LONGGENBENCH: Long-context Generation Benchmark

Xiang LIU Peijie DONG

Xuming HU'

Xiaowen CHU'

The Hong Kong University of Science and Technology(Guangzhou)
{x1iu886,pdong212}@connect.hkust-gz.edu.cn

xuminghu@hkust-gz.edu.cn

Abstract

Current long-context benchmarks primarily fo-
cus on retrieval-based tests, requiring Large
Language Models (LLMs) to locate specific in-
formation within extensive input contexts, such
as the needle-in-a-haystack (NIAH) benchmark.
Long-context generation refers to the ability
of a language model to generate coherent and
contextually accurate text that spans across
lengthy passages or documents. While recent
studies show strong performance on NIAH
and other retrieval-based long-context bench-
marks, there is a significant lack of bench-
marks for evaluating long-context generation
capabilities. To bridge this gap and offer a
comprehensive assessment, we introduce a syn-
thetic benchmark, LongGenBench, which is
designed to evaluate the long-context gener-
ation capabilities of large language models
(LLMs), with a particular focus on consistency
in logical flow. LongGenBench redesigning
the format of questions and necessitating that
LLMs respond with a single, cohesive long-
context answer. Upon extensive evaluation us-
ing LongGenBench, we observe that: (1) both
API accessed and open source models exhibit
performance degradation in long-context gen-
eration scenarios, ranging from 1.2% to 47.1%;
(2) different series of LLMs exhibit varying
trends of performance degradation, with the
GEMINI-1.5-FLASH model showing the least
degradation among API accessed models, and
the QWEN?2 series exhibiting the least degra-
dation in LongGenBench among open source
models.

1 Introduction

! Large Language Models (LLMs) have become
pivotal in tackling NLP downstream tasks such as
summarization and question answering that require
interpreting extensive context from books, reports,
and documents, sometimes spanning tens of thou-
sands of tokens (Raffel et al., 2020; Brown et al.,

! Corresponding author.

xwchu@ust. hk

Performance Comparison on GSM8K

A = Baseline
-15.5%
-19.8%

LongGenBench
GPT-3.5-Turbo GPT-40 Gemini-1.5-Flash

I 72]3%
Model

Claude-3-Haiku
Performance Comparison on MMLU

-9.0%
-4.3%
-13.7%

GPT-3.5-Turbo GPT-40 Gemini-1.5-Flash
Model

Performance (%)

Hmm Baseline
LongGenBench

I :

Claude-3-Haiku

Performance (%)

Figure 1: Performance Comparison of LLMs on
GSMSK and MMLU datasets using LongGenBench
to assess their long-context generation capabilities. It is
observed that mainstream LLMs exhibit performance
degradation when tasked with long-context generation.

2020; Chowdhery et al., 2022; Tay et al., 2022;
Touvron et al., 2023; Tang et al., 2023; Zhang et al.,
2023). Recent advances in long-context technology
in ML system field (Dao et al., 2022; Dao, 2024;
Jacobs et al., 2023; Xiao et al., 2024) and model ar-
chitecture design (Chen et al., 2023a; Xiong et al.,
2023; Chen et al., 2023b; Peng et al., 2024; Dong
et al., 2024) have significantly improved the abil-
ity of LLMs to process increasingly large input
context lengths (Liu et al., 2024a; Young et al.,
2024), such as Gemini-1.5-pro model can handle
the 1,500-page document (Reid et al., 2024). Al-
though previous studies (AI21, 2024; X.Al, 2024;
Reid et al., 2024; Anthropic, 2024; DeepSeek-Al,
2024) often employ synthetic tasks like passkey
retrieval (Mohtashami and Jaggi, 2023) and needle-

865

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 865-883
November 12-16, 2024 ©2024 Association for Computational Linguistics

in-a-haystack (NIAH) (Kamradt, 2023) to evaluate
the long-context capability of these LLMs, such
tasks primarily test retrieval skills and do not fully
assess other aspects of long-context generation.

Long-context generation refers to the ability of
a language model to generate coherent and contex-
tually accurate text that spans across a lengthy pas-
sage or document. This capability involves main-
taining the thematic continuity, logical flow, and
consistency of details over extended sequences of
text, which can include multiple paragraphs, pages,
or even entire documents.

To facilitate further research in this area, we
propose the Long-context Generation benchmark
(LongGenBench), a new benchmark specifically
designed to evaluate the long-context generation
capabilities of LLMs, with a particular focus on
consistency in logical flow. LongGenBench synthe-
sizes a dataset from current popular LLM bench-
marks, redesigns the input format, and includes
multiple questions within a single query. The
LongGenBench requires LLMs to generate a com-
prehensive long-context response that sequentially
addresses each question. To achieve better perfor-
mance in LongGenBench, LLMs need to maintain
consistency regardless of whether the previous gen-
eration part is correct or incorrect. In LongGen-
Bench, evaluating the quality of these long-context
responses is straightforward: simply compare the
generated answers with the ground truth.

Our study evaluates the performance of vari-
ous language models using the LongGenBench
approach across different datasets, specifically
LongGenBench-MMLU, LongGenBench-GSM8K,
and LongGenBench-CSQA. Figure 1 displays the
performance of four powerful API accessed mod-
els tested in both the baseline scenario, which in-
volves single-answer generation, and the LongGen-
Bench scenario, which focuses on long-context
generation. It is notable that the Gemini-1.5-Flash
model exhibits the lowest performance degradation
in long-context generation tasks, surpassing the
GPT-40. Additionally, we conducted analyses on
open-source models, revealing a general correla-
tion between baseline performance and LongGen-
Bench performance. Models with higher baseline
scores tend to show smaller declines in long-
context generation tasks. Models like Qwen2-
72B-Instruct and DeepSeek-v2-Chat, both with
high baseline scores, also exhibit minimal perfor-
mance degradation. However, there are excep-
tions, such as LLaMA-3-70B-Instruct, which, de-

spite its high baseline performance, experiences
significant performance drops. Moreover, model
size influences performance, as larger models
within the same series, such as the LLaMA-3
and Qwen?2 series, demonstrate smaller declines.
Different architectures show varying trends in
performance degradation; for example, LLaMA-
3-8B-Instruct shows a performance degradation
of 47.1% on GSMSK, while ChatGLM4-9B-Chat
only experiences a 10.8% drop, despite having sim-
ilar baseline performances. Consistency across
tasks is observed, with models like LLaMA-3-8B-
Instruct consistently showing significant drops on
all datasets, whereas models such as Qwen2-72B-
Instruct and DeepSeek-v2-Chat maintain minimal
declines across all datasets, underscoring their re-
silience in long-context generation tasks. These
findings highlight the varying capabilities of differ-
ent models to maintain accuracy over extended text
generation and provide valuable insights for future
model development and optimization.
Our contributions are as follows:

* We introduce LongGenBench, an effective ap-
proach for evaluating the long-context generation
capabilities of language models across multiple
datasets.

* We provide a comprehensive performance com-
parison between API accessed and open source
models under the LongGenBench framework, re-
vealing insights into how different models handle
long-context generation tasks.

e Our analysis uncovers critical relationships in
long-context generation tasks, including the
correlation between baseline performance and
LongGenBench performance, the impact of
model size on performance decline, and the
variation among different model architectures.
Our detailed experiments establish consistent
trends in performance degradation across differ-
ent LongGenBench tasks, highlighting the impor-
tance of model resilience in long-context genera-
tion.

2 Related Work
2.1 Long-context Language Models

Recent advancements in techniques such as effi-
cient attention, long-term memory, extrapolative
positional embedding, and context processing have
spurred the development of numerous long-context
LLMs (Huang et al., 2023). Efficient attention

866

Retrieval task

Input:

(essay...)

One of the special magic number for long-context is:

(essay...)

Question:

What is the special magic number for long-context mentioned in the
provided text?

S.0)
&

‘. [Outputr:‘

(a) Retrieval task

K questions in order
Input:

Question 1: A basket contains 25 oranges among which 1 is bad, 20%

are unripe, 2 are sour and the rest are good. How many oranges are
good?

Question 2: A raspberry bush has 6 clusters of 20 fruit each and 67
individual fruit scattered across the bush. How many raspberries are
there total?

Question 3: Lloyd has an egg farm. His chickens produce 252 eggs
per day and he sells them for $2 per dozen. How much does Lloyd
make on eggs per week?

Question K:John buys twice as many red ties as blue ties. The red
ties cost 50% more than blue ties. He spent $200 on blue ties that

cost $40 each. How much did he spend on ties?

Q@

Understanding task
Input:
(essay start...)
Bhagirathi (film) is a 2012 Indian Kannada drama film written and
directed by b
(essay...)

was born to Kenchamma and Rangadas-
appa in Baraguru village in the district.
(--- essay end)
Question:
What is the of the

of film Bhagirathi (Film)?
e e Output:
(it)

(b) Understanding task

X))
Answer 1: There are 25 oranges in total. 1 is bad. 20% of

K answers in order
Output:

25 is 25 x 0.20 = 5 unripe. --- The answer is 17. @

Answer 2: There are 6 clusters of 20 fruit each. So 6 x 20 .
= 120 raspberries - - - The answer is 187. 4 Approaching max
output length
Answer 3: Lloyd’s chickens produce 252 eggs per day. A
dozen is 12 eggs, - -+ The answer is $294. &

Answer K: He spent $200 on blue ties that cost $40
each.- - - The answer is $800. @

(c) Our approach

Figure 2: Illustrations of previous long-context benchmarks and our proposed approach. (a) Retrieval task: requires
LLMs to retrieve the magic information hidden within an unrelated long context. (b) Understanding task: requires
LLMs to comprehensively understand a long essay and answer the specific question. (¢) Our approach: reconstructs
the format of the dataset, requiring LLMs to sequentially understand and respond to each question in a single
response. We run multiple iterations with different questions to evaluate the robustness of long-context generation
capabilities. The length of the generated responses aims to approach the token limit.

mechanisms like Flash attention (Dao et al., 2022;
Dao, 2024) and Ring attention (Liu et al., 2023)
have dramatically reduced memory demands for
processing extensive contexts. Moreover, sparse at-
tention methods, including shifted sparse attention
in LongLoRA (Chen et al., 2023b), dilated atten-
tion (Ding et al., 2023), and attention sinks (Han
et al., 2023; Xiao et al., 2024), further enhance
long-context capabilities. For long-term memory,
efficiency is achieved by caching previous contexts
using recurrent mechanisms (Zhang et al., 2024b;
Bulatov et al., 2023; Martins et al., 2022; Wu et al.,
2022; Mohtashami and Jaggi, 2023). Techniques
for extrapolative positional embedding include AL-
iBi (Press et al., 2022), xPOS (Sun et al., 2023), and
ROPE (Su et al., 2024), along with their variants
(Chen et al., 2023a; Xiong et al., 2023; Peng et al.,
2024; Liu et al., 2024b; Ding et al., 2024; Zhu et al.,
2023). In terms of context processing, key informa-
tion is retained through retrieval augmentation (Xu
et al., 2023; Wang et al., 2023; Tworkowski et al.,
2024) and prompt compression (Jiang et al., 2023).
Innovative architectural designs such as state-space
models (Gu et al., 2022; Fu et al., 2022; Poli et al.,
2023; Fu et al., 2023a; Gu and Dao, 2023; Dao and

Gu, 2024) and RWKYV (Peng et al., 2023) are also
being developed to effectively manage long-context
inputs.

2.2 Evaluation for Long-context Language
Models

Numerous investigations into long-context model
benchmarks have primarily focused on retrieval
and understanding tasks. In the realm of retrieval
benchmarks, the datasets used are predominantly
synthetic, enabling precise control over experimen-
tal conditions, such as input token length, and min-
imizing the influence of varied parametric knowl-
edge from different training strategies. Recent re-
search has extensively focused on synthetic tasks
designed for retrieval (Kamradt, 2023; Mohtashami
and Jaggi, 2023; Li et al., 2023; Liu et al., 2024c;
Hsieh et al., 2024; Hu et al., 2024a,b; Zhang et al.,
2024a), with additional studies exploring the use of
long contexts for various types of reasoning (Tay
et al., 2021). For understanding benchmarks, Long-
Bench (Bai et al., 2023b) includes evaluations in
a bilingual context, covering long-document ques-
tion answering, summarization, and code comple-
tion tasks. ZeroSCROLLS (Shaham et al., 2023)

867

and L-Eval (An et al., 2023) assess a wide array
of realistic natural language tasks, such as long-
document question answering and query-driven
summarization. co-Bench (Zhang et al., 2024c¢) of-
fers challenges that involve content spanning more
than 100,000 tokens.

3 LongGenBench

We propose LongGenBench, a synthetic bench-
mark that is an efficient, low-cost approach focused
on evaluating long-context generation in LLMs.

3.1 Motivation

Traditionally, evaluating LLMs for long-context
scenarios involves inputting lengthy essays into the
models, followed by either retrieval or comprehen-
sion questions as depicted in Figure 2(a) and (b).
The token length of these essays typically ranges
from {4K, 8K, 16K, 32K, 64K, 128K}, with ad-
vanced long-context LL.Ms like Gemini-1.5 (Reid
etal., 2024) being tested up to 1M tokens. However,
these benchmarks tend to focus predominantly on
the prompt tokens or input content, often neglect-
ing the completion tokens or output content and
the evaluation of performance regarding these as-
pects. Furthermore, traditional long-context bench-
marks such as the NIAH test are costly, with a
128K NIAH test consuming 8M tokens.

Algorithm 1 Pipeline of LongGenBench

Require: System Prompt S, Questions (), Num-
ber of Questions K, Number of Iterations 7',
Language Model LLM

Ensure: Long-Context Responses R

L R+ 0
2: fort < 0toT — 1do
3: Qi+ Qt x K : (t+1) x K]

InputPrompt < S + concatenate(();)

Response < LM.gen(InputPrompt)

ParsedResponse < parse(Response)

R <+ RU{ParsedResponse}

8: verify(ParsedResponse, Q)
9: end for
10: return R

A A

3.2 Problem Definition

In LongGenBench, the initial step involves re-
designing the input prompt format to enable LLMs
to generate long-context responses as illustrated
in Figure 2(c). We refine the system prompt and

restructure the question format so that K ques-
tions are sequentially concatenated after the system
prompt. Subsequently, the LLMs are expected to
adhere to this redesigned prompt and produce a
coherent long-context response that answers all
K questions. These responses are then parsed to
verify the answers to the K questions, where the
LLMs must maintain both the sequence and ac-
curacy to demonstrate improved performance in
LongGenBench. This process is repeated for T'
iterations to assess the robustness of the LLMs’
long-context generation capabilities at each length,
with each iteration featuring unique questions.

The Algorithm 1 gives a pseudocode outline for
the LongGenBench. The system prompt S con-
tains instructional information, while @) is a list
of questions from the original dataset. For each
iteration ¢, a batch of K questions, @, is selected
from @ within the range [t X K : (t+1) x K]. The
selected questions are concatenated to the system
S to form the Input Prompt. The language model
LLM generates a long-context response for the
given Input Prompt. The response is added to the
response set I?, then parsed and verified for cor-
rectness and sequence. This process is repeated for
T iterations, with each iteration featuring a unique
set of questions. The final output is the set of long-
context responses R.

During the generation process, LLMs may accu-
mulate correct or incorrect reasoning steps, which
fall within the scope of LongGenBench’s evalu-
ation. These models might generate errors dur-
ing a single long-context session, and earlier mis-
takes can influence subsequent outputs. Assessing
a model’s performance in generating long texts in-
volves evaluating how effectively it manages and
mitigates these accumulated errors, and maintains
consistency in logical flow. LongGenBench ad-
dresses this challenge by requiring models to han-
dle and correct the impact of previous mistakes
within a single long-context generation.

The conditional probability that the LLM gen-
erates the next token, given the prompt and the
previously generated outputs, can be represented
as:

P(zit1 | InputPrompt, x1, o, . .., x;)
Where z1, z2,...,x; are the tokens generated in
LongGenBench, the LLMs are required to produce
the output based on the InputPrompt and all previ-
ously generated tokens.

868

3.3 Dataset Construction

LongGenBench synthesizes three datasets from
different domains: World Knowledge from
MMLU (Hendrycks et al., 2021), Arithmetic from
GSMS8K (Cobbe et al., 2021), and Commonsense
Reasoning from CommonSenseQA (Talmor et al.,
2019). The MMLU dataset measures a model’s
ability to understand and reason across 57 diverse
categories, using accuracy as the primary evalua-
tion metric. The GSMS8K dataset evaluates arith-
metic problem-solving skills through 8,000 grade-
school level math word problems, using the solving
rate as the main metric. CommonSenseQA tests
commonsense reasoning with multiple-choice ques-
tions based on ConceptNet, with accuracy as the
evaluation metric. Appendix A.3 provides details
on how the synthesis process occurs.

4 Expeirments Setting

In this section, we describe the details of the base-
line models and the LongGenBench approach, as
well as their implementation in the subsequent ex-
periments. All experiments were conducted three
times, using the mean score to ensure robustness.

ACCESS CONTEXT MAX OUTPUT INPUT/OUTPUT

MODEL

METHOD LENGTH LENGTH PRICE
GPT-3.5-TURBO API 16K 4K $0.5/$1.5
GPT-40 API 128K 4K $5/$15
GEMINI-1.5-FLASH API 1024K 8K $0.35/$1.05
CLAUDE-3-HAIKU API 200K 4K $0.25/$ 1.25
LLAMA-3-8B OPEN SOURCE 8K
LLAMA-3-70B OPEN SOURCE 8K
QWEN2-7B OPEN SOURCE 128K
QWEN2-57B OPEN SOURCE 64K
QWEN2-72B OPEN SOURCE 128K
CHATGLM4-9B OPEN SOURCE 128K
DEEPSEEK-V2 OPEN SOURCE 128K

Table 1: Comparison of context lengths for various
LLMs.

4.1 Models and Inference setup

We evaluated multiple LLMs using LongGen-
Bench, categorizing them into API accessed mod-
els and open-source models. For API accessed
models, we selected GPT-3.5-Turbo (Ouyang et al.,
2022; Brown et al., 2020), GPT-40 (OpenAl, 2024),
Gemini-1.5-Flash (Reid et al., 2024), and Claude-
3-Haiku (Anthropic, 2024). For open-source mod-
els, our selection included LLaMA-3-8B-Instruct,
LLaMA-3-70B-Instruct (Meta, 2024), Qwen2-
7B-Instruct, Qwen2-57B-A14B-Instruct, Qwen2-
72B-Instruct (Bai et al., 2023a), ChatGLM4-9B-
Chat (Zeng et al., 2022; Du et al., 2022), and
DeepSeek-v2-Chat (DeepSeek-Al, 2024). The

API accessed models are configured with a spe-
cific maximum output length, which constrains the
number of output tokens due to the computational
resources and commercial policies of each API
provider. Table 1 provides detailed statistics for
each model. For open-source models, we remove
the INSTRUCT or CHAT suffix. The prompt settings
and datasets follow the guidelines from the Chain-
of-Thought (Wei et al., 2022; Wang et al., 2022;
Diao et al., 2024; Fu et al., 2023b; Pan et al., 2024),
and API model access is provided through the offi-
cial website. We assessed all open-source models
using the vLLM framework (Kwon et al., 2023),
which offers efficient KV cache memory manage-
ment and a Flash attention (Dao et al., 2022; Dao,
2024) backend. All open source models run on
RTX4090 and RTX A6000 servers.

4.2 Task configurations

LongGenBench generates results for three
datasets, designated as LongGenBench-MMLU,
LongGenBench-GSMSK, and LongGenBench-
CSQA. Table 2 details the configurations for the
LongGenBench experiments. In this context, K
represents the number of questions that the LLM
must answer in a single response, while 7" denotes
the number of iterations, also known as query
times. The total number of questions addressed
is calculated using the formula K x T'. To better
compare the long-context generation capabilities
between API accessed models and open source
models, the maximum output length is uniformly
set at 4096 tokens in the main experiments. For
LongGenBench-MMLU, the T" value is considered
based on the number of categories. Categories
with excessively long input prompts are excluded.
In our main experiment, we arrange the questions
in ascending order based on their length, setting
the order within a single query from the shortest
to the longest length. A detailed ablation study of
this variant is discussed in Section 6.

5 Result
5.1 API Accessed Models

Table 3 displays the performance of various models
on the GSMS8K and MMLU datasets under two sce-
narios: Baseline and LongGenBench. The Delta
column shows the change in performance when
applying LongGenBench relative to the Baseline,
with negative values indicated by a downward tri-
angle symbol (V) signifying performance degra-

869

LONGGENBENCH

MODEL GSM8K MMLU CSQA

K T K T K T
GPT-3.5-TURBO 35 20 40 55 80 20
GPT-40 35 20 40 55 80 20
GEMINI-1.5-FLASH 35 20 40 55 80 20
CLAUDE-3-HAIKU 30 20 40 55 80 20
LLAMA-3-8B-INSTRUCT 30 20 30 52 40 20
LLAMA-3-70B-INSTRUCT 30 20 30 52 40 20
QWEN2-7B-INSTRUCT 30 20 30 52 40 20
QWEN2-54B-A14B-INSTRUCT | 30 20 30 52 40 20
QWEN2-72B-INSTRUCT 30 20 30 52 40 20
CHATGLM4-9B-CHAT 30 20 30 52 40 20
DEEPSEEK-V2-CHAT 30 20 30 52 40 20

Table 2: Configuration details for the LongGenBench
experiment. The table shows the number of questions
in one query (/') and the number of iteration times (7).

dation. The results demonstrate that all models
undergo a performance degradation when evalu-
ated under the LongGenBench conditions. No-
tably, GPT-3.5-Turbo and Claude-3-Haiku exhibit
the largest Delta on both LongGenBench-MMLU
and LongGenBench-GSMS8K, indicating significant
challenges in managing long-context generation.
Conversely, the Gemini-1.5-Flash model exhibits
the smallest performance degradation, suggesting
greater robustness and enhanced consistency in han-
dling long-context scenarios.

GSMSK (%)

MobEL BASELINET LONGGENBENCHT DELTAA
GPT-3.5-TURBO 75.1 55.3 -19.8V
GPT-40 91.1 75.6 -15.5Vv
GEMINI-1.5-FLASH 86.2 85.0 -1.2V
CLAUDE-3-HAIKU 76.6 55.3 -21.3V
(a) Performance on GSM8K dataset

MODEL MMLU (%)

BASELINET LONGGENBENCH?T DELTA A
GPT-3.5-TURBO 70.0 56.3 -13.7V
GPT-40 88.7 79.7 -9.0V
GEMINI-1.5-FLASH 79.0 74.7 -4.3V
CLAUDE-3-HAIKU 75.0 48.6 -26.4V

(b) Performance on MMLU dataset

Table 3: Comparison of baseline and LongGen per-
formance on GSM8K and MMLU datasets with API
accessed models.

Figure 3 shows the accuracy distribution of API
accessed models in LongGenBench-GSMSK. The
x-axis represents the question index within a sin-
gle long-text response, with the maximum index
being K. The y-axis indicates the accuracy of the
model’s responses to these questions. The analysis
reveals how the accuracy varies across different

Generation Accuracy Distribution in LongGenBench — GSM8K
1.0

Gemini-1.5-Flash
02 GPT-40
—— Claude-3-Haiku
—— GPT-3.5-Turbo

5 10 15 20 25 30 35
Question index

Figure 3: Generation accuracy distribution of API ac-
cessed models in LongGenBench-GSMSK.

questions for models like GPT-3.5-Turbo, GPT-40,
Gemini-1.5-Flash, and Claude-3-Haiku when they
are required to generate answers for K questions
simultaneously. The results indicate that all mod-
els experience a decline in accuracy as the ques-
tion index increases. Notably, GPT-3.5-Turbo and
Claude-3-Haiku show a more significant decline,
suggesting that these models struggle more with
maintaining high accuracy over longer sequences
of questions. In contrast, Gemini-1.5-Flash main-
tains relatively higher accuracy, indicating better
robustness in handling long-text generation tasks.

5.2 Open Source Models

The results presented in Table 4 provide a compar-
ative analysis of the performance of various open-
source models on the GSM8K and MMLU datasets
under baseline conditions and using the LongGen-
Bench approach. Several key observations can be
made from these results:

Correlation Between Baseline and LongGen-
Bench: There appears to be a general correla-
tion between the baseline performance and the de-
gree of performance degradation observed with
the LongGenBench approach. Models with higher
baseline performance tend to exhibit smaller perfor-
mance drops. For example, Qwen2-72B-Instruct
and DeepSeek-v2-Chat models, which have high
baseline scores, show relatively small Delta values
across both datasets. However, there are exceptions,
such as LLaMA-3-70B-Instruct, which despite its
high baseline performance, exhibits a significant
performance drop on both datasets. Additionally,
LLaMA-3-8B-Instruct, Qwen2-57B-Instruct, and
ChatGLM4-9B-Chat models have the same base-
line score on GSMS8K, yet their Delta values differ
substantially (47.1%, 8.4%, and 10.8%, respec-

870

MODEL GSMSK (%)
BASELINET LONGGENBENCHT DELTAA
LLAMA-3-8B-INSTRUCT 79.6 325 -47.1V
LLAMA-3-70B-INSTRUCT 93.0 83.2 -9.8V
QWEN2-7B-INSTRUCT 82.3 63.9 -18.4V
QWEN2-57B-A14B-INSTRUCT 79.6 71.2 -8.4V
QWEN2-72B-INSTRUCT 91.1 85.7 -5.4V
CHATGLM4-9B-CHAT 79.6 68.8 -10.8V
DEEPSEEK-V2-CHAT 92.2 86.5 -5.7V
(a) Performance on GSMS8K dataset
MODEL MMLU (%)
BASELINET LONGGENBENCHT DELTA A
LLAMA-3-8B-INSTRUCT 68.4 50.4 -18.0V
LLAMA-3-70B-INSTRUCT 82.0 71.2 -10.8V
QWEN2-7B-INSTRUCT 70.5 59.4 -11.1V
QWEN2-57B-A14B-INSTRUCT 75.4 66.7 -8.7V
QWEN2-72B-INSTRUCT 82.3 75.8 -6.5V
CHATGLM4-9B-CHAT 72.4 63.0 -9.4v
DEEPSEEK-V2-CHAT 77.8 72.0 -5.8V

(b) Performance on MMLU dataset

Table 4: Comparison of baseline and LongGen per-
formance on GSM8K and MMLU datasets with open
source models.

tively).

Impact of Model Size on Performance Degrada-
tion: Observing models within the same series
but with different sizes, such as the LLaMA-3 se-
ries and the Qwen?2 series, reveals a trend where
larger models generally exhibit smaller Delta val-
ues. This suggests that increasing model size can
mitigate performance degradation in long-context
generation tasks. For instance, within the LLaMA-
3 series, LLaMA-3-70B-Instruct shows a much
smaller Delta compared to LLaMA-3-8B-Instruct
across both datasets.

Variation Among Different Model Architec-
tures: Different model architectures demonstrate
varying trends in performance degradation. For
models within the 7 ~ 9B parameter range, such
as LLaMA-3-8B-Instruct, Qwen2-7B-Instruct, and
ChatGLM4-9B-Chat, there are notable differences
in Delta values despite similar baseline perfor-
mances. For example, LLaMA-3-8B-Instruct has a
Delta of 47.1% on GSM8K, while ChatGLM4-9B-
Chat has a Delta of only 10.8%, indicating signifi-
cant variation in how different architectures handle
long-context generation tasks.

Consistency Across Tasks for Individual Models:
Individual models exhibit consistent trends in per-
formance degradation across different LongGen-
Bench tasks. For instance, LLaMA-3-8B-Instruct
consistently shows the largest Delta values on both
datasets, indicating a significant drop in perfor-

mance when generating long-context responses.
Conversely, Qwen2-72B-Instruct and DeepSeek-
v2-Chat consistently show minimal Delta values,
suggesting better resilience in long-context tasks.

These findings underscore the importance of con-
sidering both model architecture and size when
evaluating the performance of LLMs in long-
context generation tasks. The LongGenBench ap-
proach effectively highlights the varying capabili-
ties of different models to maintain accuracy over
extended text generation, providing valuable in-
sights for further model development and optimiza-
tion.

Figure 4 illustrates the accuracy distribution of
open-source models in LongGenBench-GSMSK.
The results indicate that all models exhibit a de-
cline in accuracy as the question index increases.
Notably, LLaMA-3-8B-Instruct experiences more
significant performance degradation, suggesting
that this model struggles more with maintaining
high accuracy in long-context generation tasks.

Generation Accuracy Distribution in LongGenBench — GSM8K
1.0

0.9
0.8

0.7

>
0 0.6
©

‘5 05 LLaMA3-8B-Instruct
9 LLaMA3-70B-Instruct
< o4 \
—— Qwen2-7B-Instruct
0.3 —— Qwen2-57B-A14B-Instruct
02 —— Qwen2-72B-Instruct

ChatGLM4-9B-Chat
—— DeepSeek-v2-Chat

5 10 20 25 30

15
Question index

Figure 4: Generation accuracy distribution of open
source models in LongGenBench-GSMSK.

5.3 Length Distribution

Figure 5 illustrates the output length distribution
for various models in the LongGenBench-GSMSK
task, with experimental configurations as detailed
in Table 2. Most models produce output lengths
close to or exceeding 3500 characters, although
none exceed the 4096-character limit. This data
demonstrates that LongGenBench effectively facil-
itates long-context generation in LLMs.

6 Ablation Studies

Hyperparameters of LongGenBench To gain
deeper insights into LongGenBench, we conducted
an ablation study focusing on two critical hyper-
parameters: reconstructive processing and the or-

871

Output Length Distribution in LongGenBench — GSM8K

Model

N 4096

0 500 1000 1500 2000 2500 3000 3500 4000
Output Length

Figure 5: Output Length Distribution in LongGenBench-
GSM8k.

dering of K questions within a single query. For
reconstructive processing, we compared the base-
line format with the LongGenBench format. The
baseline format follows the CoT (Wei et al., 2022)
setting, featuring eight question-answer pairs in
sequence. In contrast, the LongGenBench format
presents eight questions in advance followed by the
corresponding eight answers, with the K questions
being addressed subsequently. Regarding the or-
der of K questions, we evaluated three sequences:
the original order from the dataset, ascending or-
der from shortest to longest, and descending order
from longest to shortest. This ablation study was
performed using GPT-3.5-Turbo and Gemini-1.5-
Flash on the GSM8k dataset, with the number of
iterations set at 7' = 20. Table 5 presents the re-
sults of this hyperparameter ablation study, demon-
strating that both hyperparameters are crucial for
LongGenBench to effectively evaluate the long-
context generation capabilities of LL.Ms.

. LongGenBench

Model Format Order GSMSK
Baseline Ascending 53.2
LongGenBench Ascending 55.3
GPT-3.5-TURBO LongGenBench Descending 51.3
LongGenBench Normal 473
Baseline Ascending 82.8
LongGenBench ~ Ascending 85.0
GEMINI-1.5-FLASH LongGenBench Descending 84.3
LongGenBench Normal 85.0

Table 5: Performance comparison of different hyperpa-
rameter settings.

Evaluating Long Input Comprehension To
address the potential concern that performance

degradation in LongGenBench may be due to the
model’s inability to comprehend long inputs rather
than its ability to generate long outputs, we con-
ducted additional experiments. Specifically, we
designed a set of experiments where the model
is provided with a long input containing multiple
questions but is required to answer only one spec-
ified question at a time. This "long input + short
output" setting helps isolate the model’s compre-
hension ability from its generation capacity.

For this experiment, we again used GPT-3.5-
Turbo and Gemini-1.5-Flash on the GSM8k dataset.
We provided the models with a long input sequence
of K questions but instructed them to respond to
only one randomly selected question per query.
This setup was repeated for T = 20 iterations to en-
sure robust evaluation.The results, shown in Table
6, indicate that both models maintain high accu-
racy when required to produce short outputs from
long inputs. This supports the hypothesis that the
primary challenge in LongGenBench lies in the
generation of long outputs rather than comprehen-
sion of long inputs.

Model Long Input + | Long Input + | Performance
Short Output | Long Output Drop

GPT-3.5-Turbo 74.3 553 -19.0

Gemini-1.5-Flash 86.1 85.0 -1.1

Table 6: Comparison of model performance in long
input + short output versus long input + long output
settings.

7 Conclusion

In this study, we introduced LongGenBench, an
effective framework designed to evaluate the long-
context generation capabilities of language models
(LLMs) across multiple datasets. Our experiments
included both API accessed and open source mod-
els, offering a comprehensive comparison of their
performance in long-context generation tasks. The
results indicate a correlation between baseline per-
formance and LongGenBench performance, with
higher baseline models generally exhibiting smaller
declines. Additionally, model size and architecture
significantly influence resilience, with larger mod-
els and specific architectures demonstrating greater
robustness and consistent trends across different
LongGenBench tasks. These findings highlight the
importance of considering both model architecture
and size when evaluating LL.Ms in long-context
generation tasks. The LongGenBench framework

872

effectively showcases the varying capabilities of
different models, providing valuable insights for
further model development and optimization.

8 Limitations

Our study has several limitations. Firstly, the exper-
iments were conducted on a limited set of models
and datasets, which may not fully represent the
diversity of available LLMs and tasks. Secondly,
we did not explore experiments with larger K val-
ues due to constraints on the maximum output to-
kens imposed by API accessed models. Lastly,
we did not include experiments with long-context
techniques, which may help mitigate the observed
performance degradation. These limitations sug-
gest that further research is needed to generalize
our findings across a broader range of models and
more extended context scenarios.

Acknowledgments

This work was supported by the National Nat-
ural Science Foundation of China under Grant
No. 62272122, the Guangzhou Municipal
Joint Funding Project with Universities and
Enterprises under Grant No. 2024A03J0616,
the Hong Kong RIF grant under Grant No.
R6021-20, and Hong Kong CRF grants un-
der Grant No. C2004-21G and C7004-22G,
the Guangdong Provincial Department of Edu-
cation Project (Grant No.2024KQNCX028), the
Scientific Research Projects for the Higher-
educational Institutions (Grant No0.2024312096),
Education Bureau of Guangzhou Municipality,
the Guangzhou-HKUST(GZ) Joint Funding Pro-
gram (Grant No.SL.2024A03J01201), Education
Bureau of Guangzhou Municipality, the China
Association for Science and Technology (Grant
No.XMSB20240711064).

References

Al21. 2024. Introducing jamba: Ai21’s groundbreaking
ssm-transformer model.

Chenxin An, Shansan Gong, Ming Zhong, Mukai
Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
2023. L-eval: Instituting standardized evaluation
for long context language models. ArXiv preprint,
abs/2307.11088.

Anthropic. 2024. Introducing the next generation of
claude.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023a. Qwen technical report. ArXiv preprint,
abs/2309.16609.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023b. Longbench:
A bilingual, multitask benchmark for long context
understanding. ArXiv preprint, abs/2308.14508.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Aydar Bulatov, Yuri Kuratov, Yermek Kapushev, and
Mikhail S Burtsev. 2023. Scaling transformer to
Im tokens and beyond with rmt. ArXiv preprint,
abs/2304.11062.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023a. Extending context window
of large language models via positional interpolation.
ArXiv preprint, abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. ArXiv preprint,
abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. ArXiv preprint, abs/2110.14168.

873

https://www.ai21.com/blog/announcing-jamba
https://www.ai21.com/blog/announcing-jamba
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2307.11088
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2304.11062
https://arxiv.org/abs/2304.11062
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Inter-

national Conference on Learning Representations
(ICLR).

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. Preprint,
arXiv:2405.21060.

DeepSeek-Al 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xi-
ang Liu, and Tong Zhang. 2024. Active prompting
with chain-of-thought for large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1330-1350, Bangkok, Thailand.
Association for Computational Linguistics.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, Nanning Zheng,
and Furu Wei. 2023. Longnet: Scaling trans-
formers to 1,000,000,000 tokens. ArXiv preprint,
abs/2307.02486.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang,
Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. 2024. Longrope: Extending Ilm con-
text window beyond 2 million tokens. ArXiv preprint,
abs/2402.13753.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024.
Pruner-zero: Evolving symbolic pruning metric from
scratch for large language models. In ICML.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335,
Dublin, Ireland. Association for Computational Lin-
guistics.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W
Thomas, Atri Rudra, and Christopher Re. 2022. Hun-
gry hungry hippos: Towards language modeling with
state space models. In The Eleventh International
Conference on Learning Representations.

Daniel Y Fu, Elliot L Epstein, Eric Nguyen, Armin W
Thomas, Michael Zhang, Tri Dao, Atri Rudra, and
Christopher Ré. 2023a. Simple hardware-efficient
long convolutions for sequence modeling. In Inter-
national Conference on Machine Learning, pages
10373-10391. PMLR.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng,
and Tushar Khot. 2023b. Chain-of-thought hub: A
continuous effort to measure large language models’
reasoning performance. Preprint, arXiv:2305.17306.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. ArXiv
preprint, abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-
ciently modeling long sequences with structured state
spaces. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. ArXiv preprint, abs/2308.16137.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?
ArXiv preprint, abs/2404.06654.

Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo,
Lijie Wen, Philip S. Yu, and Zhijiang Guo. 2024a.
Towards understanding factual knowledge of large
language models. In The Twelfth International Con-
ference on Learning Representations.

Xuming Hu, Xiaochuan Li, Junzhe Chen, Yinghui Li,
Yangning Li, Xiaoguang Li, Yasheng Wang, Qun
Liu, Lijie Wen, Philip Yu, and Zhijiang Guo. 2024b.
Evaluating robustness of generative search engine
on adversarial factoid questions. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 10650-10671, Bangkok, Thailand and virtual
meeting. Association for Computational Linguistics.

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang,
Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma,
Lijuan Yang, Hao Chen, Shupeng Li, and Penghao
Zhao. 2023. Advancing Transformer Architecture in
Long-Context Large Language Models: A Compre-
hensive Survey. ArXiv preprint, abs/2311.12351.

Sam Ade Jacobs et al. 2023. DeepSpeed Ulysses: Sys-
tem optimizations for enabling training of extreme
long sequence Transformer models. ArXiv preprint,
abs/2309.14509.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng
Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression.
ArXiv preprint, abs/2310.06839.

874

https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.18653/v1/2024.acl-long.73
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2402.13753
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://arxiv.org/abs/2305.17306
https://arxiv.org/abs/2305.17306
https://arxiv.org/abs/2305.17306
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://openreview.net/forum?id=9OevMUdods
https://openreview.net/forum?id=9OevMUdods
https://doi.org/10.18653/v1/2024.findings-acl.633
https://doi.org/10.18653/v1/2024.findings-acl.633
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2310.06839

Gregory Kamradt. 2023. Needle In A Haystack - pres-
sure testing LLMS. Github.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Dacheng Li, Rulin Shao, et al. 2023. How long can
open-source LLMs truly promise on context length?

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter
Abbeel. 2024a. World model on million-length video
and language with ringattention. ArXiv preprint,
abs/2402.08268.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023.
Ring attention with blockwise transformers for near-
infinite context. In NeurIPS 2023 Foundation Models
for Decision Making Workshop.

Jiaheng Liu, Zhiqi Bai, Yuanxing Zhang, Chenchen
Zhang, Yu Zhang, Ge Zhang, Jiakai Wang, Haoran
Que, Yukang Chen, Wenbo Su, et al. 2024b. E" 2-
Ilm: Efficient and extreme length extension of large
language models. ArXiv preprint, abs/2401.06951.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024c. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Pedro Henrique Martins, Zita Marinho, and Andre Mar-
tins. 2022. oo-former: Infinite memory transformer.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5468—5485, Dublin, Ireland.
Association for Computational Linguistics.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available llm to date. https://ai.meta.
com/blog/meta-1lama-3/. Accessed: 2024-06-07.

Amirkeivan Mohtashami and Martin Jaggi. 2023.
Landmark attention: Random-access infinite con-
text length for transformers. ArXiv preprint,
abs/2305.16300.

OpenAl. 2024. Hello gpt-40. https://openai.com/
index/hello-gpt-4o0/. Accessed: 2024-06-07.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Rui Pan, Shuo Xing, Shizhe Diao, Wenhe Sun, Xiang
Liu, KaShun Shum, Jipeng Zhang, Renjie Pi, and
Tong Zhang. 2024. Plum: Prompt learning using
metaheuristics. In Findings of the Association for
Computational Linguistics ACL 2024, pages 2177-
2197, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huangi Cao,
Xin Cheng, Michael Chung, Leon Derczynski, et al.
2023. Rwkv: Reinventing rnns for the transformer

era. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 14048-14077.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico
Shippole. 2024. YaRN: Efficient context window ex-
tension of large language models. In The Tivelfth
International Conference on Learning Representa-
tions.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.
In International Conference on Machine Learning,
pages 28043-28078. PMLR.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. ArXiv preprint, abs/2403.05530.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant,
and Omer Levy. 2023. Zeroscrolls: A zero-shot
benchmark for long text understanding. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 7977-7989.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2023. A length-extrapolatable
transformer. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 14590-14604.

875

https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://arxiv.org/abs/2402.08268
https://arxiv.org/abs/2402.08268
https://arxiv.org/abs/2401.06951
https://arxiv.org/abs/2401.06951
https://arxiv.org/abs/2401.06951
https://doi.org/10.18653/v1/2022.acl-long.375
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2305.16300
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/2024.findings-acl.129
https://doi.org/10.18653/v1/2024.findings-acl.129
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhenheng Tang, Yuxin Wang, Xin He, Longteng Zhang,
Xinglin Pan, Qiang Wang, Rongfei Zeng, Kaiyong
Zhao, Shaohuai Shi, Bingsheng He, et al. 2023. Fu-
sionai: Decentralized training and deploying llms
with massive consumer-level gpus. ArXiv preprint,
abs/2309.01172.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Gar-
cia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng,
Neil Houlsby, and Donald Metzler. 2022. Unify-
ing language learning paradigms. ArXiv preprint,
abs/2205.05131.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv preprint,
abs/2307.09288.

Szymon Tworkowski, Konrad Staniszewski, Mikotlaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Mitos. 2024. Focused transformer: Contrastive train-
ing for context scaling. Advances in Neural Informa-
tion Processing Systems, 36.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023. Aug-
menting language models with long-term memory.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Al-
borz Geramifard, and Zhou Yu. 2022. Memformer:

A memory-augmented transformer for sequence mod-
eling. In Findings of the Association for Computa-
tional Linguistics: AACL-IJCNLP 2022, pages 308—
318, Online only. Association for Computational Lin-
guistics.

X.AI 2024. Announcing grok-1.5.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
et al. 2023. Effective long-context scaling of founda-
tion models. ArXiv preprint, abs/2309.16039.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. In The Tvelfth International Confer-
ence on Learning Representations.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. ArXiv preprint,
abs/2403.04652.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. GIlm-130b:
An open bilingual pre-trained model. ArXiv preprint,
abs/2210.02414.

Caiqi Zhang, Zhijiang Guo, and Andreas Vlachos.
2024a. Do we need language-specific fact-
checking models? the case of chinese. Preprint,
arXiv:2401.15498.

Longteng Zhang, Xiang Liu, Zeyu Li, Xinglin Pan, Pei-
jie Dong, Ruibo Fan, Rui Guo, Xin Wang, Qiong Luo,
Shaohuai Shi, and Xiaowen Chu. 2023. Dissecting
the runtime performance of the training, fine-tuning,
and inference of large language models. Preprint,
arXiv:2311.03687.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024b. Soaring from
4k to 400k: Extending 1lm’s context with activation
beacon. ArXiv preprint, abs/2401.03462.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al.
2024c. oo-bench: Extending long context eval-
uation beyond 100k tokens. ArXiv preprint,
abs/2402.13718.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wen-
hao Wu, Furu Wei, and Sujian Li. 2023. Pose: Effi-
cient context window extension of 1lms via positional

876

https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/2309.01172
https://arxiv.org/abs/2309.01172
https://arxiv.org/abs/2309.01172
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2022.findings-aacl.29
https://aclanthology.org/2022.findings-aacl.29
https://aclanthology.org/2022.findings-aacl.29
https://x.ai/blog/grok-1.5
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2401.15498
https://arxiv.org/abs/2401.15498
https://arxiv.org/abs/2311.03687
https://arxiv.org/abs/2311.03687
https://arxiv.org/abs/2311.03687
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2402.13718
https://arxiv.org/abs/2402.13718

skip-wise training. In The Twelfth International Con-
ference on Learning Representations.

877

A Experiment Setup and
Hyperparameters
A.1 Baseline Setting

The baseline scores referenced in section 5 are de-
rived from official reports to ensure the use of the
highest available baseline scores.

A.2 Dataset

The statistics of the datasets used in our study are
reported in Table 7.

DATASET | # TRAIN # TEST
GSMS8K (COBBE ET AL., 2021) 7,473 1,319
MMLU (HENDRYCKS ET AL., 2021) 14,079
CSQA* (TALMOR ET AL., 2019) 9,741 1,221

Table 7: The statistics of datasets. # TRAIN and # TEST
denote the number of training and test samples respec-
tively. *: CSQA do not have publicly available test set
labels, so we simply follow the setting by (Wei et al.,
2022) to evaluate the performance of the development
set.

Table 8 below compares the number of instances
in LongGenBench with other long-text bench-
marks, demonstrating that LongGenBench has a
comparable data size in the long-context bench-
mark field.

DATASET | #TEST
LONGGENBENCH 16K
LONGBENCH (BAIET AL., 2023B) 5K
00-BENCH (ZHANG ET AL., 2024C) 5K
ZEROSCROLLS (SHAHAM ET AL., 2023) 4K
L-EVAL (AN ET AL., 2023) 2K

Table 8: Comparison of the number of test instances
in LongGenBench with other long-text benchmarks,
demonstrating that LongGenBench has a comparable
data size in the long-context benchmark field.

A.3 LongGenBench Format

Table 12 compares the baseline method with the
LongGenBench approach in terms of chat tem-
plates used for model interactions. In the base-
line method, the system prompt is followed by a
series of chain-of-thought (CoT) questions and an-
swers, ending with a real question. In contrast,
the LongGenBench approach involves concatenat-
ing multiple Chain of Thought (CoT) questions
and answers, followed by several real questions, to
prompt the model for long-context responses. This

method helps evaluate the model’s ability to gen-
erate coherent and accurate long-context answers
across a series of related questions. Additionally, it
is easily adaptable to existing benchmarks, allow-
ing for more comprehensive assessments of long-
context generation capabilities.

Table 9 presents the system prompt for LongGen-
Bench, which is designed to be straightforward,
guiding the LLM to answer each question sequen-
tially.

A.4 API Models

In our experiments, we utilized specific versions
of various API accessed models to evaluate their
performance on LongGenBench. Table 10 provides
the details of the models and their respective ver-
sions used in our study.

These versions were selected based on their
availability and state-of-the-art performance at the
time of experimentation. Each model was tested us-
ing the LongGenBench framework to assess their
capabilities in handling long-context generation
tasks. The results presented in this paper reflect the
performance of these specific versions, providing a
comprehensive comparison across different models
and their configurations.

B Additional Experiments

B.1 API Accessed Models

Figure 6 and Table 11 present the generation
accuracy distribution for API accessed models
in LongGenBench-MMLU and LongGenBench-
CSQA. The x-axis represents the question index
within a single long-text response, with the max-
imum index being K. The y-axis indicates the
accuracy of the model’s responses to these ques-
tions. The analysis demonstrates how the accuracy
varies across different questions for models like
GPT-3.5-Turbo, GPT-40, Gemini-1.5-Flash, and
Claude-3-Haiku when they are required to gener-
ate answers for K questions simultaneously. The
results reveal that all models experience a decline
in accuracy as the question index increases, with
GPT-3.5-Turbo and Claude-3-Haiku showing more
significant declines. Conversely, Gemini-1.5-Flash
and GPT-40 maintains relatively higher accuracy,
indicating better robustness in handling long-text
generation tasks. Since these models do not pro-
vide official results for CSQA, we use our repli-
cated baseline score.

878

LongGenBench System Prompt Exemplars

Answer each question step by step, adhering to the format shown in the examples provided. Start each response with
’Answer_’ and introduce the final response with "The answer is’. Do not repeat the question. Ensure that you respond to

all the questions presented, regardless of their number.

Table 9: LongGenBench System Prompt Exemplars

Model Version
GPT-3.5-Turbo GPT-3.5-Turbo-0125
GPT-40 GPT-40-2024-05-13

Gemini-1.5-Flash-Preview-0514
Claude-3-Haiku-20240307

Gemini-1.5-Flash
Claude-3-Haiku

Table 10: Specific versions of API models used in the
experiments.

MODEL CSQA (%)

BASELINET LONGGENBENCHT DELTA A
GPT-3.5-TURBO 75.57 61.88 -13.87V
GPT-40 85.75 77.88 -7.87V
GEMINI-1.5-FLASH 83.87 82.25 -1.62V
CLAUDE-3-HAIKU 66.75 55.25 -11.50V

Table 11: Comparison of baseline and LongGen perfor-
mance on CSQA datasets with API models.

1o Generation Accuracy Distribution in LongGenBench — MMLU

0.9
0.8

0.7

50.6

I

505

]

04
03 Gemini-1.5-Flash
0.2 GPT-40

—— Claude-3-Haiku

0l GPT-3.5-Turbo

0.0

5 10 15 20 25 30 35 40
Question index

Generation Accuracy Distribution in LongGenBench — CSQA

03 Gemini-1.5-Flash
0.2 GPT-40

—— Claude-3-Haiku
R —TS Y
0.0

10 20 30 40 50 60 70 80
Question index

Figure 6: Generation accuracy distribution of

API accessed models in LongGenBench-MMLU and
LongGenBench-CSQA.

In addition to the main experiments, we con-
ducted an extended evaluation using the Gemini-
1.5-Flash model, which supports a longer maxi-
mum output length 8 K tokens. For this extended

evaluation, we set the value of K in the range
40, 50, 60, 70, 80,90 and fixed the number of it-
erations 7" at 10. This allowed us to investigate the
impact of larger K values on model performance in
the LongGenBench-GSMS8K experiment. Figure 7
shows the performance scores as K increases from
40 to 90, with the number of iterations 7" set to 10.
A red dashed line indicates the baseline score of
86.2 for comparison.

Performance of LongGenBench — GSM8K across Larger K values
Baseline: 86.2

85.0

40 50 60 70 80 90
K

Figure 7: Performance of Gemini-1.5-Flash in
LongGenBench-GSMS8K with larger K values.

B.2 Open Source Model

Figure 8 and Table 13 illustrates the genera-
tion accuracy distribution for open source mod-
els in LongGenBench-MMLU and LongGenBench-
CSQA. Similar to the API accessed models, the
x-axis represents the question index, and the y-
axis represents the accuracy of responses. The
results indicate that all open source models ex-
hibit a decline in accuracy as the question index
increases. Notably, LLaMA-3-8B-Instruct experi-
ences significant performance degradation, suggest-
ing that this model struggles with maintaining high
accuracy in long-context generation tasks. In con-
trast, larger models such as LLaMA-3-70B-Instruct
and Qwen2-72B-Instruct demonstrate greater re-
silience, maintaining higher accuracy across longer
sequences of questions. Since these models do

879

Method ‘ Template

Baseline {System Prompt}
{CoT Question_1}
{CoT Question_8}
LongGenBench | {System Prompt}
{CoT Question_1}--- {CoT Question_8}

Table 12: Model chat templates.

not provide official results for CSQA, we use our
replicated baseline score.

MODEL CSQA (%)

BASELINET LONGGENBENCH? DELTA A
LLAMA-3-8B-INSTRUCT 73.70 69.50 -4.20V
LLAMA-3-70B-INSTRUCT 81.82 80.13 -1.69V
QWEN2-7B-INSTRUCT 78.13 77.25 -0.88V
QWEN2-57B-A14B-INSTRUCT 80.26 80.75 +0.49A
QWEN2-72B-INSTRUCT 87.75 85.50 -2.25V
CHATGLM4-9B-CHAT 85.42 82.37 -3.05V
DEEPSEEK-V2-CHAT 84.77 82.87 -1.9V

Table 13: Comparison of baseline and LongGen perfor-
mance on CSQA datasets with open source models.

o Generation Accuracy Distribution in LongGenBench — MMLU

0.9

i AN ARSI

urac

3 0.5 LLaMA-3-8B-Instruct
g 0.4 LLaMA-3-70B-Instruct
—— Qwen2-7B-Instruct
03 —— Qwen2-57B-A14B-Instruct
0.2 —— Qwen2-72B-Instruct

ChatGLM4-9B-Chat
01 pE== DeepSeek-v2-Chat

0.0

5 10 20 25 30

15
Question index

o Generation Accuracy Distribution in LongGenBench — CSQA

0.9

0.8 .
0.7

50.6
e
3 0.5 LLaMA3-8B-Instruct
2 0.4 LLaMA3-70B-Instruct
—— Qwen2-7B-Instruct
03 —— Qwen2-57B-A14B-Instruct
0.2 —— Qwen2-72B-Instruct
DeepSeek-v2-Chat
01 ChatGLM4-9B-Chat
0.0
5 10 15 20 25 30 35 40
Question index
Figure 8: Generation accuracy distribution of

open source models in LongGenBench-MMLU and
LongGenBench-CSQA.

B.3 Cost

In this section, we compare the costs between the
Needle-In-A-Haystack (NIAH) test and LongGen-
Bench. For NIAH, costs are calculated for a
128K token test. For LongGenBench, calcu-
lations are based on the same K and 7' val-
ues used in the GPT-40 configuration, as speci-
fied in Table 2, and applied across the datasets
LongGenBench-GSM8K, LongGenBench-MMLU,
and LongGenBench-CSQA. The pricing is based on
the GPT-4o0 rates, which are $5 per million input
tokens and $15 per million output tokens.

As shown in Table 14, the NIAH test incurs a
significantly higher cost compared to LongGen-
Bench. Specifically, the NIAH test requires 8192K
input tokens and 0.1K output tokens, resulting in
a total cost of $40. In contrast, LongGenBench re-
quires 300K input tokens and 340K output tokens,
resulting in a much lower total cost of $6.6.

Method ‘ Input Tokens Output Tokens Price
NIAH 8192K 0.1K $40
LongGenBench 300K 340K $6.6

Table 14: Comparison of Costs Between Needle-In-A-
Haystack (NIAH) and LongGenBench Tests

C Exemplars Generated by LL.Ms Using
LongGenBench

Tables 15 and 16 provide examples of responses
generated by LLMs using LongGenBench, where
each model generated K answers in a single long-
context response. These examples demonstrate that
the models can remember the content and sequence
of the K questions and maintain consistency in
logical flow during generation.

880

D Licenses

For the evaluation dataset, all the datasets,
including GSMS8K (Cobbe et al., 2021),
MMLU (Hendrycks et al., 2021), CSQA (Talmor
et al., 2019) are released under MIT license.

881

Exemplars

Answer_1:
Terry eats 2 yogurts a day, so in 30 days, he eats 30 * 2 = 60 yogurts. Since yogurts are on sale at 4 for $5.00, he spends
60/4 * $5.00 = $75.00 on yogurt over 30 days. X

Answer_2:
There are 25 oranges in total, and 20% of them are unripe, so 20% of 25 is 0.20 * 25 = 5. 1 is bad and 2 are sour, so
from 25 — (1 4+ 2+ 5) = 25 — 8 = 17 Therefore, 17 oranges are good. 4

Answer_3:
There are 6 clusters with 6 * 20 = 120 raspberries. Together with the 67 individual fruit, there are 120 + 67 = 187
raspberries in total. &2

Answer_4:
Lloyd produces 252 eggs per day, so in a week, he produces 252 * 7 = 1764 eggs. He sells them for $2 per dozen, so he
sells 1764/12 = 147 dozens per week. Therefore, his weekly income from eggs is 147 * $2 = $294. (2

Answer_5:
If there are twice as many boys as girls in the school and there are 60 girls, then there are 2 * 60 = 120 boys. With 5
students to every teacher, there are 60 + 120 = 180 students. Therefore, there are 180/ 5 = 36 teachers. @

Answer_24:
Each school sent 2 teams with 5 players and 2 coaches, so each school sent 2 x (5 + 2) = 14 people. With 4 schools,
there are therefore 4 * 14 = 56 people in total. X

Answer_25:

If Dana spends 1/3 of 6 hours running, she runs 1/3 x 6 = 2 hours. She travels at a rate of 3 x 2 = 6 miles per hour. If
she spends 2/3 of 6 hours walking, she walks 2/3 % 6 = 4 hours. She travels at 1/4 « 3 = 0.75 miles per hour, so she
walks 4 % 0.75 = 3 miles. In total, she travels 2 % 6 + 4 % 3 = 12 + 12 = 24 miles in 6 hours. X

Answer_26:
The final price of Stephen’s groceries is 25% + $3.00 + $4.00 = $13.00 more than $40.00, so the final price is
$40.00 + $13.00 = $53.00. X

Answer_27:

In the first half of the year, Aleena pays $140 * 6 = $840. After the discount, in the second half of the year, she pays
10% * $140 x 6 = $84 less, so she pays $840 — $84 = $756. Thus, the total amount she paid for the streaming service
by the end of the year is $840 + $756 = $1596.

Answer_28:
The truck and driver weigh 3755 pounds, leaving a maximum capacity of 5000 — 3755 = 1245 pounds. So up to
1245/15 = 83 boxes can be loaded onto the truck.

Answer_32:
Sophia travels 100 miles on 4 gallons of gas, so she uses 100/4 = 25 miles per gallon. On one tank of 12 gallons, she
will be able to drive 25 * 12 = 300 miles.

Answer_33:
For repairing 6 truck tires, the revenue is 6 * $60 = $360. For repairing 4 car tires, the revenue is 4 * $40 = $160. The
difference in revenue is $360 — $160 = $200 more. X

Answer_34:

Meredith spent 4 hours on each blog article, so 5 articles took 5 * 4 = 20 hours on Monday. On Tuesday, she wrote 2/5
more articles, which is 2/5%5 = 2, making a total of 5+2 = 7 articles. Then on Wednesday, she wrote twice the number
of articles as on Tuesday, so 7+ 2 = 14 articles. All in all, Meredith spent 20 4 (7*4) 4 (14%4) = 20+ 28456 = 104
hours writing articles in the three days.

Answer_35:

If Polly holds the sapphire gemstone, she can throw the gold javelin three times as far, so she can throw it 400 * 3 = 1200
feet. Therefore, holding the sapphire gemstone, she can stand 1200 — 1000 = 200 feet outside the reach of the dragon’s
flames and still hit the dragon.

Table 15: Exemplars for GPT-3.5-Turbo generated response from LongGenBench-GSMSK.

882

Exemplars

Answer_1:

Let’s think step by step. Bubblesort has O(n?) running time in both worst and average cases. Mergesort has O(nlogn)
running time in both worst and average cases. Heapsort has O(nlogn) running time in both worst and average cases.
Quicksort has O(n?) running time in the worst case and O(nlogn) running time on average. The answer is (D).

Answer_2:

Let’s think step by step. Insertion sort is heavily dependent on the initial ordering of the input. Quicksort is heavily
dependent on the initial ordering of the input. Merge sort is least dependent on the initial ordering of the input, because
its performance is consistent regardless of the ordering of the input. Selection sort is also heavily dependent on the initial
ordering of the input. The answer is (C).&4

Answer_3:

Let’s think step by step. We can think of a K-ary tree as being composed of one nonterminal root node, K nonterminal
child nodes of the root, K2 nonterminal child nodes of each of those nodes, etc. Thus, a K-ary tree of depth N is
composed of: 1 4+ K + K2 + + K nonterminal nodes and (K~ — 1) /(K — 1) total nodes. As the depth of the tree
increases, the proportion of nonterminal nodes relative to the total number of nodes approaches: (1 + K 4+ K2 + +
EYN) /(KN =1)/(K ~1)) = (K'N+1) = 1)/(K = 1)) /(KY =1)/(K —1)) = (K'N+1) = 1) /(K" —1) =
(KN +1) = 1)/ (KN = 1) (K/K) = (KN +2) = K) /(KN +1) — K) = (KN +1) = /(KN —1) +1 =
A1+K+K*+...+KN+1))/(1+ K + K? + ...+ KV) which as N increases approaches: K /(K — 1). The
answer is (B). X

Answer_4:

Let’s think step by step. We can see that { AND, OR} is not complete because we cannot express NOT. We can see that
{AND, NOT} and {NOT, OR} are both complete. We can also see that {NAND} is complete because NAND can express
all other boolean operations. The answer is (C).

Answer_19:
Let’s think step by step. The IP protocol is primarily concerned with routing packets through the network. It defines the
format of packets and the addressing scheme used to route packets between different networks. The answer is (A). &

Answer_20:

Let’s think step by step. TCP protocol is responsible for reliable delivery of large (multi-packet) messages between
machines that are not necessarily directly connected. It provides a reliable connection-oriented service, ensuring that
packets arrive in the correct order and are not lost. The answer is (C). &4

Answer_21:

Let’s think step by step. A common divisor must divide both integers. The set of common divisors of two integers is a
subset of the divisors of each integer. Thus, the set {-6,-2, -1, 1, 2, 6} could possibly be the set of all common divisors of
two integers. The answer is (A). X

Answer_38:

Let’s think step by step. If the owner is allowed to delete a file, dangling links may result. This is true, because if the
owner deletes the file, the link count in the shared file node will be decremented. However, the links to the file in other
users’ directories will still point to the shared file node. If the owner deletes the file, these links will become dangling
links. The answer is (C).

Answer_39:

Let’s think step by step. Giving priorities to processes and ordering the wait queues by priority will not deal effectively
with the problem of deadlock. This is because deadlock can occur even if processes have priorities and wait queues are
ordered by priority. For example, consider a system with two processes, P1 and P2, and two resources, R1 and R2. P1
holds R1 and requests R2, while P2 holds R2 and requests R1. Deadlock will occur even if P1 has a higher priority than
P2. The answer is (A).

Answer_40:

Let’s think step by step. Indirect representation noticeably increases compilation time. This is false, because indirect
representation does not noticeably increase compilation time. Direct representation decreases the time needed to access
components of a variable. This is true, because direct representation allows for faster access to components of a variable,
as the compiler does not need to dereference a pointer to access the components. When the storage size of some private
component of a variable changes, indirect representation minimizes the number of recompilations of source modules that
must be performed. This is true, because indirect representation allows for changes to the size of private components
without requiring recompilation of source modules that use the variable. The answer is (D).

Table 16: Exemplars for Gemini-1.5-Flash generated response from LongGenBench-MMLU.
883

