
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 8189–8200
November 12-16, 2024 ©2024 Association for Computational Linguistics

Activation Scaling for Steering and Interpreting Language Models

Niklas Stoehr1 Kevin Du1 Vésteinn Snæbjarnarson2

Robert West3 Ryan Cotterell1 Aaron Schein4

1ETH Zürich 2University of Copenhagen 3EPFL 4The University of Chicago
niklas.stoehr@inf.ethz.ch kevin.du@inf.ethz.ch vesn@di.ku.dk

robert.west@epfl.ch ryan.cotterell@inf.ethz.ch schein@uchicago.edu

Abstract
Given the prompt “Rome is in”, can we steer a
language model to flip its prediction of an incor-
rect token “France” to a correct token “Italy” by
only multiplying a few relevant activation vec-
tors with scalars? We argue that successfully
intervening on a model is a prerequisite for
interpreting its internal workings. Concretely,
we establish a three-term objective: a success-
ful intervention should flip the correct with
the wrong token and vice versa (effectiveness),
and leave other tokens unaffected (faithfulness),
all while being sparse (minimality). Using
gradient-based optimization, this objective lets
us learn (and later evaluate) a specific kind of
efficient and interpretable intervention: activa-
tion scaling only modifies the signed magnitude
of activation vectors to strengthen, weaken, or
reverse the steering directions already encoded
in the model. On synthetic tasks, this interven-
tion performs comparably with steering vectors
in terms of effectiveness and faithfulness, but is
much more minimal allowing us to pinpoint in-
terpretable model components. We evaluate ac-
tivation scaling from different angles, compare
performance on different datasets, and make
activation scalars a learnable function of the
activation vectors themselves to generalize to
varying-length prompts.1

1 Introduction

Understanding which components of a language
model play which roles in which tasks is a core aim
of mechanistic interpretability. Given the prompt
Rome is in, for instance, one might ask which com-
ponents of the model most influence it to favor Italy
over some incorrect answer token, such as France.
In addressing this question, a natural axiom is that
a given component can only be understood as influ-
ential for a given task if intervening on it meaning-
fully alters the model’s task-specific behavior.

1Code to experiment with our method is available at
https://github.com/niklasstoehr/activationScaling.

xx

Italy / France

inRome is

Figure 1: We show that it is often sufficient to scale
a few influential activation vectors h(s)

l,i for a model to
favor one answer token over another token. This could
be the MLP output at layer l for token position i. We
learn multiplicative scalars, α(s)

l,i , using gradient-based
optimization. These correspond to interpretable inter-
ventions that generalize to test set prompts while relying
on fewer parameters than additive steering vectors.

Building on this basic axiom, a growing liter-
ature seeks to both generate and test hypotheses
about where certain behaviors are localized in a
model by employing targeted interventions with
methods such as activation patching (Lakretz et al.,
2019; Vig et al., 2020; Meng et al., 2022), among
others. Studies in this literature often produce a
set of attribution scores associated with various
locations in the model which represent how much
the model’s output changed after editing the
activation vectors at each location. Although an
effective intervention may be necessary to believe
a given localization hypothesis, it is not sufficient,
as interventions to other model locations may
be similarly effective. Indeed, recent work has
questioned the relationship between interpretability
and intervention on this basis, and has advocated
for more rigorous and deliberate methodology for
connecting the two (Hase et al., 2023; Wang and
Veitch, 2024; Hanna et al., 2024).

A parallel literature on model steerability also
seeks to develop effective interventions, not for
the primary purpose of interpretability, but to steer
models toward desirable behaviors, like factual-
ity (Li et al., 2023), or away from undesirable
behaviors, like toxicity (Ilharco et al., 2023; Turner

8189

mailto:niklas.stoehr@inf.ethz.ch
mailto:kevidu@ethz.ch
mailto:vesteinn.snaebjarnarson@gmail.com
mailto:robert.west@epfl.ch
mailto:ryan.cotterell@inf.ethz.ch
mailto:schein@uchicago.edu
https://github.com/niklasstoehr/activationScaling

et al., 2023). Methods in this literature are typically
designed to be maximally effective for steering
and thus tend to involve model-wide (i.e., not
necessarily localized) interventions to the weights
(Houlsby et al., 2019; Hu et al., 2021; Ilharco et al.,
2023) or activation vectors (Subramani et al., 2022;
Hernandez et al., 2024).

This paper seeks to synthesize the goals of
model-wide interventions while still offering
mechanistic insights into the model. Specifically,
we seek interventions that are effective, and not lo-
calized a priori, but are nevertheless minimal and
faithful. We define an intervention to be effective
if it flips the prediction of the correct answer token
(e.g., Italy) to an incorrect token (e.g., France).
We define an intervention to be faithful if it does
not substantially alter the probabilities of tokens
unrelated to the given task. And, we define an inter-
vention to be minimal if it alters activation vectors
sparsely, in only a small number of locations. Our
notions of minimality and faithfulness follow from
recent work in the Transformer circuits literature
(Wang et al., 2023; Bhaskar et al., 2024). We
operationalize these three desiderata via a three-
term objective allowing us to learn model-wide
interventions using gradient-based optimization.

More specifically, we propose a kind of model-
wide yet parsimonious intervention that associates
a single scalar parameter with each of many loca-
tions in a model. The scalar parameters are learned
so that the model can be effectively steered—
e.g., away from Italy and toward France—by
simply scaling the activation vector at each lo-
cation. We call this approach activation scaling
(ACTIVSCALAR), inspired by the idea that some
model components are highly specialized for cer-
tain task-relevant computations (Voita et al., 2019;
Geva et al., 2022). Existing work (Yu et al., 2023;
Merullo et al., 2024; Ortu et al., 2024) has identified
individual components, e.g., name mover heads
(Wang et al., 2023), in a first step and successfully
steered a model by scaling only the contributions
of those individual components in a second step.

To evaluate our approach, we construct a base-
line method that is the same in all aspects except
it learns additive vectors at all locations, rather
than single multiplicative scalars. We refer to this
approach as steering vectors (STEERVEC). In a
suite of experiments, we find overall that activation
scaling learns interventions which are as effective
and faithful as steering vectors, while requiring far
fewer learnable parameters. Our results suggest

that merely scaling the signed magnitude of
activation vectors, without further affecting their
direction, is sufficient for effective steering on sim-
ple tasks. Moreover, we find activation scalars are
highly interpretable. They are easy to understand
as simply strengthening or weakening the steering
directions already encoded in the model (Subra-
mani et al., 2022; Ferrando and Voita, 2024), and
when visualized, they provide sparse and localized
descriptions of important model components. Fi-
nally, to extend our approach beyond fixed prompt
templates, we develop a dynamic version of acti-
vation scaling. DYNSCALAR makes the activation
scalars learned functions of the activation vectors
themselves, thus allowing learned interventions to
transfer to test set prompts of varying length.

2 Transformer Language Models

Let Σ be an alphabet of tokens, a finite, non-empty
set, and let Σ∗ be the set of all strings with tokens
drawn from Σ. A language model p is a proba-
bility distribution over Σ∗. As is current practice,
most language models are defined autoregressively.
Let v = v1 · · · vI ∈ Σ∗ be a string; then the autore-
gressive factorization of p is given by

p(v) = p(EOS | v)
I∏

i=1

p(vi | v<i). (1)

Each local conditional distribution p(· | v<i) is a
distribution over Σ = Σ ∪ EOS, where EOS ̸∈ Σ is
the end-of-string token. In the context of an autore-
gressive language model, we call v<i a prompt.

Let xn ∈ Σ∗ be a prompt of length In and yn ∈
Σ the next token. A common way to define the lo-
cal conditional is via the softmax function σ which
maps from R|Σ| to the probability simplex ∆|Σ|−1:

p(yn | xn) = σ(f(xn))yn

=
exp

(
f(xn)yn

)
∑

y′∈Σ exp
(
f(xn)y′

) , (2)

where f(xn) = EhL,In
defines the logit function

f : Σ∗ → R|Σ| of a language model, where
E ∈ R|Σ|×D is the projection (or unembedding)
matrix, and where hL,In

∈ RD is the activation
vector at the final model layer L and last token
position In of the prompt.

Most state-of-the-art language models rely on
the Transformer architecture (Vaswani et al., 2017)
to compute f . Transformers are composed of L lay-
ers of Transformer blocks, each of which consists

8190

Dataset Prompt Answer Toks

Country–Capital Conflict (CCC) The capital of Germany is Paris. Q: What is the capital of Germany? A: Berlin / Paris
Indirect Object Identification (IOI) When Anne met with Tom, Tom gave the book to Anne / Tom

Table 1: We study two datasets commonly used for mechanistic interpretability: conflicts (CCC) between correct
and incorrect facts about country capitals; Indirect Object Identification (IOI) requiring weak syntactic reasoning.

of a multi-headed attention ATTNl and a multi-
layer perceptron MLPl function that read from and
write into the residual stream. For instance, a Trans-
former block in a GPT2 (Radford et al., 2019) or
Pythia (Biderman et al., 2023) model is given by

H
(1)
l = ATTNl

(
LN

(1)
l (H

(4)
l−1)

)
(3a)

h
(2)
l,i = h

(1)
l,i + h

(4)
l−1,i (3b)

h
(3)
l,i = MLPl

(
LN

(2)
l (h

(2)
l,i)

)
(3c)

h
(4)
l,i = h

(3)
l,i + h

(2)
l,i (3d)

H
(4)
l = [h

(4)
l,1 , . . . ,h

(4)
l,In

], (3e)

where h
(s)
l,i ∈ RD is an activation (column) vector

at a specific site s at layer l and token position i,
and LN

(s)
l is the pre-layer normalization (Ba et al.,

2016; Xiong et al., 2020). We stack activation
vectors across token positions to obtain a layer-wise
activation matrix H

(s)
l ∈ RD×In . The matrix H

(4)
1

is initialized to a representation of the input xn.

3 Activation-Level Interventions

3.1 Choosing Intervention Points

We focus on a class of interventions which modify
one or more of the activation vectors in Eq. (3).2

This level of abstraction is motivated by our desire
to interpret larger components of the Transformer.
However, we note that the granularity at which we
seek to intervene and understand the model is a
choice which depends on specific use cases. Our
intervention targets a set of layer indices L, token
positions I, and sites S. We denote the Cartesian
product of the layer indices, token positions and
sites, K = L × I × S, as the intervention points.

3.2 Defining an Intervention

We intervene on the activation vectors of the model
f(xn) by specifying an intervention f̃β

θ (xn) that
involves a set of learnable parameters θ and a hy-
perparameter β ∈ R which controls the strength

2We refer to selected sites in Eq. (3) with names: attnOut
for s = 1, mlpOut for s = 3 and residPost for s = 4.

and direction of the intervention. For instance, set-
ting β = 0 removes an intervention, resulting in
f̃β
θ (xn) = f(xn), while switching the sign of β

reverses the intervention’s direction. We compute
f̃β
θ (xn) via h̃

(s)
l,i as follows.

Additive Vectors. We first consider an interven-
tion based on steering vectors (STEERVEC). Specif-
ically, we define a set of intervention parameters
θ = {v(s)

l,i }(l,i,s)∈K that associate a vector v(s)
l,i with

each intervention point. The intervention adds this
vector to its corresponding activation vector:

h̃
(s)
l,i = h

(s)
l,i + βv

(s)
l,i . (4)

Multiplicative Scalars. Applying an interven-
tion vector modifies both the direction and magni-
tude of the activation vector. We instead propose
a more parameter-efficient intervention which is
restricted to scaling the signed magnitude of each
activation vector via a single multiplicative scalar.
This approach, which we call activation scalars
(ACTIVSCALAR), is given by

h̃
(s)
l,i = h

(s)
l,i (1 + βα

(s)
l,i). (5)

where θ = {α(s)
l,i }(l,i,s)∈K are the parameters.

3.3 Learning an Intervention
What qualities does an interpretable intervention
possess? In this article, we focus on interven-
tions that are effective, faithful, and minimal,
drawing on analogous concepts established in the
Transformer circuits literature (Wang et al., 2023;
Bhaskar et al., 2024).

We intervene on the model to steer its predic-
tion on a selected task with data points T =
{(xn, cn, wn)}Nn=1. For each data point, the model
is prompted by xn to choose between two compet-
ing answer tokens cn, wn ∈ Σ. The answer tokens
are selected such that cn and wn always represent
correct and wrong continuations of the prompt, re-
spectively. For instance, given the prompt xn = The
capital of Poland is London. Q: What is the capital
of Poland? A:, the competing answer tokens could
be cn = Warsaw versus wn = London.

8191

C
C

C

2.0 1.5 1.0 0.5 0.0
effectiveness

10

1

0
fa

ith
fu

ln
es

s
(lo

g)

2.0 1.5 1.0 0.5 0.0
effectiveness

1.000
0.100
0.010
0.001
0.000
0.000
0.000

m
in

im
al

ity
 (l

og
)

1e5
IO

I

2.5 2.0 1.5 1.0 0.5 0.0
effectiveness

10

1

0

fa
ith

fu
ln

es
s

(lo
g)

2.5 2.0 1.5 1.0 0.5 0.0
effectiveness

1.000
0.100
0.010
0.001
0.000

0.000
0.000

m
in

im
al

ity
 (l

og
)

1e5

Figure 2: Pareto fronts that visualize the trade-off between effectiveness and faithfulness (left) and effectiveness
and minimality (right) on train (crosses) and test sets (points). We compare ACTIVSCALAR and STEERVEC for
different hyperparameter combinations of λF, λM,m ∈ {0, 1, 10, 100}. We learn interventions for the sites attnOut
and mlpOut on all layers and token positions of GPT2-Small. We find that ACTIVSCALAR does not fall behind
STEERVEC in terms of effectiveness and faithfulness, but is much more minimal on average.

Effectiveness. A popular objective for learning
interventions is the logit difference between can-
didate tokens: f̃β

θ (xn)cn − f̃β
θ (xn)wn . We extend

this objective to allow the sign of β to control the
sign of the logit difference. Concretely, we want
the logit of cn to be larger than that of wn by some
margin m ≥ 0 when setting β > 0 and smaller for
β < 0. Define f̃+

θ (xn) to be the intervention with
β = 1, and f̃−

θ (xn) to be the intervention with
β = −1. The following objective then encourages
learned interventions to yield both f̃+

θ (xn)cn >

f̃+
θ (xn)wn and f̃−

θ (xn)cn < f̃−
θ (xn)wn :

Em(θ, T) = (6)

− 1

N

N∑

n=1

[
max

(
0, f̃+

θ (xn)wn−f̃+
θ (xn)cn+m

)

+max
(
0, f̃−

θ (xn)cn − f̃−
θ (xn)wn +m

)]
.

Faithfulness. We say an intervention is faithful
if it only affects the answer tokens (Wang et al.,
2023; Hanna et al., 2024). We promote faithfulness
via the following objective

F(θ, T) = (7)

− 1

N

N∑

n=1

DKL

(
σ
(
f̃+
θ (xn)

)
|| σ

(
f(xn)

))

+DKL

(
σ
(
f̃−
θ (xn)

)
|| σ

(
f(xn)

))
.

where DKL is the Kullback–Leibler divergence.

Minimality. Thirdly, the intervention should be
minimal (Wang et al., 2023), which we promote
with the following regularizing term

Mp(θ) = −∥vec(θ)∥p (8)

which penalizes a (pseudo)norm of the parameters.
Here, vec maps the set of parameters θ to a vector,
and the subscript p indicates which (pseudo)norm
of the vector is penalized. Setting p = 0 corre-
sponds to ℓ0-regularization, which encourages
sparsity directly but is difficult to optimize.
We instead take p = 1, which corresponds to
ℓ1-regularization, a widely-studied and effective
convex relaxation of ℓ0-regularization, which
forms the basis of the sparsity-inducing LASSO
method (Tibshirani, 1996).

Gradient-based Parameter Learning. Putting
it all together, we directly optimize for an inter-
vention that is simultaneously effective, faithful,
and minimal. Specifically, we choose intervention
parameters θ using gradient-based optimization on
the multi-term objective

Ψ(θ,T) =

Em(θ, T) + λFF(θ, T) + λMM1(θ).
(9)

We can tune the hyperparameters λF ≥ 0 and λM ≥
0 to control the degree to which the three terms
in the objective trade off. The margin m ≥ 0
constitutes a third hyperparameter that controls the
strength of the effectiveness term.

8192

3.4 Evaluating an Intervention
We can evaluate an intervention based on our op-
erationalizations of effectiveness, faithfulness and
minimality. To evaluate effectiveness, we set the
margin m = 0 to obtain a metric ranging from −∞
to 0, where E0(θ, T) = 0 indicates that an inter-
vention always successfully flips the answer tokens.
The faithfulness objective, which also ranges from
−∞ to 0, can be treated as an evaluation metric
without any modification. Finally, to evaluate
minimality, we count the number of non-negligible
intervention parameters—i.e., those taking values
sufficiently far from 0. In practice, we consider
absolute values less than 0.01 to be negligible.

4 Experiments

We fit the two intervention methods, ACTIVS-
CALAR and STEERVEC, on the three-term objec-
tive in Eq. (9) and conduct evaluations for effec-
tiveness, faithfulness and minimality.

4.1 Tasks
We consider two synthetic tasks presented in
Tab. 1. The Country–Capital Conflicts (CCC) task,
designed by Du et al. (2024), prompts models to
resolve an entity-based knowledge conflict (Long-
pre et al., 2021) which pits information provided
in-context against prior parametric knowledge that
models can be assumed to have acquired during
training. The Indirect Object Identification (IOI)
task, which we adapt slightly from Wang et al.
(2023), prompts models to choose which of two
tokens is the indirect object in sentences with
potentially complex syntactic structure. For both
tasks, we select prompts to be of the same length In
and ensure the candidate answers are single tokens.

4.2 Quantitative Results
We do not expect there to be a single solution which
is optimal for all three objectives. An optimally
effective intervention might not be very faithful,
while a highly minimal intervention but not be very
effective. We seek to understand the trade-off be-
tween the different intervention desiderata by find-
ing Pareto-optimal solutions. To this end, we run
a grid search over the hyperparameters λF, λM and
m. We evaluate the learned interventions on the
test set and visualize the Pareto frontier in Fig. 2.

Effectiveness versus Faithfulness. We find that
ACTIVSCALAR and STEERVEC perform compara-
bly when it comes to trading off effectiveness and

W
he

n
 A

nn
e

 m
et

 w
ith

 T
om

,
 A

nn
e

 g
av

e
 th

e
 b

oo
k to

 Tom, Anne

2
10
18
26
34
42

layer 0.1 0.0 0.1

1 0 1
beta

14

16

logit Tom Anne

Figure 3: The magnitude and sign of learned activa-
tion scalars highlight task-relevant locations within the
model, here for the residPost site on GPT2-XL. For
instance, the correct answer token Tom is promoted
around layers 15 to 20 while activation vectors at the
token Anne are scaled down. The intervention is success-
ful according to our effectiveness objective illustrated
by the red and blue lines crossing between β = −1 and
β = 1, which reverses the sign of the logit difference.

faithfulness. Of all points on the Pareto frontier,
around half come from each approach. STEERVEC

is generally more effective on the train set, but also
exhibits large decreases in test set performance;
this is likely due to it having many more parame-
ters and being more prone to overfitting. We also
see that high values of effectiveness on the train set
are associated with low values of faithfulness on
the test set, also suggestive of overfitting.

Effectiveness versus Minimality. We find that
ACTIVSCALAR is generally more minimal on
multiple levels. For CCC and IOI, ACTIVS-
CALAR accounts for about 85% of the points on
the effectiveness-minimality Pareto frontier in
Fig. 2. Thus, ACTIVSCALAR learns interventions
that are in fact more parsimonious. This is in
addition to having far fewer learnable parameters.
As a simple illustration, consider learning an
intervention on the L = 48 layers of GPT2-XL,
for a prompt consisting of In = 19 tokens. If
we only intervene on a single site per layer—e.g.,
residPost, where the activation vector has
dimensionality D = 1600—then STEERVEC has
19× 48× 1600 = 1,459,200 learnable parameters
while ACTIVSCALAR has only 48 × 19 = 912
learnable scalars. ACTIVSCALAR is also more
minimal qualitatively, as it is limited to affecting
only the signed magnitude of the activation vectors
without otherwise affecting their direction.

8193

Abs. change in norm

corr. over 5 runs, ρ = 0.979
W

he
n

 A
nn

e
 m

et
 w

ith
 T

om
,

 A
nn

e
 g

av
e

 th
e

 b
oo

k to

 Tom, Anne

2
10
18
26
34
42
layer

0.5 1.0 1.5

Change in direction (cosine dist)

corr. over 5 runs: ρ = 0.350

W
he

n
 A

nn
e

 m
et

 w
ith

 T
om

,
 A

nn
e

 g
av

e
 th

e
 b

oo
k to

 Tom, Anne

2
10
18
26
34
42
layer

1.0 1.1

Figure 4: We interpret the learned steering vectors by
comparing their difference in norm and direction, be-
fore and after training, here for the residPost site of
GPT2-XL. We observe that the change in norm highlights
similar token positions as ACTIVSCALAR in Fig. 3.
When fitting the vectors multiple times, the vectors con-
verge to different directions every time, while changes
in norm are more constant. We quantify this using the
Kendall correlation ρ between the orderings of locations
by the change in norm as well as cosine distance be-
tween different runs.

W
he

n
 A

nn
e

 m
et

 w
ith

 T
om

,
 A

nn
e

 g
av

e
 th

e
 b

oo
k to

 Tom, Anne

2
4
6
8

10
12
layer

0.0 0.2

W
he

n
 th

e
 ti

re
d

 M
ar

y
 m

et
 w

ith h
er

 fr
ie

nd
 Jo

hn
,

 s
he

 g
av

e
 th

e
 p

ho
ne to

 John, Mary

2
4
6
8

10
12
layer

0.0 0.1

Figure 5: DYNSCALAR generalizes to prompts of vary-
ing length and yields interpretable activation scalars.
Here for residPost of GPT2-Small, the correct answer
token is identified despite being in a different position.

4.3 Interpretation of Scalars and Vectors

Activation Scalars. As shown in Fig. 3, activa-
tion scalars highlight task-relevant locations while
performing effective interventions at the same time.
The norm of activation vectors at the correct in-
context tokens is increased, while it is decreased at
the incorrect in-context tokens.

Steering Vectors. We seek to better understand
the properties of the learned steering vectors by
analyzing their change in norm and direction in
terms of cosine distance before and after training.
As visualized in Fig. 4, the change in norm reveals
a structured, interpretable pattern, while the direc-
tional change appears more arbitrary. In fact, when

CCC IOI
test set

CCC

IOI

alltr
ai

n
se

t -0.13 -2.2

-1.6 -1.2

-0.29 -1.3 2

0

Figure 6: Generalization performance in terms of ef-
fectiveness of DYNSCALAR for varying-length prompts
from different tasks fitted on mlpOut and attnOut of
GPT2-Small (closer to 0 is better). As expected, train-
ing and testing on the same task performs best overall,
but training on all tasks generalizes comparatively well.

E0 on CCC A: train B: test C: templ

ACTIVSCALAR -0.99 -1.57 -2.66
STEERVEC -0.06 -0.12 -2.16
DYNSCALAR -0.11 -0.30 -2.10

Table 2: We test generalization performance by learning
interventions on CCC and evaluating effectiveness on
prompts of the A: CCC train set; B: CCC test set; C:
a different template for the CCC task. All interven-
tion parameters are learned for attnOut and mlpOut of
GPT2-Small, using the same set of hyperparameters.

fitting the steering vectors five times on the same
prompt, we can show quantitatively that vectors
converge to different solutions in terms of direction
but less so in terms of norm.

5 Extension to Variable-Length Prompts

ACTIVSCALAR and STEERVEC, as well as most
existing interpretability methods such as activation
patching, learn intervention parameters that are
tied to specific token positions i in the prompt
xn. To reuse learned parameters for intervention
with a new prompt, the test prompt must match the
length In of the training prompt, and ideally match
it syntactically. Existing work circumvents the
requirement of matched prompts by intervening
only on the last token position (Yu et al., 2023; Li
et al., 2023; Jin et al., 2024; Stoehr et al., 2024a),
or on token positions that can be easily aligned
across prompts, like the main verb, or the last
token of the subject (Meng et al., 2022; Geva et al.,
2023; Ortu et al., 2024; Merullo et al., 2024).

Dynamic Activation Scalars. We propose an
extension of ACTIVSCALAR which defines each
scalar to be a function of the corresponding acti-
vation vector. Each function is tied to a particular
layer l and site s, but shared across token posi-
tions i, and parameterized by a (column) vector
g
(s)
l ∈ RD. The set of learnable intervention pa-

8194

ACTIVSCALAR on o

2 4 6 8 10 12 14 16
head

2
4
6
8

10
12
14
16
18
20
22
24
layer

5 0 5
DLA on o (Yu et al., 2023)

2 4 6 8 10 12 14 16
head

2
4
6
8

10
12
14
16
18
20
22
24
layer

2.5 0.0 2.5

2.5 0.0 2.5
beta

0
10

logit Warsaw London

2.5 0.0 2.5
beta

12.5
15.0
17.5
logit Warsaw London

2.5 0.0 2.5
beta

0

10

logit Apple Google

2.5 0.0 2.5
beta

14

16
logit Apple Google

Figure 7: We follow Yu et al. (2023) in their approach
to identify a memory head in layer l = 16, head t =
8 in Pythia-1.4b based on Direct Logit Attribution
(DLA) on the last token position. Analogously, we
learn activation scalars αc

l,i for the last token position
using ACTIVSCALAR and observe considerable overlap
in the attribution scores. Overall, intervening on the last
token position appears to be highly effective.

rameters is thus θ = {g(s)
l }(l,s)∈L×S . The scalar

α
(s)
l,i for a given position i is then the following

function of the corresponding activation vector:

α
(s)
l,i ≜ g

(s)
l

⊤
(

h
(s)
l,i

∥h(s)
l,i ∥2

)
. (10)

When combined with Eq. (5), this defines a dy-
namic intervention (DYNSCALAR). Learning this
intervention can be understood as learning probes
that identify task-relevant activation vectors and
then strengthen or weaken their magnitude via mul-
tiplicative scalars. In Fig. 5, we show how DYN-
SCALAR generalizes to prompts of varying length
while still offering interpretable insights highlight-
ing task-relevant tokens. In Fig. 6, we evaluate
the generalization performance of DYNSCALAR in
terms of effectiveness. As expected, performance
is highest when test sets are of the same task as the
train set; however, DYNSCALAR also obtains good
results when trained on a mix of tasks.

In Tab. 2, we quantify how well ACTIVSCALAR,
STEERVEC and DYNSCALAR generalize to vary-
ing degrees of domain shift when trained on the
CCC task. All prompts are of the same length
in order for ACTIVSCALAR and STEERVEC to be
applicable, but the prompt template and thus the

ACTIVSCALAR on o

2 4 6 8 10 12
head

2

4

6

8

10

12
layer 0.4 0.2 0.0

Ortu et al. (2024) on o

2 4 6 8 10 12
head

2

4

6

8

10

12
layer 0.25 0.00 0.25

2.5 0.0 2.5
beta

14

16
logit Google Apple

2.5 0.0 2.5
beta

14

16

logit Google Apple

Figure 8: We compare ACTIVSCALAR on GPT2-Small
with a loosely replicated version of the attribution scores
in Fig. 4(a) in Ortu et al. (2024). In our version, we
study interventions on the o activation vectors at the last
token position. Given the prompt iPhone was developed
by Google. iPhone was developed by, {Google, Apple},
both approaches single out similar attention heads, e.g.,
layer l = 11, head t = 8.

position i of task-relevant tokens changes. For
the selected hyperparameter setting, we find that
DYNSCALAR and STEERVEC show better gener-
alization performance than ACTIVSCALAR. The
strong generalization of STEERVEC is surprising
given that the learned steering vectors are tied to
specific token positions. We hypothesize that much
of the steering performance should be attributed to
the information processed at the last token position
(Yu et al., 2023; Wu et al., 2024; Ortu et al., 2024),
which is corroborated by the heatmap in Fig. 3. We
further explore this hypothesis in the next section.

Scaling at the Last Token Position. ACTIVS-
CALAR and STEERVEC show high steering effec-
tiveness even when the prompt template is changed.
This suggests a gate-keeping role of computations
at the last token position which suppresses or pro-
motes task-relevant information. Yu et al. (2023)
rely on direct logit attribution (DLA; Elhage et al.,
2021) on the output activation vector (o) at the
last token position.3 They identify what they call
a memory head in layer l = 16, head t = 8 of
Pythia-1.4B. They then intervene on this head by
scaling the value activation vector (v). We replicate
a version of their method and contrast it with
ACTIVSCALAR in Fig. 7. We find high attribution

3Please refer to App. A.2 for details on the attention mech-
anism and our naming conventions of activation vectors.

8195

ACTIVPATCH

Th
e

 c
ap

ita
l

 o
f

 P
ol

an
d is

 L
on

do
n .

 Q
:

 W
ha

t
 is

 th
e

 c
ap

ita
l

 o
f

 P
ol

an
d ? A :

 Warsaw, London

2
4
6
8

10
12
layer 0.2 0.0 0.2

ATTRPATCH

Th
e

 c
ap

ita
l

 o
f

 P
ol

an
d is

 L
on

do
n .

 Q
:

 W
ha

t
 is

 th
e

 c
ap

ita
l

 o
f

 P
ol

an
d ? A :

 Warsaw, London

2
4
6
8

10
12
layer 0.2 0.0

DLA

Th
e

 c
ap

ita
l

 o
f

 P
ol

an
d is

 L
on

do
n .

 Q
:

 W
ha

t
 is

 th
e

 c
ap

ita
l

 o
f

 P
ol

an
d ? A :

 Warsaw, London

2
4
6
8

10
12
layer 25 0 25

ACTIVSCALAR

Th
e

 c
ap

ita
l

 o
f

 P
ol

an
d is

 L
on

do
n .

 Q
:

 W
ha

t
 is

 th
e

 c
ap

ita
l

 o
f

 P
ol

an
d ? A :

 Warsaw, London

2
4
6
8

10
12
layer 0.05 0.00 0.05

2.5 0.0 2.5
beta

15.0

17.5
logit Warsaw London

2.5 0.0 2.5
beta

16

18
logit Warsaw London

2.5 0.0 2.5
beta

0

10

logit Warsaw London

2.5 0.0 2.5
beta

16

18
logit Warsaw London

2.5 0.0 2.5
beta

15.0

17.5
logit Paris Berlin

2.5 0.0 2.5
beta

16

18
logit Paris Berlin

2.5 0.0 2.5
beta

0

10

logit Paris Berlin

2.5 0.0 2.5
beta

16
17

logit Paris Berlin

Figure 9: [Top] We fit a variant of ACTIVPATCH, ATTRPATCH, DLA, and ACTIVSCALAR (left to right) on the
mlpOut and attnOut sites of GPT2-Small. We find that the highlighted locations overlap, across methods, at
important tokens such as London. [Middle] Intervening on the training prompt is effective for all methods except
DLA. [Bottom] All methods (except DLA) generalize to a test set prompt of a different country–capital conflict.

scores for similar heads, but also single out heads
in lower layers, which is less typical for DLA. We
conduct another case study on the role of the last
token position comparing ACTIVSCALAR with a
version of Ortu et al. (2024), presented in Fig. 8.

6 Related Work

6.1 Repurposing Interpretability Methods

There exist various methods producing activation-
level attribution scores based off a logit difference
metric between two answer tokens. Activation
patching (ACTIVPATCH; Lakretz et al., 2019; Vig
et al., 2020; Meng et al., 2022) swaps activation
vectors in one forward pass with activation vectors
from another (corrupted) forward pass to study
(causal) effects on the logit difference. Attribution
patching (ATTRPATCH; Nanda, 2023a; Syed
et al., 2023; Kramár et al., 2024) represents
a gradient-based, efficient approximation of
ACTIVPATCH. Direct logit attribution (DLA;
Elhage et al., 2021) identifies activation vectors
whose directions are correlated with the vectors
of the answer tokens in the projection matrix.

All three methods produces attribution scores for

individual model components, but whether these
scores are informative for model-wide steering is
unclear. Our work offers a convenient framework
to study this question. We can repurpose attribution
scores obtained with ACTIVPATCH, ATTRPATCH

and DLA and treat them as activation scalars α(s)
l,i

by plugging them directly into Eq. (5). Since
these scores were not specifically trained for our
task, we can then tune the β parameter to globally
strengthen, weaken or flip the interventional effect
as presented in Fig. 9.

For the given prompt, we find that ACTIVPATCH,
and ATTRPATCH facilitate successful steering ac-
cording to our effectiveness metric Eq. (6). This
is surprising as these methods are not trained on
this objective and their interventional strength may
be on a different scale, i.e., not flipping the answer
tokens between β = −1 and β = 1. In Fig. 9 for
instance, we find that attribution scores from DLA
are on a much larger scale. This is pointing at a
conceptual difference between ACTIVSCALAR and
existing methods: ACTIVSCALAR is trained on
an explicit objective serving steerability purposes,
thus learning an intervention with a well-defined
scale and steering direction. Besides, gradient-

8196

based learning is faster than activation patching
in most cases and incorporates inter-dependencies
between multiple activation vectors.

6.2 Other Related Work

Transformer Circuits. Joint interpretability and
steerability is also a desired property in circuit dis-
covery that seeks to identify a minimal subgraph
responsible for the behavior of the full model when
solving a specific task (Wang et al., 2023; Bhaskar
et al., 2024). Isolating the subgraph typically re-
quires thresholding the attribution scores associ-
ated with model components and then zeroing out
(De Cao et al., 2022; Wang et al., 2023; Conmy
et al., 2023; Syed et al., 2023) or corrupting them
(Geiger et al., 2021; Bhaskar et al., 2024). However,
this means that the intervention can be considered
discrete, as it cannot smoothly facilitate different
intervention strengths and directions. The scaling
aspect of the β hyperparameters in ACTIVSCALAR

and STEERVEC, in turn, is continuous.

Gradient-Based Steering and Interpretability.
This work relies on gradient-based optimization to
localize model components that are relevant with
respect to a specifically designed objective. This is
similar to Subramani et al. (2022); Hernandez et al.
(2024) that learn steering vectors to edit activation
vectors. Other related work analyzes the direction
and magnitude of weight or activation gradients
(Du et al., 2023; Stoehr et al., 2024b; Katz et al.,
2024) to identify task-relevant components.

Pruning, Masking and Adapters. Learning ac-
tivation scalars bears resemblance to work on prun-
ing neural networks (Li et al., 2021), fine-tuning
(low-rank) adapters (Houlsby et al., 2019; Hu et al.,
2021) and (hard) masking (Louizos et al., 2018;
Bondarenko et al., 2023). In this work, however,
we do not pursue the typical goals of the prun-
ing literature, which often focuses on reducing the
computational cost of inference. Instead, ACTIVS-
CALAR can be seen as learning a soft mask that
strengthens or weakens components for the purpose
of obtaining an interpretable map of locations.

7 Conclusion

We show that scaling the signed magnitude of a few
relevant activation vectors is often sufficient to flip
a model’s prediction between a correct and a wrong
answer token. Besides being effective at steering,
activation scaling requires many fewer parameters

than additive steering vectors which intervene both
on the magnitude and direction of activation vec-
tors. Our gradient-based multi-objective learning
scheme can be understood as reversing the inter-
pretability pipeline, putting steering performance
based on clearly defined objectives first and inter-
pretability as a natural by-product second.

Acknowledgments

We thank Clément Dumas and Alessandro Stolfo
for helpful early-stage discussions. Niklas Stoehr
is supported by the Swiss Data Science Center
(SDSC) PhD fellowship. Vésteinn Snæbjarnarson
is funded by the Pioneer Centre for AI, DNRF grant
number P1.

Limitations

STEERVEC, ACTIVSCALAR and DYNSCALAR are
controllable via different hyperparameters: the mar-
gin m in the effectiveness objective, λF weigh-
ing the faithfulness term and λM weighing the
strength of the ℓ1-regularization. There are addi-
tional training-related hyperparameters such as the
learning rate, the number of epochs, the batch size,
the number of data instances, and the standard de-
viation of the Gaussian noise initialization of the
intervention parameters, that have a strong influ-
ence on the results. For instance, increasing the
noise or the margin, training for more epochs, or
weakening the ℓ1-regularization, results in activa-
tion scalars that deviate more from zero.

Access to many hyperparameters can make a
method more difficult to deploy. On the other hand,
hyperparameters with well-founded semantic can
offer desirable, fine-grained controls. For instance,
a larger λM hyperparameter leads to sparser activa-
tion scalars that are easier to interpret, a level of
control not offered by many existing methods. Yet,
methods like ACTIVPATCH or ATTRPATCH also re-
quire finicky hyperparameter choices such as how
to corrupt the prompt, e.g., deciding on the standard
deviation of the Gaussian noise (Meng et al., 2022)
to obtain a second corrupted prompt for patching.

A limitation of this work is the size of models
studied and the small size and synthetic character
of the tasks. The two largest models considered in
this work are GPT2-XL (1.5 billion parameters) and
Pythia-1.4B (1.4 billion parameters). Beyond the
required compute, we do not anticipate problems
applying activation scaling to larger models.
Testing ACTIVSCALAR on more real-world

8197

datasets with longer prompts is another future
avenue. To boost the performance of DYNSCALAR,
one could expand the computational expressivity
of the activation vector-to-scalar function g

(s)
l .

Finally, more work is needed in extending our
evaluation based on effectiveness to existing
methods such as activation patching. For instance,
a promising direction is to fix the attribution
scores obtained from activation patching and
then post-hoc learning a suitable β parameter that
facilities the answer token flipping behavior.

Impact Statement

This work aims to better understand the internal
workings of language models. This understanding
may serve the post-hoc identification of harmful
properties such as hallucination, illicit memoriza-
tion, and undesired biases. It should ideally help in
taking preemptive action to guide the design and
training of future models. The required compute to
apply activation scaling is predominantly dictated
by the size of the studied language models.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-

ton. 2016. Layer normalization. arXiv, 1607.06450.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and
Danqi Chen. 2024. Finding transformer circuits with
edge pruning. arXiv, 2406.16778.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. arXiv, 2304.01373.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2023. Quantizable transformers: Re-
moving outliers by helping attention heads do noth-
ing. In Neural Information Processing Systems.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability. In Neural Informa-
tion Processing Systems.

Nicola De Cao, Leon Schmid, Dieuwke Hupkes, and
Ivan Titov. 2022. Sparse interventions in language
models with differentiable masking. In Workshop on
Analyzing and Interpreting Neural Networks for NLP
at EMNLP.

Kevin Du, Vésteinn Snæbjarnarson, Niklas Stoehr, Jen-
nifer C. White, Aaron Schein, and Ryan Cotterell.

2024. Context versus prior knowledge in language
models. In Annual Meeting of the Association for
Computational Linguistics.

Kevin Du, Lucas Torroba Hennigen, Niklas Stoehr, Alex
Warstadt, and Ryan Cotterell. 2023. Generalizing
backpropagation for gradient-based interpretability.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Nelson Elhage, Neel Nanda, Catherine Olsson, and Tom
Henighan. 2021. A mathematical framework for
transformer circuits.

Javier Ferrando and Elena Voita. 2024. Information flow
routes: Automatically interpreting language models
at scale. arXiv, 2403.00824.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Neural Information Processing Systems.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. Con-
ference on Empirical Methods in Natural Language
Processing.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Conference on Empirical Methods in Natu-
ral Language Processing.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024. Have faith in faithfulness: Going beyond cir-
cuit overlap when finding model mechanisms. In
Conference on Language Modeling.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
Surprising differences in causality-based localization
vs. knowledge editing in language models. In Neural
Information Processing Systems.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas.
2024. Inspecting and editing knowledge represen-
tations in language models. In Conference on Lan-
guage Modeling.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
International Conference on Machine Learning.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-rank adaptation of
large language models. arXiv, 2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2023. Editing
models with task arithmetic. In International Confer-
ence on Learning Representations.

8198

http://arxiv.org/abs/1607.06450
https://doi.org/10.48550/ARXIV.2406.16778
https://doi.org/10.48550/ARXIV.2406.16778
https://doi.org/10.48550/ARXIV.2304.01373
https://doi.org/10.48550/ARXIV.2304.01373
https://doi.org/10.48550/ARXIV.2304.01373
https://doi.org/10.48550/ARXIV.2306.12929
https://doi.org/10.48550/ARXIV.2306.12929
https://doi.org/10.48550/ARXIV.2306.12929
http://arxiv.org/abs/2304.14997
http://arxiv.org/abs/2304.14997
https://doi.org/10.18653/v1/2022.blackboxnlp-1.2
https://doi.org/10.18653/v1/2022.blackboxnlp-1.2
https://doi.org/10.48550/ARXIV.2404.04633
https://doi.org/10.48550/ARXIV.2404.04633
https://aclanthology.org/2023.acl-long.669
https://aclanthology.org/2023.acl-long.669
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://doi.org/10.48550/ARXIV.2403.00824
https://doi.org/10.48550/ARXIV.2403.00824
https://doi.org/10.48550/ARXIV.2403.00824
https://arxiv.org/abs/2106.02997
https://arxiv.org/abs/2106.02997
https://doi.org/10.48550/ARXIV.2304.14767
https://doi.org/10.48550/ARXIV.2304.14767
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://aclanthology.org/2022.emnlp-main.3
https://doi.org/10.48550/ARXIV.2403.17806
https://doi.org/10.48550/ARXIV.2403.17806
https://doi.org/10.48550/ARXIV.2301.04213
https://doi.org/10.48550/ARXIV.2301.04213
https://doi.org/10.48550/ARXIV.2301.04213
https://doi.org/10.48550/ARXIV.2304.00740
https://doi.org/10.48550/ARXIV.2304.00740
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.48550/ARXIV.2106.09685
https://doi.org/10.48550/ARXIV.2106.09685
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen,
Jiexin Xu, Huaijun Li, Xiaojian Jiang, Kang Liu,
and Jun Zhao. 2024. Cutting off the head ends the
conflict: A mechanism for interpreting and mitigating
knowledge conflicts in language models. In Findings
of the ACL.

Shahar Katz, Yonatan Belinkov, Mor Geva, and Lior
Wolf. 2024. Backward lens: Projecting language
model gradients into the vocabulary space. arXiv,
2402.12865.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

János Kramár, Tom Lieberum, Rohin Shah, and Neel
Nanda. 2024. AtP*: An efficient and scalable method
for localizing LLM behaviour to components. arXiv,
2403.00745.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syntax
units in LSTM language models. In North American
Chapter of the ACL.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. 2021.
Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational
Linguistics, 9:1442–1459.

Jiaoda Li, Jennifer White, Mrinmaya Sachan, and Ryan
Cotterell. 2024. A transformer with stack attention.
In Findings of the ACL.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023. Inference-
time intervention: Eliciting truthful answers from
a language model. In Neural Information Processing
Systems.

Shayne Longpre, Kartik Perisetla, Anthony Chen,
Nikhil Ramesh, Chris DuBois, and Sameer Singh.
2021. Entity-based knowledge conflicts in question
answering. In Conference on Empirical Methods in
Natural Language Processing.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through L0
regularization. In International Conference on Learn-
ing Representations.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. In Neural Information Processing
Systems.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.
Circuit component reuse across tasks in transformer
language models. In International Conference on
Learning Representations.

Neel Nanda. 2023a. Attribution patching: Activation
patching at industrial scale.

Neel Nanda. 2023b. TransformerLens—A library for
mechanistic interpretability of generative language
models.

Francesco Ortu, Zhijing Jin, Diego Doimo, Mrinmaya
Sachan, Alberto Cazzaniga, and Bernhard Schölkopf.
2024. Competition of mechanisms: Tracing how
language models handle facts and counterfactuals.
Annual Meeting of the Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI.

Niklas Stoehr, Pengxiang Cheng, Jing Wang, Daniel
Preotiuc-Pietro, and Rajarshi Bhowmik. 2024a. Un-
supervised contrast-consistent ranking with language
models. In Conference of the European Chapter of
the ACL.

Niklas Stoehr, Mitchell Gordon, Chiyuan Zhang, and
Owen Lewis. 2024b. Localizing paragraph memo-
rization in language models. arXiv, 2403.19851.

Nishant Subramani, Nivedita Suresh, and Matthew Pe-
ters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the ACL.

Aaquib Syed, Can Rager, and Arthur Conmy. 2023.
Attribution patching outperforms automated circuit
discovery. arXiv, 2310.10348.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the LASSO. Journal of the Royal Statisti-
cal Society, 58:267–288.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,
David Udell, Juan J. Vazquez, Ulisse Mini, and
Monte MacDiarmid. 2023. Activation addition:
Steering language models without optimization.
arXiv, 2308.10248.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. 2020.
Causal mediation analysis for interpreting neural
NLP: The case of gender bias. In Neural Information
Processing Systems.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. In Annual Meeting of the
Association for Computational Linguistics.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: A circuit for indirect object
identification in GPT-2 small. In International Con-
ference on Learning Representations.

8199

https://doi.org/10.48550/ARXIV.2402.18154
https://doi.org/10.48550/ARXIV.2402.18154
https://doi.org/10.48550/ARXIV.2402.18154
https://doi.org/10.48550/ARXIV.2402.12865
https://doi.org/10.48550/ARXIV.2402.12865
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.2403.00745
https://doi.org/10.48550/ARXIV.2403.00745
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.1162/tacl_a_00436
https://aclanthology.org/2024.findings-naacl.269
https://doi.org/10.48550/ARXIV.2306.03341
https://doi.org/10.48550/ARXIV.2306.03341
https://doi.org/10.48550/ARXIV.2306.03341
https://doi.org/10.48550/ARXIV.2109.05052
https://doi.org/10.48550/ARXIV.2109.05052
https://doi.org/10.48550/ARXIV.1712.01312
https://doi.org/10.48550/ARXIV.1712.01312
https://doi.org/10.48550/ARXIV.2202.05262
https://doi.org/10.48550/ARXIV.2202.05262
https://doi.org/10.48550/ARXIV.2310.08744
https://doi.org/10.48550/ARXIV.2310.08744
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://github. com/neelnanda-io/TransformerLens
https://github. com/neelnanda-io/TransformerLens
https://github. com/neelnanda-io/TransformerLens
https://doi.org/10.48550/ARXIV.2402.11655
https://doi.org/10.48550/ARXIV.2402.11655
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2309.06991
https://arxiv.org/abs/2309.06991
https://arxiv.org/abs/2309.06991
https://doi.org/10.48550/ARXIV.2403.19851
https://doi.org/10.48550/ARXIV.2403.19851
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.48550/ARXIV.2310.10348
https://doi.org/10.48550/ARXIV.2310.10348
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://doi.org/10.48550/ARXIV.2308.10248
https://doi.org/10.48550/ARXIV.2308.10248
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593
http://arxiv.org/abs/2211.00593

Zihao Wang and Victor Veitch. 2024. Does editing
provide evidence for localization? In ICML 2024
Workshop on Mechanistic Interpretability.

Wilson Wu, John X. Morris, and Lionel Levine. 2024.
Do language models plan ahead for future tokens?
In Conference on Language Modeling.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. In Conference on Empirical Methods in
Natural Language Processing.

A Appendix

A.1 Technical Details
We implement all steering and interpretability
methods using TransformerLens (Nanda, 2023b)
and hyperparameters are chosen based on a
combination of the grid search displayed in Fig. 2
as well as steering and interpretability desiderata
specific to each setting. We train gradient-based
methods using the Adam optimizer (Kingma and
Ba, 2015) for 25 epochs. We typically choose
a smaller learning rate of 0.0001 for training
STEERVEC and 0.001 for ACTIVSCALAR when
training on a single data point. A similarly
influential hyperparameter is the initialization of
the trainable intervention parameters θ that we
initialize with Gaussian noise N (0, 1e− 5).

A.2 Multi-headed Attention
We now describe the multi-headed attention mech-
anism ATTNl (Vaswani et al., 2017) in more de-
tail. Given a D × In activation matrix H

(4)
l−1 =

[h
(4)
l−1,1, . . . ,h

(4)
l−1,In

], the multi-headed attention
mechanism at layer l computes

H
(1)
l = ATTNl

(
LN

(1)
l (H

(4)
l−1)

)
(11a)

=
T∑

t=1

W
(z)
t,l At,l

(
LN

(1)
l (H

(4)
l−1)

)
(11b)

=
T∑

t=1

W
(z)
t,l H

(z)
t,l (11c)

=
T∑

t=1

H
(o)
t,l . (11d)

Essentially, each individual attention head At,l

with head index t ∈ {1, . . . , T} computes an ac-
tivation matrix H

(z)
t,l ∈ RD′×In . This per-head

matrix is then multiplied with W
(z)
t,l ∈ RD×D′

to

obtain a per-head output activation matrix H
(o)
t,l ∈

RD×In . Note that h(z)
t,l,i ∈ RD′

and h
(o)
t,l,i ∈ RD are

column vectors of H(z)
t,l and H

(o)
t,l , respectively.

To zoom in on individual attention heads, we
now omit the head index t and layer index l for no-
tational simplicity. Under this simplified notation,
we define A(H) as follows. Each activation (col-
umn) vector hi ∈ RD of the matrix H ∈ RD×In is
linearly projected to compute query, key and value
activation vectors according to

h
(q)
i = W(q)hi (12a)

h
(k)
i = W(k)hi (12b)

h
(v)
i = W(v)hi (12c)

where W(q),W(k),W(v) ∈ RD′×D. The key and
value vectors are then used to compute In different
self-attention distributions κi (Li et al., 2024)
over the probability simplex ∆In−1 following

κi(j) =
h
(q)
i

⊤h(k)
j√

D′ (13a)

κi = σ([κi(1), . . . , κi(In)]
⊤) (13b)

where κi(j) represents the (unnormalized) atten-
tion score that token position i pays to token posi-
tion j and σ is the softmax function. Importantly,
in autoregressive language modeling, it is common
to apply the hard constraint of an attention mask
to disallow token positions earlier in the prompt to
attend to positions later in the prompt—i.e., j ≤ i.

Finally, the self-attention distributions are used
to construct a weighted average of the value vectors
h
(v)
i according to

h
(z)
i =

In∑

j=1

κi(j)h
(v)
j (14a)

In the main part of this paper, Fig. 7 and Fig. 8
specifically, we refer to h

(z)
t,l,i as z, h(o)

t,l,i as o and

h
(v)
t,l,i as v activation vectors.

8200

https://openreview.net/pdf?id=oZXcwWTCfe#:~:text=Editing%20does%20tautological%20evidence%20for,unique%2C%20or%20at%20least%20necessary.
https://openreview.net/pdf?id=oZXcwWTCfe#:~:text=Editing%20does%20tautological%20evidence%20for,unique%2C%20or%20at%20least%20necessary.
https://doi.org/10.48550/ARXIV.2404.00859
https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/2002.04745
https://doi.org/10.48550/ARXIV.2310.15910
https://doi.org/10.48550/ARXIV.2310.15910
https://doi.org/10.48550/ARXIV.2310.15910
https://transformerlensorg.github.io/TransformerLens/

