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Abstract

Understanding and analyzing event temporal
relations is a crucial task in Natural Language
Processing (NLP). This task, known as Event
Temporal Relation Extraction (ETRE), aims to
identify and extract temporal connections be-
tween events in text. Recent studies focus on
locating the relative position of event pairs on
the timeline by designing logical expressions
or auxiliary tasks to predict their temporal oc-
currence. Despite these advances, this mod-
eling approach neglects the multidimensional
information in temporal relation and the hier-
archical process of reasoning. In this study,
we propose a novel hierarchical modeling ap-
proach for this task by introducing a Temporal
Cognitive Tree (TCT) that mimics human log-
ical reasoning. Additionally, we also design a
integrated model incorporating optimization by
hierarchical prompts and deductive reasoning
to exploit multidimensional supervised infor-
mation. Extensive experiments on TB-Dense
and MATRES datasets demonstrate that our
approach outperforms existing methods.

1 Introduction

Event relations usually refer to the mutual connec-
tions and influences between events. Understand-
ing and analyzing event relations are crucial for
individuals to comprehend the world. In the field
of Natural Language Processing (NLP), extract-
ing temporal relations between events is a critical
task that aims to identify and interpret the temporal
connections within textual data, as illustrated in
Figure 1, given a sentence containing two events
and a set of candidate temporal relations, our ob-
jective is to determine that the relation between the
Event1 based and the Event2 finish is INCLUDES.

Researchers have invested substantial effort in
the Event Temporal Relation Extraction (ETRE)
task and have explored this topic in various ways.
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sentence: The panel will be based in Addis Ababa , and will finish its 

investigation within a year , it said.

event_1: based

event_2: finish
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Figure 1: An example of ETRE task and two different
modeling methods.

Early work primarily relied on traditional machine
learning and statistical methods (Mani et al., 2006;
Yoshikawa et al., 2009; Fei et al., 2020). In re-
cent years, many studies have attempted to incor-
porate external knowledge to alleviate the issue of
data scarcity in ETRE. Extensive experiments have
demonstrated that augmenting knowledge can en-
hance model performance (Ning et al., 2019; Wang
et al., 2020; Han et al., 2020; Tan et al., 2023;
Zhuang et al., 2023). However, relying on external
knowledge inevitably brings new challenges, such
as noise injection and the model’s over-reliance
on external knowledge. Furthermore, recent stud-
ies have emphasized the importance of temporal
relation semantics, treating it not merely as a con-
ventional multi-class classification task but rather

855



focusing on the relative positions of events on the
timeline (Leeuwenberg and Moens, 2018; Wen and
Ji, 2021; Huang et al., 2023). However, existing
methods based on timeline positioning only utilize
the occurrence times of events to infer temporal
relations, as illustrated in Figure 1(a). This model-
ing approach can merely consider the semantics of
temporal relations linearly, i.e., the determination
of temporal relations depends simply on a linear
combination of start and end times of event pairs,
which overlooks the hierarchical transitivity inher-
ent in the process of reasoning. Consequently, the
model can simply learn limited information about
the position of events on the timeline from single-
dimensional information, and fails to learn more
multidimensional semantic knowledge, which may
lead to the model’s lack of understanding of tem-
poral relations, such as the VAGUE relation, its
complex semantic meaning can easily cause the
model to misclassify other relations as VAGUE.

To enable the model to fully leverage the hierar-
chical prior knowledge in the process of inference,
and thus learn the intrinsic meaning of temporal
relations from multiple dimensions, we model the
task of ETRE in a hierarchical manner and pro-
pose a ETRE model that integrates optimization by
prompts and deductive reasoning. To be specific,
we design a Temporal Cognitive Tree (TCT), as
illustrated in Figure 1(b), which is more consistent
with human thinking patterns. Based on the TCT,
we propose two modules, firstly, in order for the
model to fully leverage the multidimensional su-
pervised information in the TCT for training, we
design a temporal relation judgment module based
on multi-task prompt learning. Secondly, to better
leverage hierarchical information in the reasoning
process, we propose a temporal inference module
based on deductive reasoning1. Extensive exper-
iments demonstrate that our method can help the
model better recognize the temporal relations be-
tween events.

Our contributions can be summarized as follows:

• We propose a novel approach to hierarchically
model the existing task of ETRE by present-
ing a Temporal Cognitive Tree based on hu-
man logical reasoning. On the basis of this
cognitive tree, we design a temporal relation
extraction model that integrates optimization
by prompts and deductive reasoning.

1Deductive reasoning is a logical approach where you
progress from general ideas to specific conclusions.

• We present a multi-task temporal relation judg-
ment module based on prompt learning, and a
multi-label temporal relation inference mod-
ule based on deductive reasoning. These two
modules leverage multidimensional knowl-
edge in the hierarchical reasoning process to
assist the model in better discerning the tem-
poral relations between event pairs.

• We evaluate our model on two publicly avail-
able datasets, TB-Dense and MATRES. Exper-
imental results demonstrate that our approach
achieves state-of-the-art (SOTA) performance
without relying on external knowledge.

2 Method

In this section, we will introduce our entire model.
Our overall model is illustrated in Figure 2. First,
we will define the task of event temporal relation
extraction. Then, we will present the design of
our Temporal Cognitive Tree (TCT). Following
this, we will present two modules proposed in our
model based on TCT: a temporal judgment module
based on multi-task prompt learning, and a tempo-
ral inference module based on deductive reasoning.
Finally, we will explain how we integrate these
two modules to obtain the final temporal relation
extraction model.

2.1 Problem Formulation
Given a sentence and the two events it contains,
our objective is to determine the temporal relation
between these two events. This task is typically
regarded as a text classification task. The model’s
input generally includes a text segment and two
event trigger words within this text for which the
temporal relation needs to be determined. The
output is a label that signifies a particular temporal.

2.2 Temporal Cognitive Tree
In different temporal relation extraction datasets,
the number and meaning of temporal relations are
different. In the TB-Dense dataset, temporal re-
lations are defined in a fine-grained manner, for
example, a BEFORE relation between event pairs
(e1, e2) requires meeting the following two condi-
tions simultaneously: a) e1 starts earlier than e2; b)
e1 and e2 do not overlap on the timeline. However,
in the MATRES dataset, determining a BEFORE
relation between event pairs does not require con-
dition b). Due to the variations in the methods
of defining temporal relations, we design differ-
ent temporal cognitive trees, as shown in Figure 3.
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Figure 2: An overview of our model architecture.

These trees consist of two components: conditional
prompts and a multi-label mapping rule.

Specifically, for each data point in a dataset with
k types of temporal relations, we do not directly
inquire about the temporal relation of the given
event pairs. Instead, we address the characteristics
of temporal relations by asking yes or no questions
from k − 1 dimensions, thereby obtaining hierar-
chical temporal judgment information. For each
question, we denote the answer “Yes” as label 1
and “No” as label 0. Each temporal relation can
then be represented as a combination of k − 1 bi-
nary values (0 and 1), resulting in a multi-label
corresponding to each temporal category.

The temporal cognitive tree classifies each tem-
poral relation in a fine-grained manner from dif-
ferent dimensions, thus transforming the original
single-label problem into a multi-label problem. In
addition to ensuring that all combinations of 0− 1
vectors for temporal categories are linearly inde-
pendent, we design the cognitive tree based on the
following two principles:

A) There should be consistency between dif-
ferent temporal categories in at least one dimen-
sion. We avoid designing multidimensional labels
that are merely one-hot encodings of the original
labels. Instead, we aim for the designed rules to
help the model learn that different temporal cate-
gories share the same feature in at least one dimen-
sion, thereby facilitating a better comprehension

of the temporal categories’ meanings and the finer-
grained differences.

B) All dimensions of any temporal category
should be hierarchical. We intend for the de-
signed prompt to present a process similar to hu-
man judgment of temporal relations, where higher-
level judgment information is more abstract, and
lower-level judgment information is more concrete.
The labels of high-level prompts can determine the
content of low-level prompts, and for some tempo-
ral categories, not all prompts needs to be used to
determine them.

According to the principle B), we find that we
only need to ask certain higher-level judgment ques-
tions about event pairs to infer their temporal rela-
tions. Consequently, we can summarize the reason-
ing paths based on conditional prompts for tempo-
ral labels, as shown in the Table 1, where we use
logical expressions to describe the reasoning paths.
In Section 2.4, we will utilize these reasoning paths
for temporal relation inference.

2.3 Temporal Judgment Module Based on
Multi-Task Prompt Learning

Our goal is to train a language model that can com-
prehend and determine the temporal relations be-
tween pairs of events accurately. It is obvious that
according to our proposed cognitive tree, a robust
language model should not only be capable of judg-
ing the temporal relation of (e1, e2) correctly, but
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Figure 3: Details of the temporal cognitive trees corresponding to different manners of defining temporal relations.

also provide proper answers to the questions in the
cognitive tree. We argue that additional training of
the model to understand the semantic correlations
and differences among the relations from different
perspectives is essential, which can help to make
the language model better at discerning the tempo-
ral relations between event pairs.

We use a sequence-to-sequence model as the
backbone architecture. We consider judging the
conditional judgment prompts in the cognitive tree
as the auxiliary task, while the determination of
temporal relations between event pairs as the main
task, and the model is trained in a multi-task man-
ner. Specifically, we format the data into (s; e1; e2),
where s represents the sentence containing two
events, and e1 and e2 represent the event pair for
which the temporal relation needs to be determined.
We take x = (s; e1; e2) as the input for the model,
and we extract the last layer’s hidden state from the
encoder part as the text encoding, which will be
served as part of the input to the decoder.

After obtaining the text encoding, we interact
it with the conditional prompts to obtain sentence
representations that entail the hierarchical infor-
mation. To be specific, for data with t temporal
categories, we denote the conditional prompts as
p1, p2, . . . , pt−1, and the final temporal relation
classification prompt as f . In the decoder part,
we input the conditional prompt list [p1, p2, . . . ,
pt−1] along with the text encoding into the model
sequentially. During the decoding process, the text
encoding interacts with each token in the prompt
text and obtains the special end-of-sequence to-
ken <eos> at the end of the prompt text as the
final sentence representation h. Consequently,

we can obtain a list of sentence representations
[hp, hf ]=[h1, h2, ..., ht−1, hf ] yielded from the in-
teraction between each conditional prompt and the
text.

For the auxiliary task, we set up a binary classi-
fier with the set of candidate binary labels denoted
as A = {0, 1}. For each prompt information pi,
i ∈ {1, 2, . . . , t−1}, we calculate the loss Li based
on its corresponding binary label. Similarly, we
define a multi-classifier as the final temporal rela-
tion classification layer for the main task, which we
set the candidate labels as M = {r1, r2, . . . , rt},
representing the set of temporal relations, and com-
pute the loss Lf according to the final temporal
label. Therefore, we can construct the following
two loss functions:

Li(θsh, θi) =

∥A∥∑

k=0

k · log(Pi(y = k | x)), (1)

Lf (θsh, θf ) =

∥M∥∑

k=1

k · log(Pf (y = k | x)), (2)

Pi(y = k | x) = softmax(MLPi(hi)), (3)

PJ(Y = rk | x) = Pf (y = k | x)
= softmax(MLPf (hf )),

(4)

where y denotes the category number while Y de-
notes the final predicted temporal relation. θsh
denotes the shared parameters for the main task
and the auxiliary task, while θf and θi represent
the remaining parameters for the main task and
the auxiliary task during training respectively, ex-
cluding the shared parameters. MLP(·) stands for
task-specific multilayer perceptron.
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We do not directly combine Li and Lf through
linear summation as the final training loss. Instead,
inspired by the work of Sener and Koltun (2018),
we treat the existing multi-task problem as a multi-
objective optimization problem. We employ the
Multiple Gradient Descent Algorithm (MGDA) to
search for the Pareto optimal solution in this task
optimization process. For the optimization problem
involving n auxiliary tasks and one primary task,
we consider the parameters of the model’s encoder
as shared parameters, while the remaining param-
eters, i.e., those of the decoder and classification
layers, are task-specific parameters. To achieve
Pareto optimality, our multi-objective optimization
problem is defined as follows:

min
θsh,θ1,...,θt−1,θf

(L1(θsh, θ1), . . . ,Lf (θsh, θf ))
T (5)

Following Sener and Koltun (2018), we trans-
form the solution to Pareto optimality into a solu-
tion to task weights. We consider the optimization
problem:

min
α1,...,αt−1,αf





∥∥∥∥∥
T∑

i=1

αi∇θshLi(θsh, θi)

∥∥∥∥∥

2

2



 , (6)

s.t.

T∑

i=1

αi = 1, αi ≥ 0∀i, (7)

where T = {1, 2, . . . , t− 1, f}, ∇θshLi(θsh, θi) is
the gradient over the shared parameters.

Once the weights αi is determined, the parame-
ters θsh is updated using the weighted sum of the
gradients:

θsh = θsh − η

T∑

i=1

αi∇θshLi(θsh, θi), (8)

where η is the learning rate. θi updates in the nor-
mal way. The process is repeated for each iteration
in the training, continually adjusting the parameters
to move towards a Pareto optimal solution.
2.4 Temporal Inference Module Based on

Deductive Reasoning
According to the TCT we designed, we argue that
the determination of the temporal relation between
any event pairs can be inferred based from a se-
ries of hierarchical prior knowledge ranging from
abstract to concrete, which is similar to the form
of deductive reasoning. Therefore, we conduct de-
ductive reasoning on the judgment of each feature

Dataset Relation Reasoning Path

TB-Dense

BEFORE P1 ∧ ¬P2 ∧ P3
AFTER P1 ∧ ¬P2 ∧ ¬P3

INCLUDES P1 ∧ P2 ∧ ¬P4 ∧ P5
IS INCLUDED P1 ∧ P2 ∧ ¬P4 ∧ ¬P5

SIMULTANEOUS P1 ∧ P2 ∧ P4
VAGUE ¬P1

MATRES

BEFORE P1 ∧ P3
AFTER P1 ∧ ¬P3
EQUAL ¬P1 ∧ P2
VAGUE ¬P1 ∧ ¬P2

Table 1: The reasoning paths based on the temporal
cognitive trees for different temporal relations. Here, Pi
represents the i-th conditional information in the tree.

branch of the tree based on the model, thereby de-
riving the final temporal relation.

We first train the model to correctly classify the
inference results at each node of the tree, then
transform the task into a multi-label binary classifi-
cation problem. Specifically, similar to the for-
mat described in Section 2.3, given a piece of
text and its corresponding event pairs, we con-
catenate them as the input x for the BART model
and obtain the text representation H . Additionally,
for a dataset with t temporal relations, we define
F = {d1, d2, . . . , dt−1} as the set of hierarchical
features, C = {0, 1} as the set of possible values
for each dimension of the features, the label for
each dimension i is represented as yi, yi ∈ C. For
the training of our model, in addition to utilizing
Hamming loss, which is commonly used in multi-
label classification tasks, we also apply focal loss
(Lin et al., 2017) to our task, which is designed for
training with imbalanced samples, to ensure more
robust model training. Specifically, we calculate
the loss Lfc as follows:

Lfc =

∥F∥∑

i=1

∥C∥∑

j=0

exp(log σ(−logitij(2y
i − 1)) · γ)

·(logitij · (1− yi) +mv + LSE(logitij)),

(9)

LSE(logitij) = log
(
e−mv + e−logitij−mv

)
, (10)

where mv = max(−logitij , 0) and LSE(·) means
Log-Sum-Exp(LSE) operation, both of them are
introduced to ensure numerical stability, γ acts as
a modulation factor for the loss function, adjusting
the contribution of different samples to the overall
loss.

After training the model as described above, we
obtain the classification probabilities for each event
pair at the conditional nodes of the temporal cogni-
tion tree. We denote the probability that the value
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of the i-th feature is 1 as Pr(Pi), which can be
calculated as follows:

Pr(Pi) = sigmoid(MLPI(H)[i]), (11)

we stipulate that when Pr(Pi) > 0.5 , it can be
concluded that the event labels the i-th feature as 1,
which also indicates that it satisfies the condition Pi.
Finally, we calculate the probability distribution for
each temporal label and derive the final temporal
relation prediction probability PI(Y = rk | x)
based on the reasoning rules in Table 1 and the
following calculation rules2:

P ∧Q = Pr(P ) · Pr(Q)

P ∧ ¬Q = Pr(P ) · (1− Pr(Q)),
(12)

2.5 Method Integration
After obtaining the temporal label probability dis-
tributions from the aforementioned two modules,
we perform a weighted summation of these two
distributions to obtain the final temporal label prob-
ability distribution as follow:

Pfinal(Y = rk | x) = α · PJ + β · PI (13)

3 Experiments

3.1 Dataset
We conduct our experiments on two widely recog-
nized datasets: TB-Dense (Cassidy et al., 2014)
and MATRES (Ning et al., 2018), both of them
are publicly available for temporal relation extrac-
tion task. TB-Dense is a dataset characterized by
dense annotation for temporal relation extraction.
It contains six types of relations: BEFORE, AFTER,
INCLUDES, IS_INCLUDED, SIMULTANEOUS,
and VAGUE. While MATRES is annotated using
an innovative multi-axis annotation scheme that
includes only four types of temporal relations: BE-
FORE, AFTER, VAGUE and EQUAL. In line with
the latest work (Zhuang et al., 2023), we divide
the dataset using the same manner as in previous
studies (Wen and Ji, 2021; Han et al., 2019a).

3.2 Experimental Setup
Consistent with previous work (Han et al., 2019b),
we use the micro-F1 score, excluding the VAGUE
category, as the evaluation metric for both MA-
TRES and TB-Dense. We compare our model with

2For ease of understanding, we present an example of using
this rule to calculate the prediction probability of AFTER in
Section 4.4

a series of representative works from the past three
years, we categorized these comparison models
into three groups: 1) Knowledge-augmented mod-
els: These models incorporate external knowledge
or additional training data during training through
various methods(Cao et al., 2021; Tan et al., 2021,
2023; Zhuang et al., 2023). 2) Timeline position-
ing models: These models utilize different tech-
niques to directly or indirectly locate the relative
position of events on the timeline(Wen and Ji, 2021;
Huang et al., 2023). 3) Other benchmark mod-
els: These methods do not fall into the above two
categories but have demonstrated outstanding per-
formance(Han et al., 2021; Hwang et al., 2022;
Zhang et al., 2022). Additionally, we employ the
generative model T5-large (Raffel et al., 2020) and
BART-large (Lewis et al., 2019), which are also
based on the encoder-decoder architecture, as two
baseline model for comparison.

We use BART-large as our backbone model, and
for both TJM and TIM, we optimize two BART
models in parallel. We employ Adafactor as the
optimizer, with a learning rate warm-up ratio of 0.1.
We set the batch size to 32. For TB-Dense, we set
the learning rate to 3e-5, α to 0.19 and β to 0.81.
For MATRES, we set the learning rate to 2e-5, α
to 0.5 and β to 0.5. All experiments are trained
for 50 epochs on the training set, and the model
achieving the best performance on the validation
set is selected as the final model for testing.

4 Results and Analysis

4.1 Overall Performance

As can be seen from the Table 2, without utilizing
external knowledge, our proposed method consis-
tently outperforms the existing methods and base-
line models in the comparison of micro-F1. For
the TB-Dense, our proposed method outperforms
the existing SOTA method based on timeline posi-
tioning modeling by 2.9%, demonstrating the supe-
riority of modeling the ETRE task based on TCT,
which also indicates that compared to timeline po-
sition, the hierarchical knowledge in the TCT con-
tains more information that is beneficial for model
training. While for the MATRES, which only con-
tains four types of temporal relations, despite the
limited scale of the TCT we constructed (consist-
ing of only three hierarchies) due to the nature of
the temporal relations in MATRES, our novel ap-
proach outperforms the top result by a margin of
0.2%, showcasing the efficacy of TCT. Addition-
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Model Augmentation TB-Dense MATRES

P R F1 P R F1
Relative Time* (Wen and Ji, 2021) - - - - 78.4 85.2 81.7
Uncertainty-training (Cao et al., 2021) ✓ 64.3 64.3 64.3 76.6 84.9 80.5
ECONET (Han et al., 2021) - - - 66.8 - - 79.3
HGRU (Tan et al., 2021) ✓ - - - 79.2 81.7 80.5
Probabilistic Box (Hwang et al., 2022) - - - - - - 71.1
Syntax Transformer (Zhang et al., 2022) - - - 67.1 - - 80.3
Bayesian-Trans (Tan et al., 2023) ✓ - - 65.0 79.6 86.0 82.7
Unified-Framework* (Huang et al., 2023) - - - 68.1 - - 82.6
OntoEnhance (Zhuang et al., 2023) ✓ 67.5 68.6 68.0 79.0 86.5 82.6
T5-large(Vanilla Classifier) - 68.5 57.0 62.2 79.1 80.4 79.7
BART-large(Vanilla Classifier) - 67.5 65.5 66.5 75.7 83.7 79.5
TCT(Ours) - 70.3 71.6 70.9 79.0 87.2 82.9

Table 2: The overall experimental results on the TB-Dense and MATRES datasets. Models marked with a * use a
timeline positioning modeling approach. Models with a check mark for “Augmentation” are knowledge-augmented
models. All previous experimental results are cited from the data in their respective papers.

Dataset Backbone Method P R F1

TB-Dense

TCT 66.8 62.7 64.7
BART-base w/o TJM 65.5 58.7 61.9

w/o TIM 63.2 62.5 62.8

TCT 70.3 71.6 70.9
BART-large w/o TJM 67.0 68.3 67.7

w/o TIM 65.8 70.8 68.2

MATRES

TCT 76.6 82.7 79.5
BART-base w/o TJM 76.8 80.4 78.5

w/o TIM 75.3 82.1 78.6

TCT 79.0 87.2 82.9
BART-large w/o TJM 79.3 82.7 81.0

w/o TIM 78.2 86.7 82.2

Table 3: The ablation experimental results on the TB-
Dense and MATRES.

ally, this also indicates that the greater the hierarchy
of TCT, the higher the performance improvement
in ETRE task, which highlights the importance of
hierarchical information for model training. Fur-
thermore, comparing with the two baseline mod-
els we constructed, we notice notable benefits of
our suggested method on both TB-Dense and MA-
TRES, which further confirms the effectiveness of
the TCT modeling approach.

4.2 Analysis of Results on Subcategories

We also analyze the classification results of our
method on positive samples for each category in the
TB-Dense. As shown in Figure 4, our method out-
performs the baseline model in classifying each cat-
egory, especially those with fewer instances, which
indicates that our method can alleviate the impact
of data imbalance on classification results to a cer-
tain extent. Furthermore, we compare the instances
misclassified as VAGUE in the positive samples

with the previous SOTA method, as shown in the
Figure 5, which demonstrates a distinctive advan-
tage in discerning ambiguous relation of our model.

Figure 4: Comparison of micro-F1 values for each sub-
category.

4.3 Ablation Study
We conduct ablation experiments using two differ-
ent sizes of backbone models (BART-base, BART-
large). Based on the ablation study results shown
in Table 3, we can draw the following conclusions:

1) Both the temporal judgment module (TJM)
and the temporal inference module (TIM) have a
non-ignorable impact on the overall model perfor-
mance. For the TJM, in the TB-Dense, regardless
of the model size, removing the TJM significantly
reduces the overall model performance (by 2.8%
and 3.2% respectively). Similarly, in the MATRES,
removing the module also have a considerable im-
pact on the overall model performance. For the
TIM module, the experimental results in different
sizes and datasets also demonstrate its significant
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Figure 5: Comparison of the number of instances mis-
classified as relation VAGUE.

effect on the overall performance. This illustrates
the importance of utilizing multidimensional hier-
archical semantic knowledge, which indeed facili-
tates the model to better identify the temporal rela-
tionships between events, and further demonstrates
the effectiveness of the TCT modeling approach.

2) The fusion of the TJM and the TIM effectively
combines their strengths. From the experimental re-
sults, it is evident that compared to TIM, TJM tends
to improve the model’s recall rate. Conversely,
compared to TJM, TIM tends to achieve higher
precision. This indicates that TJM is more advan-
tageous in reducing erroneous predictions, while
TIM is more beneficial in avoiding the omission
of certain positive instances. The combination of
these two modules naturally leverages their respec-
tive advantages, enabling the model to fully exploit
its potential and achieve optimal performance.

4.4 Case Study
Figure 6 illustrates an example of our model in
ETRE task. In this example, the model correctly
identifies the relation between finish and said as
AFTER, and notably, for each query within TCT,
it provides accurate judgments. Clearly, this not
only aligns with our expectations but also conforms
to human common sense when assessing temporal
relations. In addition, we show the value of the
probability of the model’s inference for each condi-
tional branch in this example, which are available
in the TIM. It is evident that the model’s determi-
nation of the relation between finish and said as
AFTER is based on its confident judgments for each
conditional branch.

5 Related Work

Early works mainly utilized traditional ma-
chine learning and statistics-based methods for
ETRE(Mani et al., 2006; Yoshikawa et al., 2009).
With the development of deep learning, some
works have combined pre-trained language mod-
els with graph-based models to improve encoding

Input: “Sentence: The panel will be based in Addis Ababa , 

and will finish its investigation within a year , it said. Event1: 

finish. Event2: said.”
Q1:  Is there a clear temporal relation between Event1 and 

Event2?  

A1: 1 (Yes)  P(A1=1)=0.9987

Q2:  Do Event1 and Event2 have an overlapping relation?  

A2: 0 (No)  P(A2=1)=0.0029

Q3:  Does Event1 precede Event2?  

A3: 0 (No)  P(A3=1)=0.0045

Q4:  Are Event1 and Event2 concurrent?  

A4: 0 (No)  P(A4=1)=0.0023

Q5:  Does Event1 contain Event2?  

A5: 0 (No)  P(A5=1)=0.0019

Q6:  What's the temporal relation between Event1 and Event2? 

Output: AFTER 

P(relation=After)=0.9987*(1-0.0029)*(1-0.0045)=0.9913

Figure 6: An example of our model performing ETRE.

performance for alleviating the problem of long-
distance dependency (Zhang et al., 2022; Mathur
et al., 2021; Man et al., 2022). Some works focus
on the problem of data scarcity in existing datasets,
and propose to introduce external knowledge for
knowledge enhancement (Ning et al., 2019; Wang
et al., 2020; Han et al., 2020; Tan et al., 2023;
Zhuang et al., 2023). There are also works that
employ multi-task learning to compensate for the
limitations of single-text classification tasks (Wen
and Ji, 2021; Ballesteros et al., 2020; Cheng et al.,
2020). Additionally, some of the latest work con-
cerned with the significance of temporal semantics,
and further enhanced the performance of temporal
relation extraction by combining some rule con-
straints (Huang et al., 2023; Hwang et al., 2022).

Recently, the rapid development of Large Lan-
guage Models(LLMs) has drawn attention to the
potential of applying LLMs to ETRE task. Yuan
et al. (2023) utilized prompt engineering techniques
and conducted extensive experiments on ChatGPT
to demonstrate that there is still considerable room
for directly predicting on ChatGPT compared to
supervised learning with smaller-scale models. Ad-
ditionally, Huang et al. (2023) validated the limi-
tations of ChatGPT in ETRE tasks in their work,
with the best test result on the TB-Dense dataset
achieving a micro-F1 score of 41.0%.

6 Conclusion and Future Work

In this paper, we propose a novel hierarchical mod-
eling approach for ETRE. Specifically, we intro-
duce a Temporal Cognitive Tree (TCT) that aligns
with human logical reasoning processes. Our ap-
proach integrates optimization by prompts and de-
ductive reasoning, enhancing the model’s ability
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to understand and extract temporal relations from
a multidimensional perspective. Extensive experi-
ments demonstrate that our approach achieves sig-
nificant performance without the need for external
knowledge. In future work, we aim to explore the
possibilities of optimizing and extending this ap-
proach to accommodate relation extraction tasks
with varying fields and data volumes.

Limitations

From an overall experimental result perspective, al-
though our model outperforms the current SOTA re-
sults, it does not demonstrate an absolute advantage
on the MATRES dataset (only 0.2% higher than the
best result). We think this is due to our proposed
method relying on the categories and quantity of
temporal relations. Clearly, MATRES defines dif-
ferent temporal relations in a coarser granularity, re-
sulting in fewer types of temporal relations, which
limits the improvement potential of our method.
Further research is needed to address the limita-
tions of our proposed method in handling different
quantities of temporal relations, in order to achieve
a more robust model.
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