = [b for b in bottle_patches if b.verify_property(”bottle”, ”green”)]
if len(green_patches) == 0:

return bottle_patches[0]
return green_patches[0]

Referring expression:
green bottle

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert ”yes” in simple_query(“Is this green?”).lower(),

"Expected output to be green”
return result

Generated Test Generated Code

Error: List index out of range - Failed at detecting “bottle”

Question: Are the cabinets
below the stove wooden
and open? def execute_test(image):

result = execute_command(image, my_fig, time_wait_between_lines,
syntax)

Test case 1:
assert result in [“yes”, “no”], "Expected output to be yes or no"
return result

Generated Test Generated Code

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
stove_patches = image_patch.find("stove”)
Question assumes only one stove patch
if len(stove_patches) == 0:

If no stove is found, query the image directly
return image_patch.simple_query("Are the cabinets below

the stove wooden and open?")
for stove_patch in stove_patches:

cabinets_patches = image_patch.find("cabinets”)
for cabinets_patch in cabinets_patches:

if cabinets_patch.lower()< stove_patch.lower():
return bool_to_yesno(image_patch.verify_property("cabinets", "wooden”)

and image_patch.verify_property("cabinets", "open"))
If no cabinets are found below the stove, query the image directly
return image_patch.simple_query("Are the cabinets below the stove

wooden and open?")

Error: 'int' object is not callable
correct usage is cabinet_patch.lower

Figure 16: Examples of failure cases on GQA and RefCOCO dataset using Llama3-8B where PropTest raises a
runtime error. PropTest provides extra interpretability on the reason for failure by producing assertion errors.

def execute_command(image, my_fig, time_wait_between_lines, syntax):
image_patch = ImagePatch(image)
building_patches = image_patch.find(”building")
Question assumes only one building patch
if len(building_patches) == 0:

If no building is found, query the image directly
return image_patch.simple_query("What is in front of the building?”)

building_patch = building_patches[0]
objects_in_front = []
for x in range(image_patch.width):

for y in range(image_patch.height):
if x > building_patch.left and y > building_patch.lower and x <

building_patch.right and y < building_patch.upper:
object_patch = image_patch.crop(x, y, x+1, y+1)
object_name = object_patch. simple_query("What is this?”)
if object_name!= "building":

objects_in_front.append(object_name)
if len(objects_in_front) == 0:

return image_patch. simple_query("What is in front of the building?”)
return objects_in_front[0]

def execute_test(image):
result = execute_command(image, my_fig, time_wait_between_lines,

syntax)
Test case 1:
assert isinstance(result, str), "Expected output to be string."
Test case 2:
assert len(result.split()) in [1, 2],

"Expected output to be one or two words"
Test case 3:
assert llm_query(f”Can you find {result} in front of a building?”,

long_answer = False) == 'yes’,
"Expected output to be something you can find in front of a building"
return result

Question: What is in
front of the building?

Generated Test Generated Code

Answer: trees

Use exhaustive search to find an object in front of the building

Figure 17: Example of inefficient code generated by Llama3-70b.

8256

