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Abstract

With the strong representational capabilities
of pre-trained language models, dependency
parsing in resource-rich languages has seen sig-
nificant advancements. However, the parsing
accuracy drops sharply when the model is trans-
ferred to low-resource language due to distri-
bution shifts. To alleviate this issue, we pro-
pose a representation alignment and adversarial
model to filter out useful knowledge from rich-
resource language and ignore useless ones. Our
proposed model consists of two components,
i.e., an alignment network in the input layer
for selecting useful language-specific features
and an adversarial network in the encoder layer
for augmenting the language-invariant contex-
tualized features. Experiments on the bench-
mark datasets show that our proposed model
outperforms RoBERTa-enhanced strong base-
line models by 1.37 LAS and 1.34 UAS. De-
tailed analysis shows that both alignment and
adversarial networks are equally important in
alleviating the distribution shifts problem and
can complement each other. In addition, the
comparative experiments demonstrate that both
the alignment and adversarial networks can sub-
stantially facilitate extracting and utilizing rele-
vant target language features, thereby increas-
ing the adaptation capability of our proposed
model.

1 Introduction

Dependency parsing is a fundamental task in nat-
ural language processing that aims to identify the
grammatical and syntactic relationships between
words in a sentence by constructing a dependency
tree. As shown in Figure 1, the dependency tree
includes a dependency arc (illustrated with red ar-
rows) from the headword “voi (elephant)” to the
modifier “thong minh (intelligent)” with the rela-
tion label “amod”. This indicates that “thong minh
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(intelligent)” functions as an adjective modifying
“voi (elephant)”. Dependency trees are widely ap-
plied to various artificial intelligence tasks, such
as machine translation (Zhang et al., 2019), gram-
matical error correction (Zhang et al., 2022), and
information extraction (Tian et al., 2022).

In the past decades, pre-trained language model
enhanced dependency parsers have achieved out-
standing performances in rich-resource languages
(Clark et al., 2018; Li et al., 2022; Nishida and
Matsumoto, 2022; Mohammadshahi and Hender-
son, 2021; Yan et al., 2020). Most significantly,
Dozat and Manning (2017) propose a BiAffine
parser that leverages multi-layer BiILSTMs to en-
code input sentences and a BiAffine operation to
compute scores, thus achieving better performance
on various languages. Then, Li et al. (2019) de-
velop a self-attentive BiAffine parser and further
improve the model performance with ELMo and
BERT representations. However, these model per-
formances drop sharply in low-resource languages
due to the lack of annotated data (Wang et al., 2020;
Effland and Collins, 2023; Rotman and Reichart,
2019; Vania et al., 2019).

As shown in Figure 1, both sentences from Viet-
namese and Chinese have a similar core grammat-
ical structure “subject-predicate-object”, but they
also have differences in the attributive positions
where Vietnamese adopts “post-modifier” while
Chinese is the opposite. Hence, how to construct
the discrepancy and similarity between different
languages becomes the key challenge for cross-
lingual dependency parsing (Ahmad et al., 2019;
Ustiin et al., 2022; Ozaki et al., 2021; Liu et al.,
2020; Xu and Koehn, 2021). A series of previous
works have explored feature transfer to improve
low-resource parsing. Most recently, Al Ghiffari
et al. (2023) propose a hierarchical transfer learning
(HTL) approach to exploit a source and an interme-
diate language to improve the parsing accuracy in
low-resource languages. Similarly, Choudhary and
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Figure 1: Examples of dependency tree from Universal Dependencies (UD) dataset, where the left sentence is
from the low-resource Vietnamese treebanks (VTB) and the right one is from the rich-resource simplified Chinese

treebanks (GSDSimp).

O’riordan (2023) incorporate linguistic typology
knowledge as an auxiliary task, further improving
the low-resource dependency parsing performances.
Although transfer learning from rich-resource to
low-resource language has shown its promising
advantages, how to further emphasize the helpful
knowledge and filter out the harmful ones automat-
ically is still an important problem.

To address this issue, we propose a novel repre-
sentation alignment and adversarial networks for
cross-lingual dependency parsing. On the one hand,
we propose an alignment network on the input layer
to select useful language-specific word informa-
tion. On the other hand, a language-aware adver-
sarial network is applied on the encoder layer to
excavate potential language-invariant knowledge.
Experiments on the benchmark dataset show that
our proposed model achieves notable performance
improvements, leading to new state-of-the-art re-
sults. Detailed analysis shows that alignment and
adversarial networks are complementary and can
complement each other. In-depth comparative ex-
periments demonstrate that both alignment and ad-
versarial networks are equally important for fil-
tering out effective knowledge from the source
language. In addition, our codes are released
athttps://github.com/noteljj/align to facil-
itate future research.

2 Related Work

Cross-Lingual Dependency Parsing. Cross-
lingual dependency parsing has emerged as a cru-
cial component of natural language processing,
with distinct methodologies contributing to its ad-
vancement. Among these, three primary categories
stand out: transfer learning, multilingual model
adaptation, and subword representation alignment.
Transfer learning techniques, epitomized by the
work of Chen et al. (2019), Liu et al. (2023b), and
Niu et al. (2022), leverage resources from rich-
resource languages to improve parsing accuracy

in low-resource languages, demonstrating the ver-
satility of transferring syntactic knowledge across
linguistic boundaries. In multilingual model adap-
tation, researchers like Pfeiffer et al. (2021). Wang
et al. (2020) and Dione (2021) have adapted mul-
tilingual BERT models to enhance parsing perfor-
mance across various languages, illustrating the
power of transformer-based methods in handling
diverse linguistic environments. Meanwhile, the
subword representation alignment approach, as ex-
plored by Schuster et al. (2019); Yaari et al. (2022),
focuses on the fine-grained alignment of word or
subword representations between languages, ad-
dressing the challenge of representing low-resource
languages in pre-trained models. Collectively,
these approaches underscore the dynamism and
complexity of cross-lingual dependency parsing,
highlighting both its progress and the ongoing chal-
lenges of syntactic alignment and resource dispar-
ity. This landscape sets the stage for our investiga-
tion into the effective transfer of subword represen-
tations from Chinese to Vietnamese, a venture that
seeks to mitigate the representation gap for low-
resource languages and contribute to the evolving
narrative of linguistic adaptability in computational
models.

Adversarial Learning. Adversarial learning has
become increasingly central in NLP, notably for its
role in fortifying model robustness and counteract-
ing data biases (Lowd and Meek, 2005), Zalmout
and Habash (2019) and Chen et al. (2021) have
demonstrated the efficacy of adversarial examples
in bolstering the resilience of NLP models to lin-
guistic variations and malicious attacks. Extending
this, Lu et al. (2023) and Zou et al. (2021) have
successfully integrated adversarial learning into
domain adaptation, effectively reducing domain-
specific biases. A recent novel approach by Han
et al. (2021) and Zhang et al. (2018) involves using
adversarial training to mitigate biases in training.
Additionally, the advent of adversarial data aug-
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mentation, as investigated by Tan et al. (2022), has
shown promise in diversifying training datasets,
further enhancing model robustness. Despite these
advancements, adversarial learning still confronts
challenges in balancing model stability and per-
formance, particularly when dealing with highly
complex and nuanced linguistic data, underscoring
the need for ongoing research and development in
this dynamic area of NLP.

Feature Alignment and Transfer. In the field
of feature alignment and transfer, existing research
can be categorized into deep learning-based meth-
ods, instance-based methods, and model-based
methods. Deep learning-based methods automati-
cally learn feature mapping relationships between
source and target domains through neural networks,
such as aligning feature distributions in the space
through adversarial training (Riemer et al., 2015;
Kumar et al., 2023; Hazem et al., 2022). Instance-
based methods select and weight examples from
the source domain to have a greater impact in the
target domain, like instance selection based on con-
ditional adversarial learning (Basu Roy Chowdhury
et al., 2019; Glavas and Vulié, 2020). Model-based
methods focus on how to use the source domain’s
model to assist learning in the target domain, such
as progressive neural networks that learn to trans-
fer knowledge across domains (Chawla and Yang,
2020; Liu et al., 2023a). These methods have their
own advantages and can effectively improve the
performance of cross-domain learning in different
scenarios.

3 Our Approach

Considering not all rich-source language informa-
tion is equally important for cross-lingual depen-
dency parsing, we propose the alignment and adver-
sarial networks for effective representation selec-
tion. Concretely, we first leverage the multi-lingual
pre-trained language model XLM-RoBERTa to im-
prove the word representation capability of both
source and target languages. Then, a representation
alignment network is applied on the input layer
to emphasize useful language-specific information
and ignore the harmful one. Next, we exploit an ad-
versarial network on the encoder layer to enhance
language-invariant representations. Finally, all se-
lected representations are utilized to search for the
best dependency tree. Figure 2 illustrates the frame-
work of our proposed model, which is organized
into three components, i.e., Input layer based on

the alignment network, Encoder layer enhanced
with an adversarial network, MLP and BiAffine
layers.

3.1 Input Layer Based on Representation
Alignment Network

Given an input sentence wy, wa, . . . , Wy, the input
layer maps them into dense vectors x1, X2, . . . , Xp.
For the source language Chinese, we directly use
the normal embeddings as its input vectors. For
the target language Vietnamese, we exploit a repre-
sentation alignment network to select helpful Chi-
nese word information, further enhancing the Viet-
namese representation capability.

We directly extract the averaged outputs of the
last four layers from the XLLM-RoBERTa-base
model as our word representations

Input vectors for Chinese. As shown in Equa-
tion 1, each Chinese vector xfh is the concatenation
of its word representation and corresponding char-
acter representation word$"®", where word repre-
sentation is the addition of XLLM-RoBERTa rep-
resentation rep-"® and a random initialization
word embedding emb!°"®. Concretely, we directly
extract the averaged outputs of the last four layers
from the XLM-RoBERTa-base model as our word
representations rep "R, The character representa-
tion word{"" is generated by a BiLSTM network,
which first encodes the constituent characters of
each word wfh, and then combines the hidden vec-
tors of two directions (Lample et al., 2016).

x# =(rep™ R 4 emb!°™) © word§™" (1)

Input vectors for Vietnamese. Different from
Chinese input vectors, Vietnamese input vector
x;’i utilizes an additional aligned representation
emb)* T to fuse more useful Chinese word infor-
mation, which is calculated in Equation 2,

x!* =(emb} T + rep/™"® 4 emb}°)

(2
® wordSher @
where emb;’i_FT is generated by our alignment
network and other representations are obtained sim-
ilarly to Chinese.

Alignment network. The key to our alignment
network is to enhance the Vietnamese word rep-
resentation capability by emphasizing useful Chi-
nese words and ignoring harmful ones. First, we
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Figure 2: Framework of our proposed model. The arrows going back between the Chinese and the FastText model
indicate that the alignment network picks source language words with higher similarity. The arrows going forth
represent that the selected similar words are fed into the alignment network.

construct an alignment matrix based on a new high-
quality bilingual dictionary to map Vietnamese and
Chinese representations into a close space.

Since the bilingual dictionary significantly af-
fects the performance of our alignment matrix, we
adopt automatic generation and manual annotation
strategy to ensure the quality of the Vietnamese-
Chinese dictionary. Concretely, we first download
the dump data backup file from Wikipedia' and a
simple bilingual dictionary. Second, we use reg-
ular expressions to iteratively match and extract
the Vietnamese-Chinese alignment titles and sub-
headings. Third, the alignment word pairs are used
to augment the original bilingual dictionary. Fi-
nally, the automatic generation dictionary is manu-
ally proofread by Vietnamese speakers, thus obtain-
ing a high-quality Vietnamese-Chinese dictionary
that contains about 20, 000 word pairs. based on
the new dictionary, we use the pre-trained Fasttext
models 2 to obtain Vietnamese matrix V' € R"*%
and Chinese matrix C € R™ % where n is the
number of our dictionary including the one-to-one
and one-to-many word combinations. And d; de-
notes the dimension of Fasttext representations.
Meanwhile, we exploit an orthogonal similarity
transformation 3 to obtain our alignment matrix
M € R%*d1 that can be regarded as a linear map-

lhttps://en.wikipedia.org/

thtps://fasttext.cc/docs/en/crawl—vectors.
html/

3https://github.com/scipy/scipy/blob/main/
scipy/linalg/_procrustes.py

ping between Vietnamese and Chinese based on
the semantic similarity.

Given a Vietnamese sentence, we first utilize
Fasttext models to obtain word segmentation se-
quences. Then, for each Vietnamese word, we
select multiple corresponding Chinese words based
on our dictionary. Next, vectors of all selected
words are dotted with an alignment matrix M, and
L2 constraint is applied on them to yield stable and
aligned word representations f;. The formula for
this operation is as follows,

f;
Vi £ e ®

where f; represents the ¢-th word vector from the
FastText model, ¢ is a very small positive number
used to prevent division by zero. Considering each
Vietnamese word may align with several Chinese
words, we employ the cosine function to compute
semantic similarity as alignment weights. The for-
mulas are shown as follows,

£ =

Azh g vt
zhwi (f’L )Tfj
ivj - A zh ~ Ul
£ 15l )
Wi};vvl _ eXp(S:7I;7vZ/T)

where S; ]J“” denotes the similarity score between
the Chinese word ¢ and the Vietnamese word j.

: h
7 denotes the temperature coefficient. w; """
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is the corresponding weight. Finally, We con-
struct the final alignment Vietnamese representa-
tion emb)* T using constrained word vectors and
alignment weights to emphasize useful words and
ignore harmful ones. The formula is as follows,

Z th,vi . f?h
i-FT zh€Tvi " 1,J ¢
emb;‘” = . zh,vt (5)

ZzhEJm Wi

where J,,; encapsulates word vectors and similarity
scores into binary groups, which are sets of ten Chi-
nese words from our training dataset selected based
on the highest similarity scores corresponding to
each target word.

3.2 Encoder Layer Enhanced with
Adversarial Network

Different from the traditional BiLSTM encoder,
we employ an adversarial network above the en-
coder to ensure it imply more potential language-
invariant knowledge.

BiLLSTM encoder. Following Dozat and Man-
ning (2017), we also adopt a three-layer BILSTM
network as the encoder to generate original contex-
tualized vectors. Since BiLSTM is able to encode
the words in a sentence from two directions, each
word can obtain contextualized information h;.

h; = BiLSTM(x;, fpiLst™) (6)

where OgiLst™m is the BiLSTM parameters.

Adversarial network. The adversarial network
mainly contains three components, i.e., the shared
BiLSTM encoder, the Gradient Reversal Layer
(GRL), and a language classifier. First, sentences
from Chinese or Vietnamese are fed into a shared
BiLSTM layer to obtain contextualized word repre-
sentations hy, hs, ..., h,, which share contextual
features across both languages. Then, they pass
the GRL which inverts the gradient during back-
propagation, thus fostering BiLSTM to learn more
shared features between Vietnamese and Chinese.
The forward and backward propagation equations
for GRL are as follows,

GRL,(h;) = h;
- )

dGRL, (h;)

am)

where -y is a hyperparameter to balance the impact
of adversarial learning and dependency parsing on

the shared BiLSTM. Then, we use a multilayer
perceptron (MLP) to compute the language distri-
bution scores and a softmax function to obtain the
language distribution probabilities. The formula is
as follows,

re; = softmax (MLP (h;)) (8)

Finally, we employ a standard cross-entropy loss to
optimize all parameters of the adversarial network,

n m

£ = 2 373 (v los (reiy) 9)

i=1 j=1

where m is the number of languages, n is the word
number of input sentence, and re; ; represents the
gold-standard language distribution vector, where
only one element is 1 corresponding to the lan-
guage index where the sentence comes from.

3.3 MLP and BiAffine Layer

The MLP layer employs the enhanced contextual-
ized vector h; as its input and reduce the dimen-
sion of h;, extracting its head representation rlh and
modifier representation rl‘-i for each word w;.

(10)

where MLPy, () and MLPg4(x) have a single hid-
den layer with the ReLU activation function. Then,
a BiAffine computes score(i < j) between the
current word w; and the other word w;. Simul-

taneously, score(i & Jj) is calculated by another
separated BiAffine layer as equation 11

e ]
score(i «— j) = [ f ] Ulr? an

score(i L Jj) = I'?UQI‘? + (I‘?@I‘?)Ug +b

where U; Uy, Us, and b are parameters. [ denotes
the relation label. After obtaining the scores of
dependency arcs and dependency labels, we use
the typical Maximum Spanning Tree (MST) al-
gorithm to find the highest-score tree as our final
parsing result. Finally, for each position 7, if the
gold-standard head of word w; is word w; and its
corresponding gold relation label is [, the parsing
loss is computed as follows,
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escore(iej)
par _
LI = —log Z escore(i«k)
0<k<n, ki (12)
escore(iéj)
— log

U
Zl’eﬁ escore(is—j)

where score(i < k) denotes the score of each
possible head word w; for each modifier word wy.
L refers to the collection of all dependency labels
I

Algorithm 1: Cyclic Training Procedure

Input: Source language data S, target language data T’
Hyper-parameters: Loss weight «, training iterations k

1: Initialize iter = 0

2: Repeat

3: Sample mini-batch x alternately from S or T’
4:ifz € S7:

5. Update parameter by minimizing £P%" + oL
6: elif v € S":

7: Update parameter by minimizing £P*"
8:elsex c T

9:  Compute emb?" ™" = alignment(0s)

11:  Update parameters by minimizing £P%" 4+ a£%%®
12: iter +=1
13: until iter = k or convergence

Table 1: Cyclic Cross-lingual Training Procedure.

3.4 Cyclic Cross-lingual Training

In this work, we propose a cyclic training strat-
egy to mitigate data imbalance between source and
target languages, as outlined in Algorithm 1. Con-
sidering the data scale of the source language is
much larger than the target one, we divide the first
n, mini-batches of the source language as s/ and
the last as s! where nq is the mini-batch number of
the target language. During training, we take turns
to sample mini-batch z of source and target lan-
guages. If x comes from the first part of the source
language S/, we update parsing and adversarial
parameters by minimizing parsing and adversarial
losses. While 2 belongs to S’, we only update the
parser parameters ¢y by minimizing the parsing
loss. If x comes from the target language T', we
compute an alignment representation embfi_F T
via an alignment network. and update all parame-
ters by minimizing parsing and adversarial losses.
Finally, we iteratively train all the data until it con-
verges or stops prematurely.

Dataset Train Dev  Test All
Chinese Gspsimpy 3,997 500 500 4,997
Vietnamese vrsy 1,400 800 800 3,323

Table 2: Dataset statistics in sentence number.

4 Experiments

4.1 Settings

Datasets. To compare with previous work fairly,
we use the shared multi-language Universal De-
pendencies (UD) 2.12 treebank as our benchmark
datasets *. Concretely, we choose Chinese as our
source language and Vietnamese as our target lan-
guage. The detailed illustrations of our datasets are
shown in Table 2.

Evaluation. Following Hajic et al. (2009), we
employ the Labeled Attachment Score (LAS) and
Unlabeled Attachment Score (UAS) as our evalua-
tion indicators. Each model is trained for at most
1,000 iterations, and the performance is evaluated
on the dev data after each iteration for model selec-
tion. We stop the training if the peak performance
does not increase in 100 consecutive iterations.

Hyper-parameter choices. We mostly maintain
the hyper-parameter settings of Li et al. (2019),
such as MLP and BiAffine dimensions, dropout
ratios, and so on. The adversary loss weight a,
neighbor, and temperature, which are set as 1, 10,
and 0.1 respectively. The character embeddings are
initialized randomly with a dimension of 100.

Baseline. To validate the advantages and effec-
tiveness of our proposed model, we choose the
following approaches as our strong baselines.

* Zh-parser method. We only use Chinese
data to train the original BiAffine parser to get
the basic Chinese dependency parsing model
and use this model to test the parsing perfor-
mance of Vietnamese.

* Pre-training method. BiAffine parser is first
proposed by Dozat and Manning (2017), then
widely used on various dependency parsing
tasks. Different from the original BiAffine
parser, we first exploit the Vietnamese pre-
trained language model XLM-RoBERTa-base
> to enhance the parsing performance. Then,
we pre-train the enhanced BiAffine parser ex-
clusively on the Vietnamese Universal Depen-

4https: //universaldependencies.org/
Shttps://huggingface.co/x1m-roberta-base
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dencies (UD) dataset, which is used as our
strong baseline model.

* Fine-tuning method. Shi et al. (2022) pro-
pose to fine-tune the basic model twice and
achieve selective differential privacy for large
language models. In this work, we also uti-
lize the idea of fine-tuning method to improve
the adaptation capability of the enhanced Bi-
Affine parser in Vietnamese. We first use the
Chinese dataset for initial training, and then
fine-tune the pre-trained model with the Viet-
namese dataset, thus transferring the syntactic
knowledge contained in the Chinese treebank
to Vietnamese.

¢ Adversarial learning method. Li et al.
(2021) apply the adversarial network on the
BiAffine parser, thus achieving impressive re-
sults on cross-domain dependency parsing.
In this work, we employ an adversarial net-
work on a shared BiLSTM encoder, which
shares the coding space of Chinese and Viet-
namese by introducing adversarial perturba-
tions. This technique treats Chinese as pseudo-
Vietnamese data, ignoring different language
distinctions and extracting in-depth informa-
tion on cross-linguistic similarities. Addition-
ally, we incorporate a language classifier to
balance the linguistic differences, acquiring
more language-specific information.

Model LAS UAS
Results of previous works
UDPipe (2019) 62.56 70.38
UDify(2019) 66.00 74.11
UDPipe2.0+WCBF(2019) 65.41 72.94
TOWER (2021a) 63.50 72.40
Zh-parser 22.96 44.78
Pre-training 67.61 7547
Fine-tuning 68.09 75.93
Adversary 68.47 76.39
Our model 68.98 76.81

Table 3: Main results on the Vietnamese UD test dataset.

4.2 Main Results

Table 3 displays the final results of our test data and
gives a detailed comparison with previous works.
First, It is obvious that the effect of the Chinese
parsing model on Vietnamese is very poor, indi-
cating that the inherent differences between dif-

ferent languages seriously interfere with the cross-
language parsing performance. Second, we find
that our model outperforms the “Adversary” model,
demonstrating that our alignment network can em-
phasize useful language-specific features from the
source language and ignore the harmful ones, thus
further improving the cross-lingual dependency
parsing accuracy. Then, compared with the “Fine-
tuning” model, the “ Adversary” model achieves
better performance, revealing that an adversarial
network can extract potential language-invariant
knowledge to construct the in-depth relationship
between source and target languages. Finally, we
can see that our proposed model outperforms all
strong baselines, indicating that our proposed rep-
resentation alignment and adversarial networks are
extremely useful for cross-language dependency
parsing.

We also compare with previous works in the
top block. Kondratyuk and Straka (2019) first
propose the UDpipe model, which integrates a
tokenizer, morphological analyzer, POS tagger,
lemmatizer, and dependency parser into a single
model for comprehensive natural language pro-
cessing. Then, they propose a UDify framework
based on a multilingual BERT self-attention model
with tagging and parser joint training, which fine-
tunes a multilingual pre-trained model with 104
languages to improve parsing accuracy. Straka
et al. (2019) enhance the UDPipe model by in-
corporating various embeddings, including BERT
and Flair. Lastly, Glava$ and Vuli¢ (2021b) pro-
pose a TOWER model, which uses hierarchical
language clustering to improve the low-resource
dependency parsing performance. Compared with
these works, we find that our model can achieve
the best performance with only a single target lan-
guage, highlighting the efficiency and powerful
parsing capabilities of our proposed model.

4.3 Ablation Study

Results of ablation studies are shown in Table 4.
First, we use the raw noisy automatically generated
dictionary instead of the one improved by manual
calibration. Although the performance is reduced,
the results are still good, demonstrating that our
approach does not rely heavily on manual calibra-
tion of the noise dictionary and has good scalability.
Second, we find that removing either the adversar-
ial network or the representation alignment network
can decrease parsing performance. This outcome
suggests that each module is crucial in mitigating
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the potential conflicts arising from direct language
transfer. Then, removing adversarial and alignment
modules simultaneously leads to a significant de-
cline in dependency parsing accuracy, revealing
that the two modules are complementarity and ben-
efit from each other. Most notably, the performance
deteriorates to its lowest when the source language
is excluded altogether, affirming that the source lan-
guage encompasses valuable information beneficial
for the target language. This observation not only
emphasizes the importance of preserving source
language features but also reinforces the necessity
of their strategic filtration.

Model LAS UAS
Our model 68.98 76.81
w/o Man 68.59 76.49
w/o Adv 68.71 76.53
w/o Ali 68.47 76.39
w/o Adv & Ali 68.09 75.93
w/o Adv & Ali & Zh 67.61 75.47

Table 4: Ablation study on reducing the component of
our model on test data, where “w/o Man” means uti-
lizing the raw noisy automatically generated dictionary
instead of manually calibrated dictionary. “w/o Adv”,
“w/o Ali”, and “w/o Zh” mean removing the adversar-
ial network, representation alignment network or the
Chinese UD training dataset.
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Figure 3: LAS regarding diverse sentence lengths.
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Figure 4: UAS regarding diverse sentence lengths.

4.4 Error Analysis

Sentence length. Figure 3 and Figure 4 present
the LAS and UAS scores regarding diverse sen-
tence lengths. First, it is clear that all models per-
form better with shorter sentences. For sentences
under 10 words, the LAS and UAS scores hover
around 73 and 82, respectively. However, there is a
noticeable drop of over 9 points in scores for sen-
tences approximately 30 words in length, indicat-
ing that the parsing difficulty is sharply improved
with the increase in sentence length. Then, we
can see that the “Pre-training” model records the
lowest scores across all length categories. Notably,
incorporating the Chinese corpus enhances its per-
formance across most lengths, except for the 10-
word category, The reason may be that pronounced
structural disparities between short Chinese and
Vietnamese sentences. Finally, our model signifi-
cantly mitigates the performance decline observed
with the “Fine-tuning” model, achieving substantial
improvements across all sentence lengths.

Precision (%)

DEP

Pre-training  Fine-tuning Our
amod 67.45 63.78 67.97
cc 87.34 86.74 88.64
ccomp 54.33 54.64 56.45
compound 73.03 73.47 74.75
conj 63.69 64.50 66.60
cop 81.35 81.94 82.05
discourse 44.12 53.57 52.78
mark 73.00 73.33 73.58
nmod 70.84 71.99 73.12
nsubj 83.42 83.47 83.85
obj 79.86 81.17 81.67
root 79.64 79.71 80.14

Table 5: Precisions of dependency labels on different
models.

Dependency labels. Table 5 presents the pre-
cisions of main dependency labels on different
models. These models include the Chinese train-
ing dataset to analyze inter-language connections.
First, the “Pre-training” model registers the lowest
scores across all dependency labels. Then, the “
Fine-tuning” model achieves better performance
on most dependency labels. The reason may be that
the dependency trees in the target language contain
abundant language-specific syntax information. Fi-
nally, our proposed model consistently obtains the
highest scores on almost all labels, further proving
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the effectiveness of our proposed model.
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Figure 5: Precision of diverse models regarding differ-
ent binned head absolute distances with punctuation.

Absolute distance. Figure 5 shows the effects
of absolute distances from the head word to the
modifier word on dev data. First, the “Pre-training”
model achieves the lowest performance at most ab-
solute distances, revealing that not all knowledge
of source language is equally important to improve
cross-lingual dependency performance. Second,
compared with the “Pre-training” model, the “Fine-
tuning” model achieves better performance at dis-
tances above 6, demonstrating that target language
data can facilitate our model to capture the long
dependency relationship. Finally, our model sub-
stantially enhances performances on all absolute
distances, highlighting the importance of filtering
source language information.

5 Conclusion

We propose a feature selection approach to empha-
size useful representative features and ignore the
useless ones, thus improving the performance of
cross-lingual dependency parsing. our model not
only exploits a representation alignment network
that selectively filters advantageous source lan-
guage representations at the input layer but also uti-
lizes an adversarial network to strengthen context-
invariant features within the encoding layer. Exper-
iments on a benchmark dataset illustrate that our
proposed model significantly outperforms several
strong baseline models. Detailed comparative ex-
periments show that both the alignment and adver-
sarial networks can substantially facilitate extract-
ing and utilizing relevant target language features,
thereby increasing the adaptation capability of our
model. Furthermore, in-depth analysis reveals that
our model achieves notable improvements in pars-
ing long-distance dependencies and exhibits robust-
ness capabilities, confirming its comprehensive ap-
plicative value in cross-lingual settings.

Limitations

Our proposed representation alignment and adver-
sarial networks require a bilingual dictionary of
adequate or higher quality to facilitate language as-
sociations through matrix alignment. Hence, when
there exists a bilingual dictionary, our method can
be easily adapted to other cross-lingual dependency
parsing tasks. Meanwhile, our manually calibrated
Vietnamese-Chinese bilingual dictionary will be
released to facilitate future research.
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