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Abstract
Retrieval-Augmented Generation allows to en-
hance Large Language Models with external
knowledge. In response to the recent pop-
ularity of generative LLMs, many RAG ap-
proaches have been proposed, which involve
an intricate number of different configurations
such as evaluation datasets, collections, met-
rics, retrievers, and LLMs. Inconsistent bench-
marking poses a major challenge in comparing
approaches and understanding the impact of
each component in the pipeline. In this work,
we study best practices that lay the ground-
work for a systematic evaluation of RAG and
present BERGEN, an end-to-end library for re-
producible research standardizing RAG experi-
ments. In an extensive study focusing on QA,
we benchmark different state-of-the-art retriev-
ers, rerankers, and LLMs. Additionally, we an-
alyze existing RAG metrics and datasets. Our
open-source library BERGEN is available un-
der https://github.com/naver/bergen.

1 Introduction

With billions of learnable parameters, Large Lan-
guage Models (LLMs) hold the capacity to store
vast amounts of the information contained in the
pretraining data, transcending mere common sense
knowledge (Devlin et al., 2019; Radford et al.,
2019; Touvron et al., 2023; Kim et al., 2023; Team,
2023; OpenAI et al., 2024; Wei et al., 2022). This
knowledge, embedded in the model weights, can be
accessed through model prompting after an align-
ment step (Ouyang et al., 2022; Zhang et al., 2023),
transforming LLMs into universal Question An-
swering (QA) tools and sparking an unprecedented
surge in commercial and scientific interest.

However, a major limitation of such LLMs is that
their knowledge is static and can not be directly ma-
nipulated. Consequently, inaccurately memorized
or outdated information within the model’s param-
eters cannot be easily identified, let alone updated,
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python bergen.py dataset=kilt_nq generator=gemma-7b 
retriever=splade-v3 reranker=minilm6

Natural Questions, Trivia QA, HotpotQA, WoW, ELI5, 
WikiQA, TruthfulQA, PopQA, ASQA, SCIQ

BM25, RetroMAE v2, 
RepLlama, SPLADE, 

DeBERTa-v3, MiniLM, …

Llama-2-7B,13B,70B 
SOLAR-10B, 

Mixtral-8x7B, 
Gemma-2B, 7B, …

F1, (Exact) Match, Rouge-*, BEM, LLMEval, …

Figure 1: Summary of features in BERGEN.
BERGEN enables a reproducible and comprehensive
study of state-of-the-art retrievers, rerankers and LLMs
in RAG (we conduct 500+ experiments –see Table 4).

and can lead to erroneous responses. Therefore,
ensuring factual accuracy has become a major con-
cern when millions of users interact with LLMs
or when addressing domain-specific QA scenarios
where LLMs must rely on external information.

Such challenges are addressed by Retrieval-
Augmented Generation (RAG) (Das et al., 2019;
Seo et al., 2019; Lewis et al., 2020), where rele-
vant information, retrieved from a given external
collection, is explicitly provided as context to the
LLM to generate an answer that can go beyond its
internal knowledge. Due to their multi-step nature,
RAG pipelines are complex systems whose final
performance is influenced by a myriad of possible
configurations and design choices.

New RAG approaches are usually characterized
by fragmented and often suboptimal experimen-
tal setups, e.g. using outdated retrievers or un-
reliable metrics. The importance of the evalua-
tion metrics is even more important in zero-shot
RAG settings, where LLM-generated answers are
more verbose compared to standard QA short an-
swers, and surface-matching metrics fail to capture
whether the answer is correct. The described in-
consistency between setups makes new methods
hardly comparable, and the absence of a systematic
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Source Dataset Metric Models Collection Top-n docs Setting

Izacard and Grave
(2021)

NQ, TriviaQA (unfil-
tered), SQuAD Open

Exact Match, F1 BM25, DPR, T5 Wikipedia ’16, ’18 5, 10, 25, 50, 100 Full-FT

Asai et al. (2024a) PopQA, TriviaQA (un-
filtered), PubHealth,
ARC-C, Bio, ASQA

Match, Precision, Re-
call, Accuracy, Mauve

Contriever, Search
Engine, GTR-XXL,
Llama2 7B, 13B

Wikipedia ’18, ’20,
’23

5, 10

Lin et al. (2024) MMLU, NQ, TQA,
ELI5, HotpotQA,
FEVER, AIDA, zsRE,
T-REx, WoW

Exact Match, Accu-
racy

DRAGON+, Llama
65B

Wikipedia ’17-’20,
Wiki21 from Common
Crawl

10 0-Shot, Few-Shot,
Full-FT

Ma et al. (2023) HotpotQA, PopQA,
AmbigNQ, MMLU

Exact Match, F1 Bing-API, BM25,
ChatGPT, T5, Vicuna
13B

1 Few-Shot

Kim et al. (2024) NQ, WebQ, 2Wiki,
HotpotQA

Exact Match, F1 Contriever, BM25,
ChatGPT, Llama2-
chat-70B

KILT Wikipedia 10 0-Shot

Kamalloo et al. (2023) NQ-Open Exact Match, F1,
BEM

DPR, Contriever, In-
structGPT, FID, R2-
D2 EMDR2

KILT Wikipedia 25, 50, 100 0-Shot

Table 1: Non-exhaustive examples of experimental setups in the RAG literature: Everybody uses their own setup!

evaluation of the impact of various RAG compo-
nents complicates understanding the effectiveness
of the proposed approaches as well as the interac-
tions between the retrieval system and the LLM.

Our contribution. To address the challenges de-
scribed above, we introduce BERGEN –short for
BEnchmark on Retrieval augmented-GENeration–
a Python library for easy and reproducible end-to-
end RAG experiments. Through BERGEN, we con-
duct a comprehensive study benchmarking state-
of-the-art retrievers, rerankers, and LLMs in 500+
experiments. By comparing a large number of
prominent datasets and metrics, we derive best
practices for testing RAG approaches, laying the
groundwork for comparable results and future ad-
vancements in this field. BERGEN also supports
multilingual datasets to promote RAG development
beyond English. In a nutshell, our main findings
are as follows:

• It is important to perform more semantic eval-
uation, e.g. LLM-based evaluation, beyond
commonly used surface-matching metrics (e.g.
exact match, F1, Rouge-L, etc.).

• Retrieval quality matters for RAG response
generation, hence the importance of usage of
SoTA retrievers and rerankers in RAG.

• We highlight the importance of reviewing
standard benchmarks for knowledge-intensive
tasks commonly used for RAG: some datasets
evaluating general knowledge might not be
suitable for RAG in the context of modern
LLMs which have acquired most of such
knowledge from the Web and Wikipedia.

• LLMs of any size can benefit from retrieval.

2 Related Work

RAG libraries. First, LangChain (LangChain,
Accessed 2024) and LlamaIndex (LlamaIndex,
2024) offer generic off-the-shelf application mod-
ules for high-level RAG development tailored for
production-ready applications. Furthermore, Khat-
tab et al. (2023) present DSPy, a programming-
based approach that creates compositional and
declarative modules to build complex LLM opera-
tions. More recently, RAGGED (Hsia et al., 2024)
explores optimal RAG pipeline designs such as
exploring encoder-decoder vs decoder-only mod-
els for generation. FlashRAG (Jin et al., 2024)
introduces a modular open-source toolkit designed
for RAG experiments. Both have been developed
concurrently with this work and as such are most
similar to our framework.

However, neither LlamaIndex, DSPy, nor
RAGGED offer sufficient flexibility for a research
environment and focus on a limited selection of
retrievers, datasets, and metrics. Additionally,
FlashRAG lacks an in-depth analysis of such com-
ponents. Furthermore, a reranking functionality is
often overlooked and none of the works analyze or
highlight enough the importance of retrieval qual-
ity. In contrast, our framework prioritizes flexibility
and extensibility by simply writing configuration
files for models and datasets to cover a wide range
of supported configurations.

Inconsistent Setups. Amidst the growing in-
terest in LLMs, numerous RAG approaches have
been introduced recently (Izacard and Grave, 2021;
Izacard et al., 2022b; Jiang et al., 2023; Lin et al.,
2024; Asai et al., 2024a; Jiang et al., 2023; Kim
et al., 2024; Ram et al., 2023; Ma et al., 2023; Xu
et al., 2024). Among those works, the experimental
setups are fragmented at best. Works vary in the
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use of evaluation datasets, collections, evaluation
metrics, retrieval systems, and LLMs. We present
examples of experimental setups in Table 1 high-
lighting the current chaotic state of RAG evaluation
that does not allow a systematic comparison across
methods or components in the pipeline.

Retrieval in RAG. The impact of the retrieval
quality as well as its relative impact w.r.t. the size
of the LLM remain unclear. While efforts have
focused on mitigating hallucinations (Chen et al.,
2023; Ji et al., 2023; Mishra et al., 2024) and deal-
ing with noisy contexts (Cuconasu et al., 2024)
within the LLM component, the impact of the re-
trieval component to improve responses remains
underexplored (Asai et al., 2024b). Recent state-
of-the-art approaches employ outdated retrievers
without refining the ranking, which is a critical as-
pect for retrieval quality (Craswell et al., 2023).
For instance, none of the works presented in Table
1 employ a re-ranking stage.

Data processing. For providing external con-
text to the LLM, different sources can be utilized.
While Wikipedia is the most common practice, uti-
lizing snapshots with different timestamps causes
additional inconsistencies among approaches. Vari-
ations in data preprocessing can further complicate
comparisons (Tamber et al., 2023) and have an im-
pact on observed performance.

To streamline the puzzling number of different
experimental configurations, what is needed is a
unified framework to systematically train and eval-
uate RAG systems. Asai et al. (2024b) acknowl-
edge this challenge and call for a “standardized and
open-sourced library for retrieval-based LMs".

3 Task Definition

RAG consists of a ranking system R and a paramet-
ric generative language model θ, where the ranking
system can be multi-staged. First, the ranking sys-
tem builds a search index I based on a collection.
Then, at request time, the index I is searched yield-
ing context segments1 c that are relevant to the user
input x: c = fI,R(x). Next, the LLM generates a
response r based on the context c and user input
x both embedded in a model-specific instruction
template i: r = fθ(i, x, c).

1The segments can be at different granularities for instance
sentences, passages, or entire documents. In this work, we
focus on passages.

4 Benchmarking Library BERGEN

We present BERGEN, an open-source Python
library that standardizes RAG experiments2.
BERGEN supports a wide range of model archi-
tectures as well as training and evaluation config-
urations and at its core is designed to be extend-
able with minimal code. The main goal is to sim-
plify the currently fragmented experimental setup
of RAG research. Our library allows reproducing
experiments end-to-end including data download,
preprocessing, indexing, retrieval, generation, and
training for a wide range of state-of-the-art models
with a simple command:� �

python bergen.py retriever='splade -v3'
reranker='minilm6 '
generator='SOLAR -10.7B'
dataset='kilt_nq ' train='lora'� �
To accommodate the fast-paced efforts in open-

sourcing models and datasets, BERGEN is built
on top of the Hugging Face (HF) hub to handle
datasets (Lhoest et al., 2021) and models (Wolf
et al., 2020), allowing for a straightforward ex-
tension with all available resources hosted on the
hub, as well as locally stored ones. BERGEN fur-
ther includes a wide set of popular QA datasets,
including multilingual datasets, as well as surface-
based and LLM-based metrics for evaluation.
For an overview of all features included, we re-
fer to our github repository. The library sup-
ports zero-shot evaluation as well as different
fine-tuning configurations. We rely on Hydra
(Yadan, 2019) to handle complex experiment con-
figurations. For instance, adding a new LLM to
BERGEN is as simple as adding a yaml config file:� �
init_args:

_target_: models.generators.llm.LLM
model_name:
"Upstage/SOLAR -10.7B-Instruct -v1.0"
max_new_tokens: 128
max_length: 2048
quantization: "int4"

batch_size: 16� �
We now give an overview of models, datasets,

collections, evaluation metrics, and training cur-
rently supported in BERGEN.

4.1 Retrievers

BERGEN supports indexing and retrieval with the
most popular first-stage retrievers spanning tradi-
tional, dense, and sparse bi-encoders. We support

2https://github.com/naver/bergen
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Pyserini’s BM25 (Lin et al., 2021), various sparse
SPLADE models (Formal et al., 2022; Lassance
et al., 2024), as well as dense (encoder-only) mod-
els such as CoCondenser (Gao and Callan, 2022),
RetroMAE (Shitao et al., 2022), or BGE (Xiao
et al., 2023). BERGEN also supports decoder-
based retrievers like RepLLaMA (Wang et al.,
2024b), or models like BGE-M3 (Chen et al., 2024)
for multilingual scenarios. Since our library builds
on top of the HF hub, including any other dense or
sparse model is straightforward.

4.2 Rerankers
Modern retrieval systems refine the initial ranking
using rerankers such as Cross-Encoders (Nogueira
and Cho, 2020). In contrast to the initial retrieval
which encodes queries and passages independently
for efficiency purposes, rerankers contextualize pas-
sages w.r.t. queries and thus produce more effec-
tive representations. Using a reranker is crucial
to improve ranking quality at early ranks – this is
particularly important since only a limited num-
ber of passages can be provided as context to the
LLM. BERGEN supports Cross-Encoders such as
MiniLM (Wang et al., 2020), DeBERTa-v3 (Las-
sance and Clinchant, 2023), or BGE(-M3) (Xiao
et al., 2023; Chen et al., 2024).

4.3 LLMs
BERGEN supports the most popular open-weights
LLMs such as Llama2 (Touvron et al., 2023),
Llama3 (AI@Meta, 2024), SOLAR (Kim et al.,
2023), Mixtral (Jiang et al., 2024), Gemma (Team,
2023), TinyLlama (Zhang et al., 2024a), and
Command-R3 (multilingual). To accommodate the
fast-paced development of LLMs, our library al-
lows adding new HF models simply by defining a
config file as shown earlier.

4.4 Evaluation Datasets
Among the research community, there is a dispar-
ity regarding which datasets to use for evaluating
RAG. We identified 40+ datasets among recently
proposed RAG approaches, spanning (multi-hop)-
Question Answering, multiple-choice, entity link-
ing, conversational, fact-checking, and slot-filling.

In this work, we focus on QA and select the most
popular publicly available datasets for BERGEN.
These datasets cover different characteristics of QA
such as short- and long-form Question Answering

3https://huggingface.co/CohereForAI/
c4ai-command-r-v01

in different domains. We include Natural Questions
(NQ) (Kwiatkowski et al., 2019), Trivia QA (Joshi
et al., 2017), HotpotQA (Yang et al., 2018), Wizard
of Wikipedia (WoW) (Dinan et al., 2019), ELI5
(Fan et al., 2019), WikiQA (Yang et al., 2015),
TruthfulQA (Lin et al., 2022), PopQA (Mallen
et al., 2023), ASQA (Stelmakh et al., 2022), SCIQ
(Welbl et al., 2017), MKQA (Longpre et al., 2021)
and XOR-TyDi QA (Asai et al., 2021a) –the last
two for multilingual RAG. New datasets can also
be easily integrated into BERGEN.

4.5 Collection

The core strength of the RAG setup is that the
LLM can be augmented with relevant context stem-
ming from any source. Consequently, many dif-
ferent collections can be chosen from and vary
among the proposed approaches. Different data pre-
processing, such as splitting the data into smaller
chunks, and downloading the data at different
timestamps, can cause additional inconsistencies
among setups. (Petroni et al., 2021) solve this
by using a single fixed Wikipedia dump to re-
trieve from across different datasets. We utilize
this publicly available KILT (Petroni et al., 2021)
Wikipedia dump4 and, similarly to (Tamber et al.,
2023; Karpukhin et al., 2020), split articles into
non-overlapping chunks of 100 words, and prepend
the article title to each chunk, yielding around
24.8M passages in total. The resulting collection
is in the Hugging Face Arrow dataset format to en-
sure memory-efficient and performant loading. We
implement a dataset engine that allows for multi-
threaded end-to-end processing (downloading, pro-
cessing, and saving datasets) making the addition
of new datasets straightforward. To enable experi-
ments with a multilingual datastore, BERGEN also
supports multilingual Wikipedia5.

4.6 Evaluation

To date, it remains unclear which metrics are ef-
fective for evaluating open-ended generation. Typ-
ically, given a question, a reference answer, and
a generated candidate answer, the task is to evalu-
ate whether the question is answered sufficiently.
The most common metrics can be categorized as
surface- and LLM-based metrics. Surface-based
metrics rely on exact lexical matching with either

4https://huggingface.co/datasets/kilt_
wikipedia

5https://huggingface.co/datasets/wikimedia/
wikipedia
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the entire reference label or its sub-string; on the
other side, LLM-based metrics leverage seman-
tic soft-matching. While surface-based metrics
may excel at capturing short, factual equivalence,
they naturally fall short in accurately capturing the
semantic equivalence of longer reference-answer
pairs.

We employ the widely-used surface-based met-
rics Match6, Exact Match, Precision, Recall, F17,
Rouge -1, -2, -L, as well as more advanced auto-
matic metrics that are based on semantic similarity:
BEM (Bulian et al., 2022), GPT-4 (OpenAI et al.,
2024), as well as LLMeval, a simple yet effective
LLM-based metric.

LLMeval. There exist numerous works using
LLMs as evaluators (Saad-Falcon et al., 2023;
Zheng et al., 2023; Kamalloo et al., 2023). Re-
cently, RAGAS (Es et al., 2023) and RetrievalQA
(Zhang et al., 2024b) have introduced better, au-
tomated evaluation of LLM-generated text. How-
ever, as a simple LLM-based metric, we leverage
SOLAR-10.7B-Instruct-v1.0 (Kim et al., 2023) as
a zero-shot answer equivalence evaluator –similar
to Instruct-GPT in (Kamalloo et al., 2023)– pro-
viding a good compromise between parameter size
(efficiency) and effectiveness. Based on an instruc-
tion prompt, we ask the model to judge whether a
generated response answers a question compared
to a reference answer, resulting in binary relevance
judgments. We refer to Appendix F for details.

4.7 Training

BERGEN supports training the LLM end-to-end
in different configurations. We support full fine-
tuning (FT), as well as QLoRA FT (Dettmers et al.,
2023) with 4-bit and 8-bit quantization.

5 Experiments

To our knowledge, the experiments we conduct
with BERGEN present the largest RAG study yet,
comparing a variety of different configurations of
retrievers, rerankers, LLMs, datasets, and metrics
–as (partly) summarized in Table 4. The com-
putational demands of fine-tuning state-of-the-art
LLMs limit us to evaluating the LLMs in this work
mostly to zero-shot.

6Match measures whether the label is contained in the
generated answer as an exact match following Schick et al.
(2023); Mallen et al. (2023); Asai et al. (2024a); Zhang et al.
(2024b).

7Precision, Recall, F1 compare the generated answer and
the label on the token level.

NQ TruthfulQA Wow ELI5 Avg.

GPT-4

GPT-3.5Turbo

LLMeval

BEM

Match

EM

F1

Recall

Precision

Rouge-L

short medium medium longReference

0.65 0.56 0.37 0.33 0.48

0.69 0.65 0.35 0.41 0.53

0.34 0.31 0.023 0.12 0.2

0.54 0.21 0.0 0.013 0.25

0.035 0.088 0.0 0.0 0.062

0.39 0.24 0.11 0.17 0.23

0.57 0.29 0.039 0.098 0.25

0.38 0.23 0.061 0.18 0.21

0.39 0.24 0.12 0.18 0.23

Figure 2: Correlation of different metrics with GPT-
4-as-a-judge for datasets with varying reference label
lengths (short, medium, and long).

We make several choices to speed up the infer-
ence and minimize the required GPU memory. We
set the temperature T = 0 for anwer generation,
and the number of maximum generated tokens to
128. Generation is done with vLLM (Kwon et al.,
2023). Retrievers and rerankers are used in half-
precision (Micikevicius et al., 2018). We run our
experiments, depending on the size of the LLM,
with a maximum of 2x A100 80GB GPUs. We de-
tail our prompts in Appendix E. We retrieve top-50
passages –that are eventually re-ranked– of which
we provide the top-5 to the LLM. This is in line
with observations made by Hsia et al. (2024) show-
ing that a small number of provided passages is
sufficient for decoder-only models.

BERGEN allows us to easily investigate various
research questions on evaluation, datasets, the ben-
efit of retrieval, or the impact of LLM size. As such,
we bridge the gap in the literature by systematically
comparing common (5.1) metrics, (5.2) datasets,
(5.3) retrieval systems, and (5.4) LLMs. Finally,
we observe the performance that can be gained by
(5.6) fine-tuning the LLMs.

5.1 Comparison of Metrics

We analyze a wide range of surface-based as well as
LLM-based metrics systematically to answer (RQ
1) Which metrics are most effective for evaluating
open-ended text generation and comparing RAG
systems? To cover different characteristics, we
select four representative datasets with different
reference lengths: NQ (short), TruthfulQA and
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WoW (medium), and ELI5 (long reference labels).
We evaluate what we found to be a strong RAG
system8, with the motivation to identify metrics
that can distinguish the best-performing models
effectively.

We compare all our metrics against GPT-4-as-
a-judge and measure correlation averaged over
samples with Kendall’s Tau in Figure 2. We find
LLMeval on average to be closest to GPT-4, which
is known to be one of the strongest baselines for
evaluation tasks (Kamalloo et al., 2023). We further
observe surface-based metrics and BEM failing to
evaluate long answer-reference pairs, in reference
to GPT-4. In contrast, LLMeval shows a strong
correlation with GPT-4 for examples with long ref-
erences, however, weaker compared to references
with short- and medium-lengths –highlighting the
difficulty of comparing longer answer-reference
pairs. Exact Match (EM) fails to evaluate zero-shot
responses effectively. Manual inspection reveals
LLM responses are more verbose than the short
references in NQ, making exact matches difficult,
especially for medium and long references.

Recommendation : Evaluation

LLMeval closely aligns with GPT-4’s eval-
uation, followed by Match and Recall, mak-
ing them the most effective non-commercial
metrics for (zero-shot) RAG evaluation,
among the ones tested.

We use LLMeval in the remainder of this work
and include results with the Match metric in Ap-
pendix A.

5.2 Datasets for RAG Evaluation

In this section, we analyze 10 QA datasets cover-
ing a wide set of characteristics such as different
question lengths, reference label lengths, and do-
mains to investigate (RQ 2) Which datasets are
suitable for RAG? For this experiment, we are in-
terested in how much performance can be gained
by adding relevant context to the LLM compared to
no retrieval (Closed Book). We argue that the more
performance can be gained by adding retrieval, the
more “suitable” the dataset is for RAG evaluation.
For this experiment again, we leverage the same
strong retrieval system.

8Retrieval: SPLADE-v3, re-ranking: DeBERTa-v3, and
answer generation: SOLAR-10.7B-Instruct-v1.0 – See Sec-
tions 5.3 and 5.4.

Figure 3 shows that retrieval does not increase
response generation quality for all datasets. Specif-
ically, for TruthfulQA, ELI5, and WoW, generation
performance deteriorates by adding retrieved con-
text to the LLM. Even adding oracle retrieval to
ELI5 and WoW does not lead to increased per-
formance (see Figure C). There could be multiple
explanations for such results that would require
further investigation and detailed analysis in future
work. First, some dataset labels are noisy or incom-
plete and LLMs answers may actually be better,
while some questions and tasks may not require ex-
ternal knowledge. Second, most retrieval systems
are not trained for very long questions, which could
make it especially challenging for certain datasets.
The evaluation of longer references is also more
challenging –highlighting the importance of devel-
oping better evaluation metrics. Lastly, Wikipedia
is often used in the pre-training collection of LLMs.
Therefore, the models might have memorized the
answers, rendering retrieval obsolete, which fur-
ther highlights the importance of developing new
datasets. A more detailed analysis of failure cases
can be found in Appendix B.

On the other hand, ASQA, HotpotQA, NQ, Triv-
iaQA, and PopQA gain the most performance by
adding retrieval. For exact numbers, we further
refer to Table 4 in Appendix A.

Recommendation : Datasets

ASQA, HotpotQA, NQ, TriviaQA, and
PopQA benefit most from retrieval in zero-
shot settings. In contrast, TruthfulQA,
SCIQ, and ELI5, WoW do not benefit from
current state-of-the-art retrieval nor from or-
acle retrieval (where available) and seem to
be more challenging. This suggests that the
current SoTA retrieval systems and evalua-
tion are not sufficient for these datasets and
highlight potential areas for future research
directions.

5.3 Impact of Retrieval

Providing a high-quality ranking to the LLM is
crucial, as only a limited set of passages can be
provided as context for generation. To achieve this,
modern retrieval systems refine the initial ranking
using rerankers such as Cross-Encoders. The re-
lation between retrieval quality and downstream
generation performance remains relatively under-
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Figure 3: Performance gain w/ and w/o retrieval
(SPLADE-v3 + reranking (RR) with DeBERTa-v3) on
different datasets with SOLAR-10.7B.
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Figure 4: Impact of retrieval performance on RAG Per-
formance for SOLAR-10.7B on NQ with different rank-
ing systems. RR means with additional re-ranking using
DeBERTa-v3.

explored, particularly relative to different LLM
sizes. To answer (RQ 3) Does retrieval quality pos-
itively impact generation quality?, we compare the
performance of LLMs with several retrievers, and
with optional reranking. The QA datasets in KILT
also contain relevance labels allowing us to addi-
tionally evaluate ranking –see Table 5 in Appendix
C. Note that we focus here on “zero-shot rankers”,
i.e. models typically trained on the MS MARCO
passage ranking collection (Bajaj et al., 2018) – and
not on the target collection. In Appendix D we fur-
ther include more comprehensive ablations of mod-
ern SoTA retrievers from the MTEB benchmark
(Muennighoff et al., 2023) – which are fine-tuned
on the KILT collections.

In Figure 4 we measure LLMs’ performance
against retrieval effectiveness on the NQ dataset.
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Figure 5: Performance gains w/ and w/o oracle retrieval
for LLMs with different sizes. Comparing closed book
vs oracle passages averaged over all QA datasets in
KILT.

We select three popular retrievers with different
characteristics; namely BM25 (lexical sparse),
RetroMAE (dense), and SPLADE-v3 (learned
sparse). We additionally rerank the initial retrieval
with a DeBERTa-v3 cross-encoder. We find that
with increased retrieval quality, LLM performance
improves across LLMs by a large margin. Overall,
re-ranking largely boosts results, and SPLADE-
v3 reranked with DeBERTa-v3 achieves the best
performance across datasets and metrics. These
observations hold similarly for other datasets –as
seen in Table 4. To understand how much more per-
formance could be gained if we had access to even
better retrieval systems, we also provide passages
that directly contain the answer (Oracle passages)
as context to the LLM for datasets that contain rel-
evance annotation. We find that improving ranking
systems could further boost LLM performance for
RAG (see Table 4 and Figure 5).

Recommendation : Retrieval

For RAG downstream performance, it is
crucial to employ SoTA retrieval systems
in the RAG pipeline. Reranking has been
often overlooked and should be used to have
strong baselines for future research.

5.4 Impact of LLM size

Next, we investigate whether adding retrieval is
more beneficial for a specific model size. We select
LLMs with different sizes ranging from 1 to 70B
parameters. To answer (RQ 4) What is the impact
of the LLM size in RAG?, we measure in Figure 5
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en ar fi ja ko ru

MKQA

No Ret 0.67 0.29 0.32 0.37 0.32 0.48
En Wiki 0.76 0.54 0.58 0.63 0.59 0.71

Multi Wiki 0.74 0.57 0.64 0.64 0.62 0.72

XORQA

No Ret 0.63 0.56 0.41 0.40 0.54 0.47
En Wiki 0.73 0.57 0.59 0.51 0.58 0.65

Multi Wiki 0.69 0.70 0.74 0.62 0.66 0.74

Table 2: Impact of retrieval in the multilingual setting.
Generator: Command-R, retriever/reranker: BGE-M3.
Columns denote the language of user queries while rows
denote the language of the datastore (English Wikipedia,
or multilingual Wikipedia). Metric: LLMeval.

the performance of the LLMs with gold passages
(Oracle) and without retrieval (Closed Books).

Our experiments show no clear relation between
model size and performance gain by adding (per-
fect) retrieval. Llama2 7B gains the most perfor-
mance, followed by Llama2 70B and Llama3 8B,
TinyLlama 1.1B, Mixtral 8x7B, and SOLAR 10.7B.
It is worth noting that Llama2 7B with retrieval
outperforms its biggest counterpart Llama2 70B
without retrieval. In conclusion, our results show
that neither model size nor performance without
retrieval is generally indicative of the usefulness
of adding retrieval for zero-shot response genera-
tion. The same observations hold when considering
retrieval systems –instead of Oracle (not shown).

5.5 Multilingual RAG

We further extend BERGEN to support multilin-
gual experiments –see extended descriptions and
analyses in Appendix H and Chirkova et al. (2024).
Table 2 reports results for multilingual RAG . We
observe that retrieving from the English Wikipedia
datastore is already beneficial for non-English
queries. Retrieval from multilingual Wikipedia
boosts results further.

5.6 Fine-Tuning the LLMs

Finally, we want to understand whether the perfor-
mance gap between the different model sizes can
be closed by fine-tuning the models by answering
(RQ 5) How much performance can be gained by
fine-tuning? Due to the computational cost, we
limit our experiments to a single dataset. We select
NQ as significant performance can be gained by
adding retrieval as shown by the previous experi-
ment. We fine-tune the LLMs using QLoRa –for

LLM M LLMeval

TinyLlama-1.1B-chat 0.56 (+0.13) 0.77 (+0.41)
Llama-2-7B-chat 0.64 (+0.03) 0.82 (+0.24)
Llama-3-8B-chat 0.66 (+0.02) 0.78 (+0.04)
SOLAR-10.7B 0.67 (-0.03) 0.84 (+0.05)
Mixtral-8x7B-inst. 0.68 (+0.01) 0.84 (+0.05)
Llama-2-70B-chat 0.69 (+0.04) 0.85 (+0.06)

Table 3: LLMs fine-tuned on NQ, for retrieval with
SPLADE-v3 and reranking with DeBERTa-v3. Perfor-
mance gains in absolute points compared to zero-shot is
indicated in brackets.

further details, see Appendix G.

We observe in Table 3 that smaller LLMs gain
more performance with fine-tuning compared to
their bigger counterparts. Our results also demon-
strate that fine-tuning significantly reduces the per-
formance gap between the smallest (1.1B) and the
largest LLM (70B), compared to the zero-shot eval-
uation setting.

6 Conclusion

In this work, we present BERGEN, a library for
benchmarking RAG systems. We conduct hun-
dreds of experiments with various configurations al-
lowing us to analyze each part of the RAG pipeline,
to derive recommendations for testing and provide
strong baselines for future RAG experiments.

We highlight it is crucial to perform semantic
evaluations, in addition to commonly used surface-
matching metrics We show retrieval quality sig-
nificantly impacts RAG response generation, un-
derscoring the importance of using state-of-the-art
retrievers, specifically rerankers. We emphasize the
need to review standard benchmarks for knowledge-
intensive tasks in RAG. Additionally, we show that
LLMs of any size can benefit from improved re-
trieval methods. To keep up with the rapid devel-
opment of LLMs and the constant release of mod-
els, we plan to add more retrieval models, LLMs,
and datasets in the future. Additionally, by design-
ing the library to be easily extendable, we make
it straightforward for the research community to
contribute. To conclude, we provide a modular
framework, alongside data and runs, for systemat-
ically evaluating RAG pipelines and contributing
to better reproducibility and understanding of the
effectiveness of current and future RAG systems.
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Limitations

Despite conducting a very large set of experiments
to understand the effect of various RAG compo-
nents, including different retrievers, rerankers, and
LLMs, this work comes with limitations. First,
limited by the computational demands of the most
recent LLMs, we are restricted to choosing a set
of models and datasets, while at the same time
primarily focusing on evaluating LLMs zero-shot.

Second, we conduct all experiments using a sin-
gle Wikipedia-based collection, which is similar to
the data on which the LLMs were trained. It would
be interesting to explore out-of-domain collections
with different characteristics, such as those in the
medical or legal domains, to better understand how
both the retrievers and LLMs operate in diverse
contexts.

Lastly, our experiments are limited to focusing
mostly on QA RAG, which only highlights one
out of many possible RAG applications such as
summarization, open-domain dialogue, slot-filling,
and fact verification. We encourage the research
community to extend our insights by evaluating
more models and datasets and experimenting with
multi-lingual settings.
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A Main Results

Our main results of evaluating different LLMs with context provided through different retrieval systems
on 10 datasets can be found in Table 4. The table comprises the results of 450+ experiments.

B Dataset Analysis

We provide additional support and analysis on the two datasets ELI5 and WoW. More specifically, we lay
out reasons why they may not be suited for RAG evaluation in our benchmark. We use different retrievers
and two LLMs (SOLAR 10.7B and Llama2 70B) to illustrate our points. Additional results with more
retrievers and LLMs can be found in Figure 7 –the conclusions remain however similar.

In Figure 6a, we plot the retrieval performance against the LLMEval metric on the ELI5 dataset for
various retrievers. The Closed Book setting (no retrieval) outperforms the Oracle retrieval for which only
gold passages (that contain the answer) are provided as context. Surprisingly, the different retrievers have
low retrieval performance (<0.3 R@5), but improve generation quality when compared to Oracle. This
may indicate partial annotation and/or missing relevant documents. In any case, the performance is much
lower than in the Closed Book setting. This is why we consider that ELI5 is probably not appropriate at
the moment for testing RAG systems.

In Figure 6b we present a similar analysis of the WoW dataset. Similarly, the Closed Book setting
outperforms other systems –including the approach providing the LLM with the oracle passages. In
this case, none of the systems with retrieval outperforms the Oracle. Looking closely at the task and
some examples, it is actually not clear why this dialogue task should rely on retrieved knowledge from
Wikipedia. As an example of a dataset that we find suitable for RAG, we list NQ (Figure 6c). We observe
increasing benefits from using stronger retrieval systems, with the oracle retrieval achieving the highest
performance.

C Retrieval Evaluation on KILT

KILT contains passage- and document-level annotations of gold documents containing the answer. How-
ever, these annotations are not compatible with our 100-word passage split, therefore we map our passages
to the document-level ranking annotations, essentially indicating whether a retrieved passage is contained
in a document that has been annotated as relevant, serving as a good indication of relevance.

In Table 6, we measure the retrieval effectiveness of different retrieval systems on all datasets in KILT
containing ranking labels. We use Recall@5, as this reflects the number of passages used as context to the
LLM. We select the models discussed in Section 5.3. We further provide in Appendix D a more exhaustive
evaluation of SoTA retrievers on the NQ dataset.

D Retrieval Analysis

We provide comprehensive ablations on the impact of retrieval quality on generation. We study modern
SoTA retrievers –including models from the MTEB benchmark which have been fine-tuned on datasets like
NQ. Table 6 lists all the models we consider, and Table 7 present the retrieval performance alongside the
generation quality (with and without re-ranking respectively). Overall, we observe that SoTA models from
MTEB achieve better performance in both aspects. These results are somewhat expected, as fine-tuning
ranking models on the target collection improves ranking quality and therefore the relevance of input
contexts. However, it does not measure the “zero-shot” performance of the RAG pipeline –especially
given the inability of learned retrievers to generalize to out-of-domain collections (Thakur et al., 2021). In
the meantime, re-ranking closes the gap between approaches.

E LLM prompts

We opted to use a single general prompt, rather than dataset-specific ones, to minimize the impact of
prompt variations and to simplify experimentation. When providing context in the form of retrieved
passages to the model, we used the following prompt embedded into the chat-template of the respective
model:
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Retrieval System

Closed Book Oracle RetroMAE RetroMAE+RR BM25 BM25+RR SPLADE-v3 SPLADE-v3+RR

Dataset LLM M LLM M LLM M LLM M LLM M LLM M LLM M LLM M LLM

A
SQ

A
(d

ev
,1

k
)

Llama2-70B 0.496 0.671 - - 0.669 0.744 0.712 0.784 0.564 0.665 0.652 0.739 0.705 0.789 0.732 0.815
Llama2-7B 0.373 0.526 - - 0.601 0.614 0.673 0.694 0.485 0.511 0.620 0.627 0.650 0.685 0.684 0.718
Llama3-8B 0.348 0.456 - - 0.652 0.667 0.690 0.732 0.478 0.506 0.620 0.672 0.682 0.719 0.719 0.762
Mixtral-8x7B 0.561 0.724 - - 0.680 0.744 0.716 0.792 0.547 0.645 0.664 0.766 0.724 0.793 0.735 0.819
SOLAR-10.7B 0.527 0.690 - - 0.692 0.723 0.743 0.786 0.517 0.554 0.675 0.725 0.722 0.764 0.762 0.811
TinyLlama-1.1B 0.180 0.200 - - 0.441 0.369 0.515 0.453 0.305 0.253 0.431 0.385 0.459 0.400 0.528 0.449
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k)

Llama2-70B 0.000 0.706 0.000 0.627 0.000 0.648 0.000 0.663 0.000 0.603 0.000 0.638 0.000 0.670 0.000 0.684
Llama2-7B 0.000 0.683 0.000 0.469 0.000 0.566 0.000 0.640 0.000 0.429 0.000 0.533 0.000 0.585 0.000 0.626
Llama3-8B 0.000 0.569 0.000 0.304 0.000 0.501 0.000 0.541 0.000 0.358 0.000 0.438 0.000 0.495 0.000 0.565
Mixtral-8x7B 0.000 0.749 0.000 0.438 0.000 0.557 0.000 0.605 0.000 0.451 0.000 0.516 0.000 0.569 0.000 0.608
SOLAR-10.7B 0.000 0.808 0.000 0.386 0.000 0.532 0.000 0.626 0.000 0.368 0.000 0.495 0.000 0.557 0.000 0.626
TinyLlama-1.1B 0.000 0.449 0.000 0.268 0.000 0.284 0.000 0.329 0.000 0.233 0.000 0.273 0.000 0.288 0.000 0.305
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A
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k)

Llama2-70B 0.310 0.458 0.749 0.910 0.463 0.610 0.507 0.662 0.503 0.658 0.521 0.690 0.515 0.674 0.536 0.705
Llama2-7B 0.243 0.372 0.687 0.831 0.386 0.504 0.418 0.541 0.416 0.544 0.455 0.582 0.437 0.561 0.459 0.589
Llama3-8B 0.228 0.373 0.749 0.887 0.407 0.510 0.450 0.586 0.447 0.562 0.489 0.631 0.463 0.597 0.497 0.643
Mixtral-8x7B 0.388 0.547 0.776 0.901 0.473 0.592 0.511 0.652 0.506 0.639 0.534 0.679 0.518 0.661 0.545 0.703
SOLAR-10.7B 0.351 0.501 0.793 0.891 0.446 0.493 0.501 0.575 0.481 0.533 0.530 0.613 0.496 0.567 0.539 0.637
TinyLlama-1.1B 0.165 0.349 0.539 0.586 0.255 0.286 0.286 0.329 0.286 0.322 0.315 0.361 0.288 0.325 0.315 0.363

K
IL

T
N

Q
(d

ev
,2

.8
k)

Llama2-70B 0.448 0.651 0.794 0.905 0.617 0.742 0.642 0.779 0.517 0.652 0.606 0.737 0.637 0.765 0.658 0.791
Llama2-7B 0.338 0.515 0.776 0.859 0.567 0.652 0.606 0.688 0.443 0.526 0.540 0.632 0.595 0.672 0.616 0.701
Llama3-8B 0.329 0.493 0.794 0.848 0.595 0.668 0.631 0.732 0.446 0.508 0.571 0.652 0.618 0.711 0.643 0.747
Mixtral-8x7B 0.526 0.721 0.841 0.899 0.620 0.731 0.664 0.779 0.501 0.631 0.602 0.732 0.640 0.764 0.671 0.790
SOLAR-10.7B 0.444 0.659 0.829 0.864 0.642 0.731 0.689 0.792 0.498 0.574 0.623 0.716 0.674 0.768 0.702 0.803
TinyLlama-1.1B 0.168 0.300 0.606 0.530 0.352 0.300 0.417 0.356 0.232 0.187 0.366 0.298 0.371 0.319 0.437 0.364

K
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iv
ia
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A
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ev
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.3

k)

Llama2-70B 0.832 0.855 0.937 0.933 0.873 0.870 0.911 0.904 0.875 0.870 0.907 0.906 0.909 0.905 0.923 0.917
Llama2-7B 0.657 0.676 0.887 0.880 0.805 0.794 0.854 0.848 0.799 0.783 0.854 0.848 0.850 0.842 0.879 0.866
Llama3-8B 0.707 0.731 0.892 0.857 0.831 0.799 0.884 0.858 0.815 0.785 0.878 0.856 0.881 0.855 0.902 0.882
Mixtral-8x7B 0.875 0.873 0.933 0.908 0.866 0.844 0.906 0.882 0.867 0.842 0.900 0.881 0.904 0.885 0.918 0.899
SOLAR-10.7B 0.805 0.810 0.904 0.836 0.858 0.811 0.915 0.877 0.845 0.789 0.907 0.870 0.911 0.868 0.928 0.898
TinyLlama-1.1B 0.320 0.447 0.700 0.548 0.604 0.480 0.679 0.568 0.603 0.480 0.695 0.575 0.671 0.551 0.728 0.608

K
IL

T
W

ow
(d

ev
,3

k)

Llama2-70B 0.000 0.713 0.001 0.685 0.000 0.639 0.000 0.644 0.001 0.602 0.000 0.607 0.001 0.639 0.001 0.631
Llama2-7B 0.000 0.677 0.002 0.622 0.001 0.480 0.000 0.474 0.000 0.435 0.001 0.462 0.001 0.515 0.000 0.498
Llama3-8B 0.000 0.530 0.001 0.542 0.000 0.452 0.000 0.465 0.000 0.370 0.001 0.421 0.000 0.491 0.000 0.484
Mixtral-8x7B 0.000 0.765 0.001 0.773 0.000 0.713 0.000 0.663 0.000 0.659 0.001 0.683 0.000 0.732 0.000 0.726
SOLAR-10.7B 0.000 0.808 0.002 0.747 0.000 0.612 0.001 0.609 0.001 0.527 0.001 0.558 0.000 0.640 0.000 0.623
TinyLlama-1.1B 0.000 0.461 0.001 0.321 0.000 0.242 0.000 0.238 0.000 0.215 0.000 0.229 0.001 0.268 0.001 0.255

PO
PQ

A
(t

es
t,

15
.3

k)

Llama2-70B 0.327 0.366 - - 0.618 0.598 0.672 0.635 0.410 0.419 0.484 0.484 0.605 0.588 0.655 0.625
Llama2-7B 0.226 0.257 - - 0.562 0.527 0.610 0.565 0.375 0.374 0.449 0.438 0.558 0.535 0.602 0.560
Llama3-8B 0.242 0.276 - - 0.616 0.559 0.664 0.599 0.383 0.377 0.468 0.455 0.599 0.568 0.657 0.601
Mixtral-8x7B 0.397 0.415 - - 0.631 0.579 0.685 0.615 0.397 0.412 0.484 0.472 0.620 0.588 0.679 0.619
SOLAR-10.7B 0.307 0.392 - - 0.660 0.579 0.720 0.632 0.410 0.386 0.508 0.463 0.645 0.585 0.712 0.631
TinyLlama-1.1B 0.152 0.170 - - 0.386 0.344 0.421 0.379 0.293 0.275 0.341 0.310 0.398 0.357 0.435 0.422

SC
IQ

(t
es

t,
1k

)

Llama2-70B 0.586 0.833 - - 0.598 0.830 0.596 0.844 0.563 0.779 0.594 0.822 0.597 0.833 0.610 0.851
Llama2-7B 0.468 0.756 - - 0.508 0.714 0.517 0.760 0.445 0.659 0.520 0.717 0.515 0.721 0.514 0.753
Llama3-8B 0.526 0.775 - - 0.516 0.744 0.538 0.777 0.458 0.647 0.532 0.755 0.521 0.750 0.541 0.786
Mixtral-8x7B 0.657 0.900 - - 0.592 0.841 0.614 0.867 0.544 0.793 0.595 0.839 0.576 0.852 0.599 0.854
SOLAR-10.7B 0.637 0.902 - - 0.586 0.821 0.616 0.857 0.519 0.746 0.599 0.836 0.589 0.846 0.618 0.872
TinyLlama-1.1B 0.221 0.526 - - 0.372 0.436 0.391 0.514 0.300 0.353 0.370 0.446 0.372 0.463 0.415 0.507

W
IK

IQ
A

(t
es

t,
6.

1k
)

Llama2-70B 0.000 0.844 - - 0.008 0.901 0.004 0.889 0.008 0.786 0.004 0.827 0.004 0.885 0.008 0.918
Llama2-7B 0.004 0.745 - - 0.004 0.786 0.004 0.794 0.000 0.584 0.004 0.695 0.004 0.765 0.004 0.782
Llama3-8B 0.000 0.745 - - 0.000 0.786 0.008 0.840 0.000 0.543 0.004 0.716 0.004 0.802 0.004 0.844
Mixtral-8x7B 0.000 0.881 - - 0.004 0.864 0.012 0.885 0.008 0.700 0.004 0.794 0.004 0.914 0.008 0.909
SOLAR-10.7B 0.004 0.893 - - 0.004 0.872 0.004 0.885 0.004 0.671 0.004 0.790 0.004 0.914 0.004 0.922
TinyLlama-1.1B 0.000 0.465 - - 0.008 0.362 0.008 0.383 0.004 0.198 0.004 0.329 0.008 0.412 0.004 0.428

Tr
ut

hf
ul

Q
A

(d
ev

,0
.8

k)

Llama2-70B 0.033 0.520 - - 0.064 0.457 0.075 0.501 0.061 0.427 0.065 0.465 0.064 0.496 0.072 0.496
Llama2-7B 0.035 0.450 - - 0.051 0.345 0.058 0.378 0.048 0.308 0.059 0.356 0.043 0.370 0.058 0.365
Llama3-8B 0.020 0.446 - - 0.045 0.392 0.054 0.425 0.040 0.349 0.044 0.419 0.040 0.431 0.045 0.419
Mixtral-8x7B 0.056 0.706 - - 0.066 0.586 0.080 0.578 0.062 0.508 0.075 0.559 0.066 0.580 0.082 0.574
SOLAR-10.7B 0.055 0.701 - - 0.049 0.474 0.054 0.526 0.040 0.435 0.051 0.485 0.045 0.531 0.050 0.512
TinyLlama-1.1B 0.034 0.262 - - 0.023 0.208 0.033 0.213 0.028 0.175 0.028 0.180 0.028 0.217 0.038 0.217

Table 4: Zero-shot performance on various datasets with varying retrieval systems, where RR stands for additional
re-ranking with DeBERTa-v3. Match metric (M) and LLMeval (LLM)
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Dataset

Method ELI5 HotpotQA NQ TriviaQA WoW

BM25 0.132 0.580 0.531 0.508 0.447
BM25+RR 0.198 0.680 0.709 0.617 0.528
RetroMAE 0.241 0.522 0.753 0.571 0.648
RetroMAE+RR 0.257 0.628 0.822 0.645 0.675
SPLADE-v3 0.240 0.645 0.799 0.641 0.688
SPLADE-v3+RR 0.264 0.704 0.833 0.663 0.684

Table 5: Retrieval Performance (R@5) on KILT QA tasks with different retrieval systems, where RR indicates
additional re-ranking using DeBERTa-v3.

Model Checkpoint

Sparse

BM25 (Robertson et al., 1994) -
SPLADE++ (Formal et al., 2022) naver/splade-cocondenser-selfdistil
SPLADE-v3 (Lassance et al., 2024) naver/splade-v3

Dense (MS MARCO)
TAS-B (Hofstätter et al., 2021) sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
CoCondenser (Gao and Callan, 2022) Luyu/co-condenser-marco-retriever
Contriever (Izacard et al., 2022a) facebook/contriever-msmarco
RetroMAE (Shitao et al., 2022) Shitao/RetroMAE_MSMARCO_distill
DRAGON+ (Lin et al., 2023) facebook/dragon-plus-context-encoder

facebook/dragon-plus-query-encoder
Dense (MTEB)

GTE (Li et al., 2023)♣ Alibaba-NLP/gte-base-en-v1.5
Alibaba-NLP/gte-large-en-v1.5

BGE (Xiao et al., 2023)♣ BAAI/bge-small-en-v1.5
BAAI/bge-base-en-v1.5
BAAI/bge-large-en-v1.5

E5 (Wang et al., 2024a)♣ intfloat/e5-small-v2
intfloat/e5-base-v2
intfloat/e5-large-v2

AnglE (Li and Li, 2024)♣ WhereIsAI/UAE-Large-V1
MXBAI Embed (Lee et al., 2024)† mixedbread-ai/mxbai-embed-large-v1
Nomic Embed (Nussbaum et al., 2024)♣ nomic-ai/nomic-embed-text-v1
Jina Embed (Günther et al., 2023)♣ jinaai/jina-embeddings-v2-base-en
Arctic Embed (Merrick et al., 2024)♣ Snowflake/snowflake-arctic-embed-l

Table 6: Retrieval Systems and corresponding HuggingFace checkpoints. We include standard dense and sparse
approaches trained on the MS MARCO passage ranking dataset (Bajaj et al., 2018). We further include recent
models that report strong performance on the MTEB benchmark (Muennighoff et al., 2023)9. These models are
usually fine-tuned on a larger pool of annotated datasets, which include MS MARCO but also QA datasets like
NQ. In such a case, the RAG performance evaluated on datasets like KILT NQ is not “zero-shot”. ♣ indicates that
models have been explicitly fine-tuned on NQ. Note that MXBAI Embed is excluding MTEB data from its training
set – but relies on proprietary data†.

� �
system: "You are a helpful assistant. Your task is to extract relevant
information from provided documents and to answer to questions as briefly as
possible."
user: f"Background :\n{docs}\n\nQuestion :\ {question}"� �
For closed-book experiments, where no context is provided to the LLMs we used a simple prompt:� �
system: "You are a helpful assistant. Answer the questions as briefly as
possible."
user: f"Question :\ {question}"� �
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Re-ranking Ranking

Model R@5 (↓) LLMEval R@5 LLMEval

BM25 0.709 0.716 0.531 0.574
TAS-B 0.821 0.783 0.728 0.698
RetroMAE 0.822 0.792 0.753 0.731
CoCondenser 0.825 0.783 0.744 0.715
SPLADE++ 0.827 0.803 0.778 0.754
DRAGON+ 0.833 0.793 0.791 0.753
SPLADE-v3 0.833 0.795 0.799 0.768
Contriever 0.837 0.793 0.783 0.728
jina-embeddings-v2-base-en♣ 0.837 0.804 0.795 0.750
gte-base-en-v1.5♣ 0.846 0.809 0.823 0.782
snowflake-arctic-embed-l♣ 0.847 0.819 0.830 0.787
bge-small-en-v1.5♣ 0.849 0.810 0.786 0.754
bge-base-en-v1.5♣ 0.854 0.809 0.808 0.756
nomic-embed-text-v1♣ 0.854 0.809 0.843 0.789
bge-large-en-v1.5♣ 0.854 0.815 0.821 0.788
mxbai-embed-large-v1† 0.855 0.811 0.830 0.780
AnglE♣ 0.856 0.815 0.834 0.789
gte-large-en-v1.5♣ 0.858 0.813 0.854 0.790
e5-small-v2♣ 0.864 0.813 0.856 0.788
e5-base-v2♣ 0.866 0.808 0.870 0.805
e5-large-v2♣ 0.867 0.822 0.883 0.808

Table 7: RAG performance (LLMEval) on NQ for SOLAR-10.7B for various retrievers w/ re-ranking (DeBERTa-v3).
We sort models by ascending R@5 (re-ranking performance). ♣ indicates that models have been explicitly fine-tuned
on NQ. Note that re-ranking even hurts E5 retrieval’s effectiveness – indicating that the model captured NQ’s
ranking signals well.

F LLMeval: LLM-based Answer Equivalence Evaluation

For LLM eval we leverage the SOLAR-10.7B-Instruct-v1.0 by providing the question, reference answer,
and the generated candidate answer to the model and asking the model to judge based on the following
prompt:� �

f"You are an evaluation tool. Just answer by {{Yes}} or {{No}}. Here is a
question , a golden answer and an AI-generated answer. Judge whether the
AI -generated answer is correct according to the question and golden answer ,
answer with {{Yes}} or {{No}}.\ nQuestion: {question }.\ nGolden answer:
{answer }\ nGenerated answer: {prediction} Response: {{"� �
Based on this instruction the model generates “true” or “false”, yielding in binary labels. In cases where

the model generates any other tokens we default to “false". Upon manual inspection, we found this to be
the case very rarely. To speed up inference we use vLLM. We also tried extracting the logits for “true”
or “false” to obtain a continuous score between 0 and 1 but found this to perform comparably to directly
generating a single token (“true” or “false”).

G Training Details

In Table 8 we list the Hyperparameters used for our fine-tuning experiments.

H Multilingual RAG

To promote experimentation with RAG in multilingual settings, we incorporate components needed to
support multilingual datasets in BERGEN, for 12 non-English languages10. Our goal is to build a strong
baseline for zero-shot multilingual RAG which could be used in future works for experimentation with
new approaches.

10Arabic, Simplified Chinese, Finnish, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Thai.
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Hyperparameter Assignment

learning Rate 1e-4
lr scheduler type linear

warmup ratio 0.05
weight dacay 0.1

batch size max. possible
optimizer AdamW

epochs 1
LoRa layers all linear layers
LoRa alpha 64

LoRa dropout 0.1
LoRa r 32

LoRa bias None
num GPUs 1

GPU A100 80GB
retriever(s) SPLADE-v3 (+ DeBERTa-v3)

num passages 5

Table 8: Hyperparameters for Fine-tuning

Multilingual Retrieval. Multilinguality in RAG comes in two faces: non-English user queries and
non-English datastores. Such a setting requires a strong retriever and reranker, which supports both
monolingual and cross-lingual retrieval. The former case corresponds to the user query and the datastore
being in the same language. The latter case corresponds to retrieving from the datastore in a language
different from the language of the user query. We also consider a scenario with a multilingual datastore.
We pick the recently released (and publicly available) BGE-M3 model11 (Chen et al., 2024) which provides
all listed functionalities and includes all languages we consider in its training data.

Multilingual Generation. We rely on the Command-R-35B12 model as a generator for multilingual
experiments in BERGEN. Command-R-35B has been developed with keeping RAG application in mind
and officially supports 11 languages13, including most of our considered languages, and also includes 13
more languages (incl. Russian) in pretraining but not instruction tuning.

Recent studies (Ye et al., 2023) show that even English-centric LLMs possess multilingual understanding
and generation capabilities. As a result, they can also be used for multilingual experiments, especially
with auxiliary system prompts, as described below.

System Prompt. In our preliminary experiments, we found that models sometimes reply in English even
when prompted in non-English. For example, Command-R, augmented with the English retrieved context
and prompted in non-English, replies in English in ∼ 50% of cases. For English-centric models, such a
behavior happens frequently even with no context or same-language context. To enable generation in the
user language (expected behavior), we augment the model’s system prompt with an explicit instruction to
generate in the given language and also translate the system prompt into user languages14. We found that
this combination enables the highest chance of generation in the user language for all models.

Datasets. Following (Asai et al., 2021b), we use MKQA (Longpre et al., 2021) and XOR-TyDi QA (Asai
et al., 2021a) datasets for multilingual evaluation in our experiments. MKQA consists of 10k examples

11Retriever: https://huggingface.co/BAAI/bge-m3 (dense version). Reranker: https://huggingface.co/BAAI/
bge-reranker-v2-m3.

12https://huggingface.co/CohereForAI/c4ai-command-r-v01
13Command-R official languages: Arabic, Brazilian Portuguese, English, French, German, Italian, Japanese, Korean, Simpli-

fied Chinese, and Spanish.
14We translate system prompts using Google Translate and ask employees of our laboratory, native or fluent in given languages,

to check translated prompts.
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from the Natural Questions (NQ) dataset (Kwiatkowski et al., 2019), translated into 25 languages. This
dataset is therefore parallel between languages and grounds knowledge primarily in English Wikipedia.
In our experiments we select a subset of 2.7k samples, overlapping between MKQA and KILT NQ
datasets15, thus recovering relevant passages information from KILT NQ. XOR-TyDi QA comprises 40k
information-seeking questions in 7 languages (of which we use 3k validation questions) and grounds
questions in Wikipedia in the same language as the question or in English. To provide English for
comparison, we include results for English on the TyDi QA dataset (Clark et al., 2020).

Datastore. We follow (Asai et al., 2021b) and (Karpukhin et al., 2020) and construct passages by
splitting Wikipedia article into chunks of 100 words (or 100 Unicode characters for non whitespace
separated languages, namely Chinese, Japanese, and Thai) and prepending the article title to each chunk.
In most of the experiments, we retrieve either from English Wikipedia (KILT version16) or Wikipedia in
the user language17, but we also experiment with retrieving from a concatenation of the two mentioned
Wikipedias and from Wikipedia in all considered languages.

Metrics. In our preliminary experiments, we noticed a pattern arising sometimes in the scenario with
cross-lingual retrieval, when models generate a transliteration of named entities in other languages
different from the one contained in the ground-truth label. This is not a weakness of the system, but needs
to be accounted for in the evaluation metric. Since word-level matching fails to capture similarity in the
described case, we propose to evaluate recall on character n-gram level. We first split ground-truth labels
into tokens, extract all character 3-grams from each token, and evaluate which percentage of such n-grams
is present in the model-generated response –see Table 11 for illustration.

In addition to the task metric, we also control the correct language rate, CLR, which measures which
percentage of model outputs are written in the user language. We detect languages using fasttext
library (Joulin et al., 2017, 2016) and its lid.176.bin model18. Due to high erroneous level of language
identification for short sequences, we only evaluate the CRL metric for model responses longer than 20
characters.

The experimental setting is the same as in English experiments, e.g. we use greedy decoding, retrieve
top-50 passages, and use re-ranking after retrieval.

Table 12 reports correlation between LLMeval metric and other surface-based metrics, including recall
on character n-gram level. We notice that overall character-level recall correlates better with LLMeval
metric. This is even more striking for non latin-script languages. It worth noting that overall the correlation
between LLMeval and Char3-recall is relatively low. Manual inspection of the results highlights that
LLMeval only assess whether an answer is valid or not, even if was not generated in the same language as
query or gold label. Further research is required to better design reliable multilingual evaluation metrics.

Results. Tables 9 and 10 reports results with two multilingual datasets and various retrieval options:
retrieval from English Wikipedia, from Wikipedia in the user language, from their concatenation, or
from the concatenation of Wikipedia in all languages. In the latter two cases with run retrieval over the
embeddings of passages in multiple languages, so that the selected passages may be also in multiple
languages.

Comparing retrieval from English and user language, we observe different behavior on the two consid-
ered datasets. On the MKQA dataset, retrieval from English is more beneficial, which is expected since
questions in MKQA were initially written by relying on the English Wikipedia and then translated into
other languages. At the same time, XOR-TyDi QA includes questions grounded in both English and user
languages (see statistics in Table 2, Longpre et al., 2021), and we observe that retrieval from Wikipedia in
the user language is more beneficial.

Overall, we find that BGE-M3 also successfully manages to retrieve from the concatenated multilingual
Wikipedia and thus dynamically choose the appropriate datastore, often reaching performance higher than

15NQ dataset in KILT benchmark available at https://huggingface.co/datasets/kilt_tasks
16https://huggingface.co/datasets/facebook/kilt_wikipedia
17https://huggingface.co/datasets/wikimedia/wikipedia
18https://fasttext.cc/docs/en/language-identification.html
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with any of the two monolingual Wikipedias.

No Retrieval from Wiki in
retrieval English User lang English+UL All langs

MKQA

English 58.4 70.2 — — 68.5
Arabic 26.4 45.9 36.3 49.0 48.2

Chinese 21.4 29.1 22.5 27.2 31.0
French 48.4 62.6 56.3 65.0 66.2

Finnish‡ 29.7 55.8 45.2 59.8 60.7
German 47.8 64.6 54.8 65.5 66.9
Italian 51.5 61.2 56.8 64.8 66.3

Japanese 31.7 42.7 28.8 40.2 42.1
Korean 21.5 32.2 31.5 38.4 38.1

Portuguese 48.4 62.3 54.9 65.2 66.9
Russian† 38.1 55.0 51.0 61.0 59.4
Spanish 52.5 63.3 57.3 65.7 67.1
Thai‡ 12.4 23.7 10.1 23.2 24.5

XOR TyDi QA

English 47.5 64.2 — — 59.4
Arabic 47.7 52.9 65.5 66.6 66.8

Finnish‡ 30.8 45.2 58.9 60.9 59.1
Japanese 21.0 25.2 30.0 24.8 31.8
Korean 31.0 33.4 40.8 40.0 41.8

Russian† 40.5 53.9 62.3 63.8 64.6

Table 9: Metric: character 3-gram recall. Performance of mRAG for various languages on MKQA and XOR-TyDi
QA datasets (TyDi QA for English), with different retrieval options. Retriever: BGE-M3. Reranker: BGE-M3
Generator: Command-R-35B. Prompt: translated into user languages with an instruction to generate in the given
user language (UL). † denotes languages included in Command-R pretraining but not instruction tuning. ‡ denotes
languages not included in Command-R pretraining nor tuning. RAG brings substantial performance improvement in
all languages, and retrieval from multilingual Wikipedia is beneficial in most cases.
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No Retrieval from Wiki in
retrieval English User lang English+UL All langs

MKQA

English 0.67 0.76 – – 0.74
Arabic 0.29 0.54 0.41 0.56 0.57

Chinese 0.37 0.60 0.39 0.58 0.61
French 0.48 0.63 0.55 0.64 0.65

Finnish‡ 0.32 0.58 0.47 0.62 0.64
German 0.47 0.64 0.55 0.66 0.66
Italian 0.52 0.61 0.54 0.63 0.64

Japanese 0.37 0.63 0.36 0.59 0.64
Korean 0.32 0.59 0.45 0.62 0.62

Portuguese 0.51 0.63 0.55 0.65 0.67
Russian† 0.48 0.71 0.58 0.72 0.72
Spanish 0.55 0.65 0.58 0.66 0.68
Thai‡ 0.34 0.59 0.22 0.57 0.59

XOR TyDi QA

English 0.63 0.73 – – 0.69
Arabic 0.56 0.57 0.68 0.69 0.70

Finnish‡ 0.41 0.59 0.72 0.74 0.74
Japanese 0.40 0.51 0.52 0.49 0.62
Korean 0.54 0.58 0.64 0.64 0.66

Russian† 0.47 0.65 0.71 0.73 0.74

Table 10: Metric: LLMeval. Performance of mRAG for various languages on MKQA and XOR-TyDi QA datasets
(TyDi QA for English), with different retrieval options. Retriever: BGE-M3. Reranker: BGE-M3 Generator:
Command-R-35B. Prompt: translated into user languages with an instruction to generate in the given user language
(UL). † denotes languages included in Command-R pretraining but not instruction tuning. ‡ denotes languages not
included in Command-R pretraining nor tuning. RAG brings substantial performance improvement in all languages,
and retrieval from multilingual Wikipedia is beneficial in most cases.

Text Character 3-grams

Ground truth sofya kovalevskaya [sof ofy fya kov ova val ale lev evs vsk ska kay aya]
Model response sofia kovalevskaia [sof ofi fia kov ova val ale lev evs vsk ska kai aia]

Recall 0 9/13 = 69.2%

Table 11: Illustration of the proposed character 3-gram recall metric, designed to be more robust to different possible
transliterations of named entities. Tokens matching between groundtruth and model response are underlined.

Recall Rouge-1 Rouge-L Char3-recall Match LID

English 0.34 0.37 0.37 0.45 0.43 0.06
Arabic 0.35 0.37 0.37 0.47 0.40 0.18

Chinese 0.07 0.07 0.07 0.37 0.33 0.13
French 0.34 0.40 0.40 0.48 0.46 0.11
Finnish 0.36 0.39 0.39 0.51 0.46 0.21
German 0.39 0.40 0.40 0.48 0.45 0.10
Italian 0.37 0.41 0.41 0.48 0.47 0.01

Japanese 0.15 0.15 0.15 0.43 0.43 0.10
Korean 0.34 0.33 0.33 0.44 0.42 0.11

Portuguese 0.35 0.41 0.41 0.47 0.45 0.07
Russian 0.29 0.31 0.31 0.42 0.32 0.13
Spanish 0.37 0.40 0.40 0.47 0.45 0.01

Thai 0.20 0.21 0.21 0.22 0.21 0.09

Table 12: Kendall-Tau correlation between surface-based metrics and LLMeval metric.
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Figure 6: Comparison of suitable and non-suitable datasets for RAG evaluation. For datasets Eli5 (a) and WoW (b)
the Closed Book setting (no retrieval) is much better than the Oracle making them less suitable. On the other hand
for NQ (c) Oracle is much better than Closed Book, and retrieval improves generation quality depending on their
effectiveness. This makes it a suitable dataset for RAG evaluation.
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Figure 7: Impact of retrieval performance on different LLMs for zero-shot RAG.
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