Step-level Value Preference Optimization for Mathematical Reasoning

Guoxin Chen, Minpeng Liao, Chengxi Li, Kai Fan*
Tongyi Lab
chenguoxin22@mails.ucas.ac.cn
{minpeng.lmp,xiji.lcx,k.fan}@alibaba-inc.com

Abstract

Direct Preference Optimization (DPO) using an
implicit reward model has proven to be an effec-
tive alternative to reinforcement learning from
human feedback (RLHF) for fine-tuning pref-
erence aligned large language models (LLMs).
However, the overall preference annotations
of responses do not fully capture the fine-
grained quality of model outputs in complex
multi-step reasoning tasks, such as mathemat-
ical reasoning. To address this limitation, we
introduce a novel algorithm called Step-level
Value Preference Optimization (SVPO). Our
approach employs Monte Carlo Tree Search
(MCTS) to automatically annotate step-level
preferences for multi-step reasoning. Further-
more, from the perspective of learning-to-rank,
we train an explicit value model to replicate
the behavior of the implicit reward model, com-
plementing standard preference optimization.
This value model enables the LLM to gener-
ate higher reward responses with minimal cost
during inference. Experimental results demon-
strate that our method achieves state-of-the-art
performance on both in-domain and out-of-
domain mathematical reasoning benchmarks.
Our code is available at https://github.
com/MARIO-Math-Reasoning/Super_MARIO.

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable capability across a wide
range of natural language processing (NLP)
tasks (OpenAl, 2023; Du et al., 2022; Team et al.,
2023; Chen et al., 2023; Anil et al., 2023; Bai et al.,
2023; Al@Meta, 2024). However, they continue to
encounter significant challenges when engaging in
complex and symbolic multi-step reasoning, partic-
ularly in mathematical reasoning (Chen et al., 2022;
Azerbayev et al., 2023; Yu et al., 2023b; Shao et al.,
2024; Chen et al., 2024b; Kang et al., 2024; Chen
et al., 2024a).

*Corresponding Author.

Training Training Data Annotation
. - = Preference
Paradigm Pos Neg from GPT-4
SFT v X v X
DPO v v v Solution-level
SvPO (Ours) v X Step-level

Table 1: Comparison of different training paradigm.

Most existing studies (Wang et al., 2023; Yue
et al., 2023; Gou et al., 2023; Lu et al., 2024; Liao
et al., 2024) have significantly improved the math-
ematical reasoning capabilities through fine-tuning
on high-quality positive supervision data (i.e, cor-
rect solutions) annotated by GPT-4. In this process,
a large number of negative examples generated
by GPT-4 are wasted, and the model blindly imi-
tates successful cases without understanding what
the wrong solutions are. Therefore, preference
learning, such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023), has been proposed to
align with human preferences and enable the model
to distinguish between positive and negative exam-
ples. However, most current efforts (Yuan et al.,
2024; Chen et al., 2024d; Pang et al., 2024) focus
on solution-level preferences, relying on humans or
GPT-4 to generate and score complete solutions for
training. This approach is expensive and often pro-
vides only a coarse preference relationship, which
does not reflect the natural process by which hu-
mans learn to solve mathematical problems. This
discrepancy arises because solution-level prefer-
ences pursue a solution to its final answer, without
informing which step in the negative solution (i.e.,
y!) led to the mistake. Unlike these approaches,
humans tend to identify and analyze their mistakes
step by step when learning to solve mathematical
problems, thereby preventing repeated errors. In
this manner, humans progressively learn to make
informed decisions in similar states.

Furthermore, while DPO reparameterizes the re-
ward function in reinforcement learning from hu-

7889

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 7889-7903
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/MARIO-Math-Reasoning/Super_MARIO
https://github.com/MARIO-Math-Reasoning/Super_MARIO

man feedback (RLHF) (Ouyang et al., 2022) to
improve simplicity and training stability, it also dis-
cards the state-value function V' (s), which is used
to evaluate the expected return from the current
state. Recent work (Liu et al., 2023; Liao et al.,
2024) has demonstrated the effectiveness of the
value model in improving the reasoning capabili-
ties of policy models, but it is limited by the need
for additional annotated data or the complexity of
the reinforcement learning process.

To address the above issues, we propose Step-
level Value Preference Optimization (SVPO), a
novel preference learning framework that focuses
on more fine-grained step-level preferences via
Monte Carlo Tree Search (MCTS) to signifi-
cantly enhance mathematical reasoning capabilities.
Specifically, as illustrated in Figure 1, step-level
preferences are autonomously generated through
the MCTS framework (Silver et al., 2016, 2017).
This approach not only avoids labor-intensive anno-
tation but also provides detailed insights into which
steps may lead to mistakes in y’, as indicated by
the (Q-value at each node. Compared to the forced
knowledge infusion through GPT-4 annotated data,
the preferences obtained through self-exploration
are better aligned with the capabilities of the cur-
rent LLM, highlighting the reasoning errors that
the model is more prone to making. Furthermore,
we integrate an explicit value model with DPO,
where the value model is designed not only to as-
sist the policy model (i.e., LLM) in navigating more
effective reasoning paths but also to steer prefer-
ence learning. In our work, the value model is
trained based on both (J-values and step-level pref-
erence relationships derived from MCTS, thereby
bypassing the need for additional annotations and
simplifying the training process.

We conduct extensive experiments on both in-
domain and out-of-domain mathematical reasoning
datasets. Our SVPO significantly outperforms state-
of-the-art methods, achieving comparable or even
superior results to GPT-4 on 7B LLMs. The ex-
periments demonstrate three key points: (1), the
self-exploration process via MCTS naturally pro-
vides step-level preference relationships and high-
lights potential reasoning errors by (-values; (2),
compared to solution-level preferences, step-level
preferences can significantly enhance the reason-
ing capabilities of the policy model; (3), the value
model effectively guides the policy model’s prefer-
ence learning and reasoning.

2 Background

In standard RLHF framework, it first learns a re-
ward model r(x,y) with Bradley-Terry (Bradley
and Terry, 1952) preference optimization.

L(r) = —E, yw [loga (7"(x7 yY) —r(x, yl))] (1)

where the expectation is taken over a preference
dataset that includes tuples of prompts and prefer-
ence responses (x,y" = y'). Following this, the
policy model 7 is optimized using the learned re-
ward model r and the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017). Typically,
PPO requires maintaining 4 models in the training
pipeline: a reward model r, a policy model 7, a
reference policy model 7/, and a value model V,
making it a complex procedure.

Instead of learning an explicit reward model,
DPO only maintains 2 policy models and minimize
the following objective.

. w 7_‘_/ l
Lppo(7) = —Ey yu y1 {bga (6 log %)}
(@)

where reference policy 7’ is typically a supervised
fine-tuning (SFT) model. The implicit reward
model is characterized by the log-likelihood ra-
tio between two policy models. Although DPO
simplifies the training process, it discards the value
model, which has been proven effective in improv-
ing the reasoning capabilities of the policy model.
Additionally, the coarse preferences derived from
existing annotation methods also limit its perfor-
mance in multi-step reasoning tasks.

3 Method

In this section, we present our SVPO in detail to
further explore the potential of preference learn-
ing in multi-step reasoning tasks, particularly in
mathematical reasoning.

3.1 Step-level Preference Annotation

Unlike the traditional annotations that only provide
solution-level preferences, we employ the MCTS
framework to encourage LLMs to autonomously
explore step-level generations as well as infer step-
level preferences, as shown in Figure 1. In this
manner of self-exploration, we obtain more fine-
grained preferences, while the (Q-values at each
step (tree node) indicate potential reasoning errors
that traditional annotations cannot achieve.

The policy model for running MCTS is a
SFT model of multi-step reasoning, denoted as

7890

Solution Collection

@ CO—()—() Training

Q000

Annotation

(Q&A)

< LLM < Select

O Correct Answer <& Backup

0 Incorrect Answer Eval leaf node [/A\
A

Al—e)
Q& A) -

Self-exploration with MCTS

@ (6PT-4 tells me: @
Imitate y¥

LLM's thought:

Supervised Fine-tuning Preference Learning

reeoy , re-e-e
Al y

GPT-4 tells me:
y¥ is correct
yl is incorrect

But which step led to

All the steps I generated .
the mistake in yl.

were correct steps.

B2 Y
(A)
l =
¥)<. y Y
D
2 @D Y SVPO ,
e yl The experience by
@ v* MCTS tells me:
A 2\ @ g How to chose correct
go—¢ yl step.

Step-level Preference Learning

Figure 1: Comparison of different frameworks: SFT, DPO, and SVPO. The top panel shows the typical pipeline of
SFT and DPO, where GPT-4 does not indicate which step in y' led to the mistake. The bottom panel illustrates the
pipeline of SVPO. Step-level preferences are autonomously generated via MCTS, where)-values (represented by

node colors) indicate potential reasoning errors.

7(y1.7|x), where x is the prompted question and
y: represents the ¢-th step. In the parlance of rein-
forcement learning, the state and action are defined
as sy = y«; and a; = yy, respectively. In addi-
tion, the state transition function is deterministic as
st+1 = ConCatlsy, a).

Our primary objective in annotating preferences
is to compare the quality of two potential step-level
generations. Concretely, this can be transformed
into comparing the ()-values of two possible ac-
tions for the same previous state:

Q(st,agl)) V.S. Q(st,a?)) 3)

Next, we will introduce the detailed MCTS process
to automatically derive the (Q-values. Specifically,
we will iterate through the following four opera-
tions until convergence.

Selection Given the current tree 7, MCTS first
needs to select a leaf node as a candidate for further
exploration. By initializing the state s as the root,
we use the PUCT criterion (Rosin, 2011) until a
leaf node is encountered.

Zj m(a;l) Nparent(a)
EY 1+ N(s¢,a)

(C))

arg max Q(s, a) + cpuet
a

where N (-) represents the visit count, and a; is the
j-th token in the step.

Expansion and Evaluation Given the state rep-
resented by the selected leaf node, we sample multi-
ple possible candidate actions for the next step. To
encourage diversity, a higher temperature, typically
ranging from 0.6 to 1, is used.

For efficient evaluation, we reuse the expanded
nodes and simply apply a one-step rollout. If the
rollout action is not terminal, we directly set the
value of the current leaf node to 0. Otherwise, the
final answer in the terminal action is evaluated for
equivalence to the ground truth. If the final answer
is correct, the reward R will be 1; otherwise, it
will be -1. Therefore, the value can be written as
follows.

V(s) = lierminal (2) - K(s, a) (5)
where I[(+) is the indicator function.

Backup For the terminal nodes reached during
the rollout and the current leaf node, MCTS per-
forms a backward update of the visit count and
Q-value for every (s', a’) along the path from cur-
rent node to the root.

N(s',a') + N(s',a’) + 1

Qs a)) « Q) +

m(v(s) - Q(s,a))
(©)

As shown in Figure 1, we obtain a solution tree
7 with many branches after running the above

MCTS process for several iterations. From this

7891

tree, we can extract a partial solution and its two
different next steps along with their corresponding
(-values. The step with the larger (-value will be
annotated as the preferred example.

3.2 Step-level Preference Learning

Given our autonomously generated step-level pref-
erence annotations, we propose an approach called
step-level value preference optimization—SVPO. In
contrast to DPO, we maintain 3 models with an
additional value model V. Unlike in PPO, our
value model is lightweight, achieved by adding an
auxiliary value head directly over the policy model.
This value head consists of a single linear layer
with a tanh activation function, running parallel to
the linear layer used for token prediction.

For notation simplification, we denote the anno-
tated step-level preference instance (s;,al’ = al)
as (s¥,; > sk,), where the two multi-step genera-
tions are only different at their last steps. Accord-
ing to our previous definition, the state s;;; also
represents the first ¢ steps y1.¢ .

Pre-Training In DPO, the policy model is pre-
trained with a standard SFT loss. In our approach,
due to the weights sharing architecture between m
and V4, our pre-training adopts the multi-task loss.

Vs = {Gtered

L= Lsrr+E [(V¢(St+1) - V(St-kl))ﬂ

ay is terminal
otherwise
@)

The mean squared error (MSE) loss is employed to
pre-train the value head, which is also the pointwise
approach in ranking algorithm (Liu et al., 2009).
The label for the value prediction is either the Q-
value of the intermediate step or the final reward.

SvPO As indicated by DPO, the difference of im-
plicit rewards for a pair of preference annotations
can be re-parameterized as follows:
(st 1) (si41)
77/(5;”4-1)7"(5%4-1)
In our SVPO, we aim to optimize both policy and
value models through preference learning. Accord-
ingly, we define the explicit value difference.

Arg(sihi,sie1) = Va(sihr) — Va(sir) (&)

We then propose the following SVPO loss function,
which includes three different objectives.

(®)

Arw(sﬁrl: st+1) = Blog

Lsypo = — log U(Arw(séﬂ-&-la Sé-‘rl))
+ max (0,7 — Arg(si1,si11)) (10)

2
+ (Arw(sﬁrh Si+1) —Sg AT¢(S§U+1,Si+1)])

where the margin v > 0 is tunable hyper-parameter,
and sg[-] denotes the stop gradient operator.

The first objective essentially replicates the orig-
inal DPO loss Lppo in (2), applied to the automati-
cally annotated step-level preference data.

The second objective is a margin loss for value
preference learning, inspired by the pairwise rank-
ing algorithm (Liu et al., 2009). Given a non-
negative margin -y, minimizing this loss encourages
the value of the positive example to be larger than
that of the negative one by at least . The detailed
theoretical analysis can refer to (Chen et al., 2009).

The third objective is a regularization term
adapted MSE loss, which aims to ensure a simi-
lar preference scale between the implicit reward
model and our proposed explicit value model. In
this loss, we use Arg as the targeted label and de-
tach its gradient to prevent model degeneration.

Analysis of Regularization A natural question
regarding the regularization term is whether design-
ing the value output via tanh can match the reward
defined in the log-likelihood ratio. We can first
derive the possible theoretical matching range.

Arg € [-2,2]
)

. _ (1
- l eAM/B c [e 2/ﬂ762/6}
' (yv)m(y)

Therefore, the range is determined by (.

(1) limg_,o[e=2/%,€2/%] = (0,400): when j
is small in DPO or PPO, it can prevent the pol-
icy model from deviating too far. For example of
the commonly used 3 = 0.1, the allowed match-
ing range becomes [e~2°, 2], which is actually
equivalent to (0, +00) in the context of numerical
precision. In other words, for smaller 3, our regu-
larization loss can easily match the scale between
implicit and explicit preferences.

(2) limg_,oo[e™2/8 /8] = {1}: when S be-
comes large, the allowed matching range will grad-
ually center around 1, forcing the distance between
7 and 7’ to be closer. In other words, for larger
B, our regularization loss can also play the role of
preventing the policy model from deviating too far.

3.3 Step-level Inference

Even without the value model, one can still di-
rectly apply greedy decoding to the policy model.
However, incorporating the value model and an as-
sociated reranking criterion allows step-level beam
search (SBS) (Yu et al., 2023a; Chen et al., 2024a)
to effectively select the preferred solution path in

7892

mathematical reasoning, all while incurring a lower
computational cost compared to MCTS. Since our
value preference learning is optimized at the step
level and utilizes ranking loss, our approach seam-
lessly integrates with the inference framework of
step-level beam search.

4 Experiments

4.1 Experimental Setup

We validate the applicability of our frame-
work across various base models, including
math domain-specific pre-trained models such
as DeepseekMath-Base-7B (Shao et al., 2024),
as well as general pre-trained models such as
Llama3 (Al@Meta, 2024). In this study, we mainly
focus on how to improve mathematical reasoning
skills through step-level preference learning. There-
fore, we obtain the corresponding multi-step SFT
models using 27k MARIO seed data (Liao et al.,
2024) in XML format, as detailed in Appendix A.5.

Step-level Preference Annotation via MCTS
Given a multi-step SFT model for mathemat-
ical reasoning, we only extract the 15k ques-
tions from the GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) datasets. Follow-
ing the methodology described in Section 3.1, we
employ the MCTS framework to automatically gen-
erate both multi-step solutions and step-level pref-
erences. This process requires no supervision from
either humans or GPT-4. Particularly, for each
question, we continue constructing trees until we
obtain four complete and correct multi-step solu-
tions or until the number of trees reaches 10. We
then extract step-level preferences from the trees in
a top-down manner, maintaining an approximate ra-
tio of 1:4 between positive and negative examples.
Consequently, we acquire a total of 56k complete
positive instances y*. Additional details are pro-
vided in Appendix A.2.

Test sets The in-domain test sets from GSM8K
and MATH share the same distribution as our
training data. Meanwhile, we evaluate our
final checkpoint on the out-of-domain (OOD)
datasets GaoKao2023 (Liao et al., 2024) and OCW-
Courses (Lewkowycz et al., 2022). These OOD
test sets are even more challenging than the MATH
dataset but inherently require multi-step reasoning.

Baselines For commercial and popular open-
source models, we compared our approach with

OpenAI’s ChatGPT and GPT-4 (OpenAl, 2023),
Llama2 (Touvron et al., 2023), and Llemma (Azer-
bayev et al., 2023) using the Chain of Thought
(CoT) (Wei et al., 2022) and Program-Aided Lan-
guage (PAL) (Gao et al., 2023). Additionally,
we benchmarked our method against recent high-
performing fine-tuned mathematical LLMs, in-
cluding MAmmoTH (Yue et al., 2023), Math-
Coder (Wang et al., 2023), ToRA (Gou et al., 2023),
MARIO (Zhang et al., 2024), MathGenie (Lu et al.,
2024), DeepSeekMath-Instruct (Shao et al., 2024),
and AlphaMath (Chen et al., 2024a). Similar to
our approach, these models leverage a Python code
interpreter for numerical calculations. Further im-
plementation details are provided in Appendix A.

4.2 Main Results

For a fair comparison, in Table 2, we report the
in-domain and out-of-domain results of our SVPO
based on DeepSeekMath-Base-7B, which is con-
sistent with the state-of-the-art methods, such as
DeepSeekMath-Instruct (Shao et al., 2024) and Al-
phaMath (Chen et al., 2024a).

Greedy Decoding Without the assistance of a
value model, we first evaluate the policy model us-
ing greedy decoding, which is comparable to most
related works. The main conclusion is that for more
difficult problems requiring more reasoning steps,
our approach shows greater advantages. As the dif-
ficulty increases for GSM8K, MATH, GaoKa02023
(GK2023), and OCWCourses (OCW), our ap-
proach achieves improvements of -2.0% / +2.1% /
+3.2% / +16.2% over the previous state-of-the-art,
DeepSeekMath-Instruct.

We slightly lag behind in GSMS8K, which could
be attributed to two possible reasons. First,
GSMBSK usually requires single step solution and
less logical reasoning. Second, the diversity of our
training dataset is limited. While DeepSeekMath
utilized 776k high-quality supervised data, we only
autonomously generated 56k complete positive ex-
amples based on 15k questions.

SBS With the value model optimized by step-
level value preference learning, we can utilize the
computationally efficient step-level beam search
(SBS) to investigate the role of the value model
in facilitating mathematical reasoning. Compared
to greedy decoding, the value model significantly
assists the policy model in navigating more effec-
tive reasoning paths, rather than solely relying on
prior probabilities. Compared with AlphaMath, our

7893

Model Size Tool Zero In-Domain (010)))
Shot | GSM8k MATH | GK2023 OCW
Proprietary Models
GPT-4 - X X 92.0 42.5 - -
GPT-4 (PAL) - v X 94.2 69.7 43.6 30.1
ChatGPT - X X 80.8 35.5 - -
ChatGPT (PAL) - v X 78.6 38.7 - -
Open-Source Models
Llama-2 7B X X 13.3 4.1 - 3.7
CodeLlama 7B X X 10.5 4.5 - 4.7
CodeLlama(PAL) 7B v X 27.1 17.2 - -
Llemma 7B X X 364 18.0 - 7.7
Llemma (PAL) 7B v X 40.1 21.5 - -
DeepSeckMath-Base(PAL) 7B v X 66.9 31.4 - -
Tuning Models
MAmmoTH-Coder 34B v v 72.7 43.6 25.2 14.0
MathCoder 34B v v 81.7 46.1 - -
ToRA-Code 34B v v 80.7 50.8 31.7 5.5
MARIO 34B v v 78.2 53.5 42.6 30.2
MathGenie 34B v v 84.1 55.1 - -
Llama-2 SFT 7B X v 41.3 7.2 - -
Llama-2 RFT 7B X v 51.2 - - -
MAmmoTH-Coder 7B v ve 59.4 33.4 15.3 11.0
MathCoder 7B v v 67.8 30.7 - -
ToRA 7B v v 68.8 40.1 19.5 2.6
ToRA-Code 7B v v 72.6 44.6 23.9 4.8
MARIO 7B v v 74.5 48.3 34.5 21.7
MathGenie 7B v v 76.0 48.3 - -
DeepSeekMath-Instruct 7B 4 v 83.7 57.4 43.9 18.0
AlphaMath 7B v v 73.5 53.6 40.5 26.1
+SBS (B1 =1) v v 81.1 62.8 46.2 30.5
+ SBS (B1 = 3) v v 84.1 66.3 51.4 33.1
SvPO (Ours) 7B v v 81.7 59.5 471 34.2
+SBS(B1 =1) v v 85.9 64.4 54.6 36.8
+SBS (B1 = 3) v v 86.5 67.2 55.3 40.8

Table 2: Main results. The best results for greedy decoding and step-level beam search (SBS) are highlighted in
bold and blue box , respectively. By default, we set the beam size By = 5 in SBS.

SVPO achieves an average improvement of 5.3%
/3.7% on By = 1/ By = 3, respectively, which
demonstrates the effectiveness of our approach. We
will further analyze the value model in subsequent
ablation studies. It is worth noting that with the
help of the value model, our SVPO on 7B LLMs
achieves comparable or even better results than
GPT-4 in the challenging datasets.

4.3 Analysis 1: Policy Model

In this section, we will investigate the impact of
step-level preferences on the policy model and ex-

plore the performance of different base models in
our SVPO framework.

Ablation Study of Training Paradigm As
shown in Table 3, we compare the performance
of the policy model under different preference opti-
mization. Our principal findings are as follows: (1)
Compared to SFT, which blindly imitates positive
examples y", preference learning encourages the
policy model to distinguish between y* and y',
thereby enhancing its reasoning capability. How-
ever, solution-level DPO is limited by its coarse

7894

Training In-Domain (00)))
Paradigm GSM8k MATH GK2023 OCW
SFT 71.7 56.9 43.1 27.5
DPO' 78.9 57.1 454 28.3
SvPO (Ours) 81.7 59.5 47.1 342
- w/o regularization 80.2 58.3 46.2 32.1

Table 3: Ablation study of training paradigm on policy
model. fSolution-level DPO.

Model In-Domain (010))]
oae GSMSK MATH GK2023 OCW
Llama3-8B + SFT 75.9 46.5 33.2 10.3
Llama3-8B-Instruct 79.6 30.0 - -
Llama3-70B-Instruct 93.0 50.4 - -
Llama3-8B + SVPO 81.3 48.8 35.6 11.1
+SBS (B1 =1) 84.3 54.2 40.0 13.3
+ SBS (B1 =3) 85.5 56.3 43.7 16.6

Table 4: Performance comparison of Llama3 series.

preference relationships, which do not indicate
which specific step in the negative solutions y'
led to the mistakes. (2) Compared to solution-level
DPO, our proposed step-level preferences can sig-
nificantly enhance the reasoning performance of
the policy model on both in-domain and out-of-
domain datasets. This can be attributed to the more
granular information of reasoning steps reflected
by (Q-value in the Monte Carlo tree. (3) The value
model can further guide the optimization of the
policy model, as evidenced by the performance
decreases when the regularization term is removed.

Discussion of Different Base Models We fur-
ther investigate the performance of the general pre-
trained model, Llama3 (AI@Meta, 2024), within
our framework. As shown in Table 4, we have
the following main findings: (1) Compared to
DeepSeekMath-Base-7B in Table 2, the overall
performance of the general pre-trained model
Llama3 is relatively insufficient. This is because
DeepSeekMath-Base is pre-trained on a substan-
tial math-related corpus and is believed to process
more necessary mathematical knowledge, resulting
in higher quality preference data. (2) Our SVPO
outperforms the instruction-tuned Llama3 and ap-
proached the performance of the 70B model. Fur-
thermore, compared to the SFT model, we achieved
significant improvements, demonstrating the effec-
tiveness and applicability of our approach.

In-Domain (010)))

Method SBS GSMSK MATH GK2023 OCW
B =1 859 644 546 368

SVPO(Qurs) b3 965 672 553 408
o Marain logs B1 =1 854 625 496 349
& B, =3 852 637 522 375

B =1 838 605 522 308

WoMSEloss b 5 01 567 457 286

Table 5: Ablation study of value model.

4.4 Analysis 2: Value Model

In this section, we further investigate the impact of
value loss (mainly including the MSE loss in Eq. (7)
and Margin loss in Eq. (10) on performance and
evaluate the accuracy of identifying preferences.

Ablation Study of Value Loss As shown in Ta-
ble 5, we compare the performance of step-level
beam search in different setups for value loss. Our
principal findings are as follows: (1) When mar-
gin loss is omitted, which describes the local re-
lationships in preference data, the performance
will decrease. As explained in the method, this
can be attributed to the ability of margin loss to
further distinguish the value of candidate actions.
(2) MSE loss is crucial for the value model, as it
provides global information for each node in the
Monte Carlo tree. Relying solely on preference
relationships by margin loss may cause the value
model to lose the ability to screen cousin nodes
(i.e., candidate actions at the same level but with
different previous states). This explains why the
performance of B; = 3 is significantly lower than
that of By = 1 when MSE loss is omitted. In
summary, MSE loss and margin loss provide com-
plementary information, and their combined effect
leads to a better value model.

Win Rate of Preference We conduct a further in-
vestigation into the accuracy of the policy and value
model by Eq. (8) and (9) in assessing preference
relationships. We randomly select 200 questions

Accuracy (%)
8
Accuracy (%)
n
g

~
&

®policy _SVPO _SVPO SVPO _ Policy SVPO SVPO _ SVPO
w/o Margin w/o MSE (Ours) w/0 Margin w/o MSE (Ours)

(a) Training Set (b) Test set

Figure 2: Win Rate of Preference.

7895

from the test sets of GSM8K and MATH respec-
tively, and utilize MCTS to build preferences as
the test set in the win rate. As shown in Figure 2,
we have the following main findings: (1) The pref-
erence relationships in training sets can be easily
mastered, as evidenced in Figure 2a, where the
accuracy of both “Policy” and “SvPO w/o MSE”
significantly surpasses that of others. However,
the poor performance of “Policy” on the test set
indicates that the implicit reward model (i.e., pol-
icy model) is highly susceptible to overfitting. (2)
Compared to the implicit reward model, our pro-
posed explicit value model is relatively stable even
if it only learns preference relationships by margin
loss. This further demonstrates the effectiveness of
our value model.

4.5 Sensitivity of 3 and ~y

Accuracy (%)

—e— SBS (B;=1)
SBS (By=3)

0.0 0.25 0.5 0.75 1.0
GSM8K MATH 6K2023 ocw 1

(a) Beta 8 (b) Margin ~y

Figure 3: Hyperparameter sensitivity analysis.

5 in Eq. (8) controls the implicit reward model,
while the margin ~ in Eq. (10) controls the explicit
value model. Thus, we investigate the impact of
the two key hyper-parameters.

Beta 5 Following DPO (Rafailov et al., 2023),
we investigate the impact of different 5 on the pol-
icy model, as shown in Figure 3a. We observe
that the optimization of the policy model remains
relatively stable across different 5. This can be
attributed to the regularization term, as analyzed in
Section 3.2. The explicit value model can prevent
the policy model 7 from deviating too far from the
reference policy model 7’ through the regulariza-
tion term, thereby improving the stability.

Margin v As shown in Figure 3b, we evaluate
the results of SBS in MATH with varying ~y be-
tween [0, 1]. We observe that an excessively large
~ will cause the value model to degenerate. This
can be attributed to the fact that a large margin ~
compresses the predicted values towards either -1
or 1, making it difficult for the value model to cor-
rectly differentiate between candidate actions at the
same level in SBS. Moreover, setting v to 0 also

leads to a performance degradation, indicating that
it is not the optimal target margin. Although with
v = 0 the value model still maintains the value
preference learning, an appropriate gamma is con-
ducive to increase the confidence in scoring and
enhances the model’s generalization.

5 Related Work

Mathematical Reasoning Recent work (Gou
et al., 2023; Liao et al., 2024; Lu et al., 2024; Shao
et al., 2024) has achieved remarkable progress in
mathematical reasoning. However, most efforts fo-
cus solely on supervised fine-tuning, which makes
LLMs blindly imitate positive solutions without
understanding what the wrong solutions are.

Preference Learning Recently, preference learn-
ing (Rafailov et al., 2023; Ethayarajh et al., 2024;
Chen et al., 2024c) has attracted significant at-
tention due to its ability to align with human
preferences and distinguish between positive and
negative examples. However, due to focusing
solely on coarse solution-level preferences, most
existing work is limited in performance on multi-
step reasoning tasks, particularly in mathemati-
cal reasoning. Compared to previous work, our
SVPO autonomously annotates step-level prefer-
ences through MCTS, and reflects potential rea-
soning errors through the ()-values at each step,
thereby significantly improving the performance of
preference learning on multi-step reasoning tasks.

Value Model The value model is derived from
the state-value function in reinforcement learning
(RL), which is used to evaluate the expected return
of the current state. Recent work (Liu et al., 2023)
has found that the value model can effectively en-
hance the reasoning capability of the policy model
but limited by the complex training process of RL.
In our study, we propose step-level value prefer-
ence optimization, which achieves higher quality
value models in a simpler training process.

6 Conclusion

In this study, we introduce Step-level Value Pref-
erence Optimization (SVPO) by extending Direct
Preference Optimization (DPO) through the inte-
gration of a lightweight step-level value model.
The training framework of SVPO is much more
computationally efficient compared to Proximal
Policy Optimization (PPO). Extensive experimen-
tal results demonstrate that for tasks involving

7896

multi-step mathematical reasoning, our approach
significantly enhances performance, particularly
with the support of the proposed value model.

Limitations

First, we consider our work, SVPO, as a trade-off
approach between DPO and PPO, offering a rela-
tively lower computational cost. Beyond being an
Empirical Method in Natural Language Process-
ing (EMNLP), the theoretical foundation of margin
loss in the area of learning-to-rank has been exten-
sively discussed in Chen et al. (2009), and we also
theoretically analyze how the regularization loss in
Lsvpo impacts the preference learning of the policy
model. Nevertheless, in the future work, we need
to establish a more solid theoretical foundation to
connect the implicit reward model and the explicit
value model.

Secondly, although our method has achieved ex-
cellent performance in multi-step reasoning, par-
ticularly in mathematical reasoning, there is still
an issue that deserves further exploration in fu-
ture work: whether our SVPO can enhance math-
ematical reasoning capabilities in the context of
multimodal data. This may include mathematical
reasoning from multiple combinations of modal-
ities, such as language, images, tables, or audio,
which is an increasingly prevalent and demanding
type of reasoning in real-world scenarios. In future
work, we plan to extend our SVPO to accommodate
multimodal scenarios.

Additionally, although in this study we integrate
the step-level value preference optimization into
DPO as an example, our approach is broadly appli-
cable to various types of preference learning algo-
rithms (Ethayarajh et al., 2024; Chen et al., 2024c;
Hong et al., 2024). In future work, we will ex-
plore incorporating our SVPO into these preference
learning algorithms.

Ethics Statement

This work primarily focuses on mathematical rea-
soning tasks, and our contributions are entirely
methodological. Therefore, this work does not have
direct negative social impacts. For the experiments,
we have open-sourced the code and utilized openly
available datasets commonly used in previous re-
search, without any sensitive information to our
knowledge. The authors of this work adhere to the
ACL ethical guidelines, and the application of this
work does not present any apparent issues that may

lead to ethical risks.

Acknowledgments

This work was supported by Alibaba Research In-
tern Program.

References

Al@Meta. 2024. Introducing Meta Llama 3: The most
capable openly available LLM to date.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: process supervision
without process. Preprint, arXiv:2405.03553.

Guoxin Chen, Yiming Qian, Bowen Wang, and Liangzhi
Li. 2023. MPrompt: Exploring multi-level prompt
tuning for machine reading comprehension. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 5163-5175, Singapore.
Association for Computational Linguistics.

Guoxin Chen, Kexin Tang, Chao Yang, Fuying Ye,
Yu Qiao, and Yiming Qian. 2024b. SEER: Facili-
tating structured reasoning and explanation via rein-
forcement learning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5901—
5921, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Huayu Chen, Guande He, Hang Su, and Jun Zhu. 2024c.
Noise contrastive alignment of language models with
explicit rewards. CoRR, abs/2402.05369.

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and
Hang Li. 2009. Ranking measures and loss functions
in learning to rank. Advances in Neural Information
Processing Systems, 22.

7897

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2405.03553
https://arxiv.org/abs/2405.03553
https://doi.org/10.18653/v1/2023.findings-emnlp.343
https://doi.org/10.18653/v1/2023.findings-emnlp.343
https://doi.org/10.18653/v1/2024.acl-long.321
https://doi.org/10.18653/v1/2024.acl-long.321
https://doi.org/10.18653/v1/2024.acl-long.321
https://doi.org/10.48550/ARXIV.2402.05369
https://doi.org/10.48550/ARXIV.2402.05369

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024d. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Tri Dao. 2023. Flashattention-2: Faster attention with

better parallelism and work partitioning. CoRR,
abs/2307.08691.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
General language model pretraining with autoregres-
sive blank infilling. In ACL.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: model
alignment as prospect theoretic optimization. CoRR,
abs/2402.01306.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In ICML, Proceedings of Machine Learning
Research.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In NeurIPS.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
ORPO: monolithic preference optimization without
reference model. CoRR, abs/2403.07691.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi,
and Boxing Chen. 2024. Mindstar: Enhancing math
reasoning in pre-trained llms at inference time. arXiv
preprint arXiv:2405.16265.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In SOSP.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay V. Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models. In
NeurlIPS.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024. Mario: Math reasoning with code
interpreter output—a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,
Yejin Choi, Hannaneh Hajishirzi, and Asli Celiky-
ilmaz. 2023. Making PPO even better: Value-
guided monte-carlo tree search decoding. CoRR,
abs/2309.15028.

Tie-Yan Liu et al. 2009. Learning to rank for informa-
tion retrieval. Foundations and Trends® in Informa-

tion Retrieval, 3(3):225-331.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR. OpenRe-
view.net.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. Mathgenie: Generating synthetic
data with question back-translation for enhancing
mathematical reasoning of llms. arXiv preprint
arXiv:2402.16352.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Iterative reasoning preference optimization.
arXiv preprint arXiv:2404.19733.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In NeurIPS.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
breaking the GPU memory wall for extreme scale
deep learning. In International Conference for High
Performance Computing, Networking, Storage and
Analysis. ACM.

Christopher D Rosin. 2011. Multi-armed bandits with
episode context. Annals of Mathematics and Artifi-
cial Intelligence.

7898

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.48550/ARXIV.2402.01306
https://doi.org/10.48550/ARXIV.2402.01306
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2403.07691
https://doi.org/10.48550/ARXIV.2403.07691
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2309.15028
https://doi.org/10.48550/ARXIV.2309.15028
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, loannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. 2016. Mastering the game of go with deep
neural networks and tree search. Nature.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Grae-
pel, and Demis Hassabis. 2017. Mastering the game
of go without human knowledge. Nature.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning. Preprint, arXiv:2310.03731.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlPS.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.
Outcome-supervised verifiers for planning in mathe-
matical reasoning. arXiv preprint arXiv:2311.09724.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023b.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Boning Zhang, Chengxi Li, and Kai Fan. 2024. MARIO
eval: Evaluate your math LLM with your math LLM-
A mathematical dataset evaluation toolkit. CoRR,
abs/2404.13925.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. CoRR, abs/2403.13372.

7899

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1038/NATURE24270
https://doi.org/10.1038/NATURE24270
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2310.03731
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2404.13925
https://doi.org/10.48550/ARXIV.2404.13925
https://doi.org/10.48550/ARXIV.2404.13925
https://doi.org/10.48550/ARXIV.2403.13372
https://doi.org/10.48550/ARXIV.2403.13372
https://doi.org/10.48550/ARXIV.2403.13372

A Implementation Details

A.1 Detailed Setup

For step-level preference annotation via MCTS,
we set Cpuct to 1.25, set the temperature within the
range of 0.6 to 1, limit the maximum tree depth
to 8, set each node to expand 5 child nodes, and
simulate at most 60 times. For each question in
training set, we construct at most 10 trees. Fol-
lowing Chen et al. (2024a), we define two types of
steps in MCTS, C-step and A-step. The C-step is
responsible for code execution and consists of text
analysis, code snippets, and execution results. The
A-step is responsible for summarizing the answers,
comprising text analysis and the final answer. We
organize these two steps in the following XML
format:

<step>

<p>

{textual analysis}
</p>

<code>

{code snippets?}
</code>

<p>

{code output}
</p>

</step>

<step>

<p>

{textual analysis}

</p>

<p>

Final Answer: {predicted answer}
</p>

</step>

\. J

For Pre-training via SFT, we convert the pre-
trained model into a corresponding multi-step SFT
model through the pre-training loss in Eq. (7). We
set the learning rate to 2e-5, the batch size to 512,
fix the MSE weight to 0.01, and train for 10 epochs.
We employ the AdamW optimizer (Loshchilov and
Hutter, 2019) and a cosine learning rate scheduler,
setting the warm-up rate to 0.03.

For SvPoO, we set 3 to 0.1, v to 0.5, learning
rate to Se-6, batch size to 512, and train for 1 epoch.
Since preference learning may easily degenerate
model, it is common practice to incorporate SFT
loss in RLHF or DPO training (Ouyang et al., 2022;
Pang et al., 2024) to mitigate this issue. Thus, we

Dataset OOD? # Training # Test
GSM&K In-Domain 7473 1319
MATH In-Domain 7500 5000
GaoKao2023 O0OD - 385
OCWCourses OOD - 272

Table 6: Datasets Statistics

also use the pre-training loss including standard
SFT loss and MSE value loss in preference opti-
mization stage. Specifically, we fixed the weights
for the margin loss and MSE loss at 0.25, the
weight for the regularization term at 0.001, and the
weight for the SFT loss at 5. In addition, we also
employ the AdamW optimizer (Loshchilov and
Hutter, 2019) and the cosine learning rate sched-
uler with a warmup rate of 0.03.

A.2 Datasets Details

Mathematical Reasoning Benchmarks Table 6
provides a detailed overview of the mathemati-
cal reasoning benchmarks. The training and test
sets are divided in accordance with previous stud-
ies (Cobbe et al., 2021; Hendrycks et al., 2021).
GSMS8K (Cobbe et al.,, 2021) is a dataset fo-
cused on multi-step mathematical reasoning, fea-
turing high-quality, diverse grade school math
word problems crafted by human authors. The
MATH dataset (Hendrycks et al., 2021) con-
tains complex competitive mathematics problems.
GaoKao02023 (Liao et al., 2024) includes math
problems from the 2023 Chinese National Col-
lege Entrance Examination, the 2023 American
Mathematics Competitions, and the 2023 Ameri-
can College Testing. OCWCourses (Lewkowycz
et al., 2022) is a compilation of 272 STEM prob-
lems targeted at the undergraduate level, most of
which require multi-step reasoning.

Preference Test set in the Win Rate In Sec-
tion 4.4, we evaluate the accuracy of the policy
model and the value model in assessing preferences.
These models can accurately assess the preferences
on the training set, as shown in Figure 2a. To ac-
curately evaluate the generalization of the value
model, we randomly sample 200 questions from
the test sets of GSM8K and MATH respectively,
and constructed total 10633 preference pairs using
MCTS.

7900

Step-level Preference Pairs Construction in
Monte Carlo tree After step-level preferences
annotation via MCTS, we need to filter the prefer-
ence pairs from the Monte Carlo tree for training.
Given step-level beam search, we need to consider
the preference relationships among sibling nodes
(at the same layer with same previous state), cousin
nodes (at the same layer but with different previ-
ous states), and non-same-level terminal nodes (at
different layer with terminal nodes).

Algorithm 1 outlines the process of our step-
level preference pairs construction. First, we label
each node along the path based on the correctness
of the terminal node (Lines 2-4). Then, we iter-
atively construct step-level preference pairs in a
top-down manner (Lines 5-23). In this process,
we can specify the quantities of the three different
types of preference relationships. In this study, we
set the number of sibling nodes to 2, the number of
cousin nodes and non-same-level terminal nodes to
1, respectively. This maintains an approximate ratio
of 1:4 between positive and negative examples.

A.3 Policy-value model Details

V(St) ‘ az.o ‘ ‘ at 1 ‘ oo ‘ ain ‘
[tanh] [softmax]
‘ Linear Layer (R%<1) ‘ ‘ Linear Layer (R4<?)
i f
LLM (g, V)
o [wstep]| [agp | «oe [atn1
U J U J
T Y
St ag
L J
B
St+1

Figure 4: An overview of our policy-value model. d
represents the dimension of the hidden state in LLM,
and v represents the size of the vocabulary.

As shown in Figure 4, the value model V and
the LLM policy model 7y are the same model but
with different final layers. This design implies that
these two models, mg and V;;, share the majority
of their parameters. In practical implementation of
the value loss, the value is only predicted on the
last token of current reasoning step, representing
the step-level preference.

A.4 Experiment Environments

All experiments were conducted on Ubuntu 22.04
equipped with 8 * NVIDIA A100 GPUs. Our code
mainly depends on Python 3.11 and PyTorch 2.2.1.

We use our customized Llama Factory (Zheng
et al., 2024) as the training framework and our
customized vLLM (Kwon et al., 2023) as the in-
ference framework'. We trained all models with
DeepSpeed ZeRO Stage2 (Rajbhandari et al., 2021)
and Flash-Attention 2 (Dao, 2023). The pre-trained
LLM:s are sourced from HuggingFace®.

A.5 Prompt Example of our XML format

To train the SFT model in executing mathemati-
cal reasoning, we utilize an XML format along-
side zero-shot learning. This approach is adopted
because the math-related pre-training corpora are
predominantly harvested from the Internet, where
HTML tags serve to distinguish various types of
content, including text, equations, and code snip-
pets. In this work, each solution consists of both
text analysis and code snippet, as shown in Fig-
ure 5.

'We have released our customized framework in our
Github Repository.
Zhttps://huggingface.co

7901

https://github.com/MARIO-Math-Reasoning/Super_MARIO
https://huggingface.co

Algorithm 1 Step-level Preference Pairs Construction

Require: Monte Carlo trees 7, prompted question x.
Ensure: Step-level Preference Pairs P.

—_

10:
11:
12:
13:

15:
16:
17:

18:
19:
20:
21:
22:

23:

2o ®

P

=] > Initialization

. for terminal node n in 7 do

if n has correct final answer then
 Backpropagation labels each node as correct along the path from root to n

n < root node in 7
while n is non-terminal node do > In a top-down manner

Wis a correct solu-

Ny <— arg MaXchilden.children{ @ (child)|child is correct node.} > Ensure y
tion

y" < partial solution from root to n,, in 7

ns < randomly select a non-correct node in n.children > Pairs in sibling nodes
if ng # () then

y! « partial solution from root to n, in T~

Add (x,y%,y') to P

n. < randomly select a non-correct node at the same level of n,, > Pairs in cousin nodes
if n. # () then

y! « partial solution from root to n, in 7~

Add (x,y%,y') to P

ng <— randomly select a non-correct terminal node at the different level of n,, > Pairs in non-

same-level terminal nodes

if ny # () then

L y! < partial solution of n; in T~
Add (x,y%,y!) to P

if ng = n. = n; = () then

L (Optional) Find y' in another tree 7. > If no negative example found in all trees, all possible
generated solutions are correct. No preference learning needed for this question.

T 4— Ny > Go to next layer

7902

An example of our SFT XML format:

<question>Haley grows at the rate of 3 inches every year. If she is currently 20 inches tall,
what will be her height after 10 years?</question>
<step>
<p>
To calculate Haley's height after 10 years, I need to add 10 times the growth rate of 3 inches to
her current height.
</p>
<code>
“python
current_height = 20
growth_rate = 3
years = 10
future_height = current_height + (growth_rate * years)
print(future_height)

</code>

<output>

50

</output>

</step>

<step>

<p>

I have calculated Haley's height after 10 years. Haley will be 50 inches tall
after 10 years.
</p>

<p>

Final Answer: $50%
</p>

</step>

Figure 5: An example of our SFT XML format. The text in black is prompt, and the text in red is model generation.

7903

