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Abstract
Language models are exhibiting increasing ca-
pability in knowledge utilization and reasoning.
However, when applied as agents in embodied
environments, they often suffer from misalign-
ment between their intrinsic knowledge and
environmental knowledge, leading to infeasi-
ble actions. Traditional environment alignment
methods, such as supervised learning on ex-
pert trajectories and reinforcement learning, en-
counter limitations in covering environmental
knowledge and achieving efficient convergence,
respectively. Inspired by human learning, we
propose Exploration-based Error Correction
Learning (E2CL), a novel framework that lever-
ages exploration-induced errors and environ-
mental feedback to enhance environment align-
ment for embodied agents. E2CL incorporates
teacher-guided and teacher-free explorations
to gather environmental feedback and correct
erroneous actions. The agent learns to provide
feedback and self-correct, thereby enhancing
its adaptability to target environments. Exten-
sive experiments in the VirtualHome environ-
ment demonstrate that E2CL-trained agents out-
perform those trained by baseline methods and
exhibit superior self-correction capabilities.

1 Introduction

Language Models (LMs) are becoming increas-
ingly capable of knowledge utilization and reason-
ing across various knowledge-intensive tasks (Yao
et al., 2022; Lewkowycz et al., 2022; Hao et al.,
2023). This success motivates researchers to
build LM-based agents in embodied environments,
which similarly requires the use of reasoning and
planning upon environmental knowledge (Li et al.,
2022; Xiang et al., 2024). In this case, LM-based
agents are asked to plan appropriate actions based
on the given environmental information and the his-
tory of actions already taken. However, the knowl-
edge acquired by these LM-based agents comes
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Figure 1: Traditional “success only learning” relies on
imitating provided expert behaviors, limiting compre-
hensiveness. Our proposed exploration-based error cor-
rection learning (E2CL) framework enhances learning
by incorporating exploration-induced errors and envi-
ronmental feedback during training, leading to better
alignment with target environments. During inference,
the agent utilizes the learned abilities to conduct self-
feedback for continuous self-correction.

from general-purpose corpora during pre-training,
and as a result the intrinsic knowledge of these mod-
els often misalign with environmental knowledge.
Such environmental knowledge involves physical
constraints that LMs have not yet explored. For ex-
ample, if the embodied agent holds two objects, it is
prohibited to grab one more other object. This mis-
alignment causes LM-based agents to frequently
produce actions that cannot be executed in the envi-
ronment, hindering their applications in real-world
environments.

To address the above issue, two primary types
of environment alignment methods have been ex-
plored. The first type involves having LM-based
agents undergo supervised learning on expert tra-
jectories (Li et al., 2022; Chen et al., 2023), which
are human-labeled sequences of observations and
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actions. Nevertheless, these trajectories often fail to
fully cover the knowledge within the environment,
such as scenarios where certain actions cannot be
executed. The second type is based on reinforce-
ment learning (RL), which allows agents to freely
explore the environment, collect trajectories that
comprehensively cover the environment’s knowl-
edge, and obtain rewards based on these trajecto-
ries’ success or failure (Tan et al., 2024; Carta et al.,
2023). However, the rewards are sparsely obtained
because the performance evaluation of the agent
is based on a complete trajectory. This makes the
learning process difficult to converge.

Human learning is not comprehensive nor effi-
cient if it relies solely on imitating experts’ behav-
ior or merely knowing whether an action is correct.
Instead, by collecting and understanding feedback
from the environment via exploration and learning
to correct errors based on the feedback, humans
can learn comprehensively and efficiently. Inspired
by this, we propose a novel exploration framework
for LM-based agents to align with environments,
which is called Exploration-based Error Correc-
tion Learning (E2CL). As depicted in Figure 1,
our framework incorporates exploration-induced er-
rors and environmental feedback, leading to a com-
prehensive alignment with target environments.

In detail, we adopt a pretrained model as the
agent to perform predefined tasks and explore the
environment to collect experiences in both efficient
and comprehensive manners. This is achieved by
two different proposed schemes, namely teacher-
guided exploration and teacher-free exploration.
The former prompts the agent to perform one-
step exploration given sliced expert trajectories,
whereas the latter allows the agent to continue ex-
ploring until it infers a stop. In these two explo-
ration phases, we collect the feedback given by the
environment when the agent makes errors, as well
as the correct actions corresponding to these error
actions. Having these exploration trajectories with
additional correction, we train the agent to provide
feedback on their trajectories and correct their er-
ror actions based on the feedback. To utilize the
learned self-correction ability, we further propose
a speculative inference algorithm, which performs
corrections if the initially planned actions are in-
ferred to be errors according to the feedback from
the agent.

We evaluate the agent trained by E2CL in Vir-
tualHome (Puig et al., 2018), a household embod-
ied environment. E2CL-trained agent surpasses

the agents trained by other baseline methods in
all agentic metrics, demonstrating its effective-
ness. Furthermore, our analysis reveals that the
small models constructed using our method out-
perform larger models of the same series that have
only undergone behavior cloning. In addition, in
evaluations based on feedback-driven re-planning,
our models demonstrate self-correction capabilities
that are comparable to LLMs.

In summary, our main contributions are as fol-
lows. (1) We introduce the Exploration-based Er-
ror Correction Learning (E2CL) framework, en-
abling LM-based agents to align with environments
through effective feedback-driven exploration and
correction. (2) We propose two novel exploration
schemes, teacher-guided and teacher-free explo-
rations, which facilitate the collection of correc-
tion and feedback via agent-environment interac-
tions. (3) We introduce a novel action inference
algorithm called speculative inference, which effec-
tively avoids executable errors. (4) We demonstrate
the superior performance of E2CL-trained agents
in the VirtualHome environment, surpassing base-
line methods and showcasing the potential of our
approach for real-world deployment.

2 Method

In this section, we propose an exploration-based
error correction learning (E2CL) framework. This
framework focuses on equipping LM-based agents
with self-feedback and self-correction capabilities.
The overview of E2CL is depicted in Figure 2.

2.1 Task Formulation

The LM-based embodied agent is asked to com-
plete a set of tasks via interacting with a virtual en-
vironment. The interaction between the agent and
the environment can be formalized as a partially
observable Markov decision process (POMDP)
(Q,S,A,O, T ,R) with instruction space Q, state
space S , action space A, observation space O, tran-
sition function T : S ×A → S, and reward func-
tion R : S × A → [0, 1]. In our LM-based agent
scenario, Q,A,O are subsets of language space.

The interaction process between the agent and
the environment is described as follows. Given a
planning instruction qp ∈ Q that prompts the agent
to plan for a task, the agent with parameter θ gener-
ates the first action a1 ∼ πθ(·|qp) ∈ A according to
its policy πθ. Each action at step t induces a trans-
formation in the latent state space st ∈ S . And the
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Figure 2: Overview of the proposed Exploration-based Error Correction Learning (E2CL) framework.

agent would face a new observation ot ∈ O. Then
the agent would incorporate task instruction qp and
interaction trajectories jt = (a1, o1, . . . , at, ot) to
generate the next action at+1 ∼ πθ(·|qp, jt). The
interaction loop repeats until the agent assumes the
task is finished or the number of steps exceeds the
maximum steps.

2.2 Exploration-based Error Correction
Learning

Our E2CL framework consists of three phases of
learning and exploration within the environment:
pre-tuning, exploration, and training. In the pre-
tuning phase, the agent is equipped with basic plan-
ning ability before exploration. Then, the agent
collects exploration experiences in the environment
via two complementary schemes, as shown in Fig-
ure 2. Following this, in the training phase, the
agent is trained to align with the environmental
knowledge from the collected experiences. With
this alignment, the agent is expected to provide
feedback by itself and correct its own errors.

Pre-tuning Phase To serve as the foundation for
environmental exploration, we aim to empower
LM-based embodied agents with basic planning ca-
pabilities. Given a dataset J = {(qip, jini

)}|J | with
|J | task instructions and expert trajectories where
each trajectory has ni steps, we first construct a
planning dataset Dp by slicing each trajectory into
sub-trajectories of varying lengths from 1 to ni.

Formally, the planning dataset Dp is defined as:

Dp =

|J |⋃

i=1

ni⋃

t=1

{
(qip, j

i
t) | jit ⊆ jini

∧ (qip, j
i
ni
) ∈ J

}

(1)

Notably, we sample a subset of Dp, denoted as
Dp′ , for pre-tuning to avoid overfitting to expert tra-
jectories and maintain exploration diversity. Then,
we fine-tune the LM-based agent by minimizing
negative log-likelihood loss:

L(θ) = E∼Dp′ [− log πθ (at | (qp, jt−1))] . (2)

where at denotes an action consisting of multiple
tokens. Therefore, when calculating the loss, it
effectively becomes an auto-regressive loss over a
sequence of tokens, following previous practices.
This approach is consistently applied in the latter
stages of training as well.

Exploration Phase Intuitively, to gather diverse
experiences that fully cover environmental knowl-
edge, we can simply let the agent freely execute its
predicted plans and collect the trajectories. How-
ever, when utilizing these trajectories, we need to
correct the errors made by the agent. Since these
trajectories are newly generated, we do not have
the correct action data corresponding to the errors.
Although one can use a more powerful LLM to
correct these errors automatically, the quality of
the generated data is inevitably lower compared to
expert data. To balance data diversity and quality,
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we propose a limited exploration scheme guided
by expert trajectories, referred to as teacher-guided
exploration (TGE). Correspondingly, we call the
aforementioned free exploration scheme teacher-
free exploration (TFE). These two schemes com-
plement each other and enhance the diversity and
quality of the collected experiences.

Specifically, for each expert’s sub-trajectory
(qp, jt) ∈ Dp, the agent conducts TGE by exe-
cuting the action ât ∼ πθ(·|qp, jt−1). The en-
vironment then provides feedback ft indicating
the executability of this action. Since the agent
only performs one step of exploration under the
guidance of the expert, we can naturally use at
as the ground truth action for that step. After
traversing all the expert trajectories, we obtain the
feedback dataset DTGE

f consisting of samples in
the form of (qf , jt−1, ât, ft), and the correction
dataset DTGE

c consisting of samples in the form of
(qc, jt−1, ât, ft, at) where ât ̸= at, qf is the instruc-
tion that prompts the model to generate feedback,
and qc is the instruction that prompts the model
to correct errors. Please refer to Appendix A for
templates of these samples.

During TFE, the agent iterates through each task
instruction qp ∼ Q and accrodingly obtain trajec-
tories jt = (â1, ô1, . . . , ât, ôt). Similar to TGE,
whenever the agent predicts a non-executable ât,
the environment provides feedback ft indicating
why this action is non-executable. To obtain the
executable action at this step without manual inter-
vention, we leverage an LLM with powerful reason-
ing ability (e.g., GPT-4o) to automatically correct
the action, yielding at. Considering the LLM may
not always provide perfect corrections due to a lack
of environment alignment, we further filter its pre-
dictions to ensure the corrections are executable.
Specifically, the corrected action at predicted by
LLM would replace original error action ât and be
executed in the environment. If the corrected ac-
tion at is successful executable in the environment,
we would collect these correction data into DTFE

c .
As a result, we obtain the feedback dataset DTFE

f

and DTFE
c , each in the same form as the samples in

DTGE
f and DTGE

c , respectively.

Training Phase After the above two phases,
we obtain the planning dataset Dp, the feedback
dataset Df = DTGE

f

⋃
DTFE

f , and the correction
dataset Dc = DTGE

c

⋃
DTFE

c . Next, we train the
agent to align with the environmental knowledge
gathered from these datasets and to develop the

Algorithm 1: Speculative Inference
Input: πθ: policy of the embodied agent,

ES: environment simulator
Output: R: execution result for each task
while Step length less than threshold do

Generate initial action ât
if The task is finished then

Iteration stops

Generate feedback f̂t for ât
if ât is non-executable then

Generate correction action âc
Generate feedback f̂t for âc
if âc is executable then

âc executed in ES

else
ât executed in ES

Execution information recorded into R
Renew to next time step

return R

ability to provide feedback and correct its own er-
rors. This is achieved by fine-tuning the agent to
minimize the following losses:

Lp(θ) = E∼Dp [− log πθ(at | qp, jt−1)] ,

Lf (θ) = E∼Df
[− log πθ(ft | qf , jt−1, ât)] ,

Lc(θ) = E∼Dc [− log πθ(at | qc, jt−1, ât, ft)] ,

Ltotal(θ) = Lp(θ) + Lf (θ) + Lc(θ). (3)

We refer the reader to the pseudo-code of the
overall E2CL process in Appendix E.

2.3 Speculative Inference
To utilize the learned abilities in the training phase,
we propose speculative inference algorithm, a pro-
cess of inferring errors that may occur ahead of
execution and correcting the errors by itself. Based
on self-produced feedback, the agent is desired to
reduce execution errors and generate correct ac-
tions.

To be more precise, when given each test task
instruction qp, the agent initially predicts an ac-
tion ât ∼ πθ(·|qp, jt−1). However, this action
ât will not be executed immediately. The agent
will “reflect” itself and generate an environment
feedback f̂t ∼ πθ(·|qf , jt−1, ât). If the agent
believes the initial action ât is executable, then
this action will be executed. Otherwise, the agent
will correct this action â and predict a new action
âc ∼ πθ(·|qc, jt−1, ât, f̂t). Once the corrected ac-
tion âc passes its own check, this action will be
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executed at this step and concatenated into trajec-
tory jt−1. The above process is iterated until the
agent assumes the task is finished or the total steps
exceed the maximum threshold. The process of
speculative inference for each test task is shown in
Algorithm 1.

3 Experiments

3.1 Experimental Settings

Embodied Environment & Tasks In this work,
we aim to bridge the misalignment gap between
LM-based agents and environmental physical con-
straints, and our method focuses on learning to
correct erroneous actions. This implies that pro-
viding environmental feedback regarding detailed
error information is a necessity. To the best of
our knowledge, VirtualHome (Puig et al., 2018),
which focuses on performing typical household
tasks, is the most suitable simulated environment
for exploration. In VirtualHome, the environmental
feedback is in the form of a textual message regard-
ing the physical environmental constraints. If an
agent’s action is executable, the environment will
return a short message of “True”, otherwise, the en-
vironment will return an error message indicating
why the action is not executable. For example, one
of the typical error types for such feedback is called
“Missing Object”, which arises when the agent is
not holding the necessary object to complete an ac-
tion. More error types of environmental feedback
are illustrated in Appendix C.1.

We use the predefined tasks from ActivityPro-
grams (Puig et al., 2018) knowledge base for
the experiment. It contains 292 unique high-level
household tasks, with 1374 unique action plans
and 6201 unique environmental settings in total
extracted from VirtualHome. After filtering low-
quality tasks, we conduct experiments on a total
of 285 tasks. They are randomly divided into a
training set of 235 tasks and a test set of 50 tasks.
We select 50 tasks from the training set as seen
tasks, while the 50 tasks in the test set as unseen
tasks. We evaluate the method on both seen tasks
and unseen tasks.

Note that during the experiment, we are able to
access environmental feedback from the environ-
ment simulator. In the testing process, to align with
real-world conditions, we do not expect the agents
to access such environmental feedback. We refer
to Appendix B for more details of the environment
simulator.

Baselines We compare our method with both
prompting-based methods and other tuning-based
baseline methods. Similar to our approach, tuning-
based methods achieve alignment between the em-
bodied agent and the environment via model fine-
tuning. (1) Language-planner (Huang et al., 2022)
aims to inject environment knowledge into prompt
and prompted Large Language Models to output
action. To better represent prompting-based meth-
ods, we use the most powerful LLM, GPT-4o,
as the foundation model for our baseline method.
(2) We perform Behavior Cloning (BC) on ex-
pert planning data (Chen et al., 2023; Zeng et al.,
2023), which is the same method used in the pre-
tuning phase of our methods and other baselines.
(3) We conduct Proximal Policy Optimization
(PPO) (Schulman et al., 2017) after BC. Similar to
VirtualHome (Puig et al., 2018), we utilize LCS as
the reward for RL training. (4) LWM (Xiang et al.,
2024) employs an embodied agent to interact with
the environment and collect a large amount of envi-
ronmental knowledge data to fine-tune the model.
(5) Plasma (Brahman et al., 2023) leverages Chat-
GPT to generate multi-task planning-related data
for model training. (6) Lema (An et al., 2023)
enhances the agent’s reasoning capabilities by pro-
viding error-correction data pairs during model fine-
tuning. (7) NAT (Wang et al., 2024b) implements
a negative-aware training approach, enabling LM-
based agents to effectively learn from both positive
and negative examples.

Evaluation Metrics Following previous stud-
ies (Puig et al., 2018; Raman et al., 2022), we
evaluate our action plans across three metrics: ex-
ecutability (Exec.), affordance rate (AR), and
longest common sequence (LCS). Executability
measures whether an action plan can be correctly
parsed and satisfies the common-sense constraints
of the environment. Specifically, the parsed action
must contain only allowable action, and the objects
must be in the environment. Moreover, the action
must satisfy the pre-conditions (e.g., the embodied
agent cannot send email before walking to the com-
puter) and post-conditions (e.g., the state of TV
changes from closed to open after the agent opens
it). Similarly to executablility, affordance rate mea-
sures the average percentage of all plan steps that
are executable, in cases where the entire plan is not
executable. However, executability and affordance
rate only can reflect whether the agent could com-
pliant with environment physical constraints, but
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Type Method Seen Tasks Unseen Tasks

Exec. AR LCS Exec. AR LCS

Prompting-based Language-planner (Huang et al., 2022) 0.18 0.62 0.19 0.16 0.58 0.16

Tuning-based

BC 0.70 0.90 0.67 0.35 0.80 0.38
BC+PPO 0.70 0.91 0.68 0.37 0.81 0.38
LWM (Xiang et al., 2024) 0.69 0.89 0.67 0.34 0.79 0.40
Plasma (Brahman et al., 2023) 0.71 0.91 0.67 0.41 0.82 0.40
Lema (An et al., 2023) 0.70 0.91 0.68 0.42 0.82 0.40
NAT (Wang et al., 2024b) 0.67 0.89 0.75 0.49 0.83 0.44

E2CL (Ours) 0.79 0.94 0.78 0.57 0.85 0.46

Table 1: Comparisons between our method and other baselines on seen and unseen tasks.

they cannot reflect whether the plan is correct. LCS
calculates the length of the longest common sub-
sequence between generated plans and the ground
truth plans, normalized by the maximum length of
the two. It can reflect the correctness of the plans
generated by the agents.

3.2 Experimental Results

Our experimental results are shown in Table 1.
As can be seen, the prompting-based method sig-
nificantly lags behind all tuning-based methods in
different metrics. Despite this contradicts with the
experience that LLMs exhibit exceptional general
reasoning capabilities, we observe that the actions
generated by prompt-based methods, while seem-
ingly reasonable, fail to comply with the physical
constraints of the environment often.

Regarding tuning-based baseline methods, our
E2CL method demonstrates significant improve-
ments over BC in both seen and unseen tasks. Even
with PPO applied on top of BC, the performance re-
mains weak. This is likely because the action space
is too large and the rewards are sparse, making it
difficult to optimize the model in such an embodied
environment. Moreover, LWM and Plasma, which
are also fed by expert planning data and can be
seen as augmented versions of BC, only show a
marginal increase in performance. Compared to
these BC-based methods, the method utilizing fail-
ure data, i.e., Lema and NAT, demonstrates better
performance. Taking a step further, we evolve this
idea by training the agent to develop self-feedback
and self-correction capabilities through its failure
experiences. The results show that our method in-
creases executability-related metrics by up to 15%
and LCS by up to 10% compared with Lema and
NAT. This demonstrates that these two capabili-
ties effectively enable the agent to align with the

Method Exec. AR LCS

Ours 0.57 0.85 0.46
- w/o Dc and Df 0.35 0.80 0.38
- w/o Df 0.44 0.82 0.39
- w/o Dc 0.41 0.82 0.39

Table 2: Task-solving performance of the agent on un-
seen tasks when trained with ablated data.

environment for task-solving.

3.3 Ablation Study on Training Data
In this section, we explore the impact of the col-
lected training data, i.e., feedback data Df and cor-
rection data Dc, on overall performance by ablating
them in the training. During the inference phase,
we employ speculative inference for all settings to
ensure consistency.

As shown in Table 2, we observe that both Df

and Dc are each beneficial for the agent, but lag
behind the combination of them. We hypothesize
that the improvement observed when training with
Dc is primarily due to the enhanced self-correction
capability of the agent. However, the limited ability
to generate high-quality action feedback hampers
the effectiveness of self-correction during specu-
lative inference, as demonstrated in Section 3.6.
Compared to the agent training without both Df

and Dc, training with Dp and Df improves the
performance by training to predict environmental
feedback, which explicitly aligns with environmen-
tal knowledge. However, the weak self-correction
capability of the agent constrains the agent from
generating executable and correct action in spec-
ulative inference, which is demonstrated in Sec-
tion 3.5. In our method, we integrate both types of
data, enabling our agent to generate higher-quality
action feedback and exhibit stronger self-correction
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Figure 3: Task-solving performance of the agent on
unseen tasks based on different sizes of LM and different
training methods.

abilities. This results in a substantial performance
boost compared to other ablation settings.

3.4 Analysis on Different Size of the Model
To investigate the impact of model size on per-
formance, we train models of different sizes us-
ing both BC and our method, and evaluated them
on unseen tasks. Our results are shown in Figure
3, where larger models perform relatively better
across all aspects, indicating that model scale sig-
nificantly impacts performance. Moreover, it can
also be observed that our method outperforms BC
in both affordance rate and LCS across models with
different parameter sizes, which demonstrates that
our method consistently provides superior perfor-
mance regardless of model size. Notably, when
using our method, smaller models achieve perfor-
mance surpassing larger models using BC across
all metrics. This finding suggests that our method
is able to release the potential of small language
models and lays the foundation for building agents
that work on edge devices in the future.

3.5 Evaluation on Self-Correction Ability
We further evaluate the self-correction capability
of our constructed agent. We conduct two different
experiment settings to validate the performance of
the agent. For seen tasks, we randomly select 100
samples from correction data. For unseen tasks,
we collect 100 correction data samples in a similar
process to TGE. For comparison, we also evaluate
the prompting-based agent and the agent trained
by BC. Since these two agents have both under-
gone general instruction tuning, we instruct them
to conduct self-correction off the shelf.

As shown in Figure 4, our method generates cor-
rect corrected actions far more frequently than BC
and prompting-based methods in both seen tasks
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Prompting
-based

BC

Ours

Prompting
-based
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Correct Executable but not correct Unexecutable

Figure 4: Comparison of self-correction capability be-
tween our method and other baseline methods.

Method w/ Df&Dc? w/ SI? Exec. AR LCS

✗ ✗ 0.35 0.80 0.38
Ours ✓ ✗ 0.47 0.82 0.46

✓ ✓ 0.57 0.85 0.46

Table 3: Performance of the agent regarding speculative
inference (SI).

and unseen tasks, which demonstrates our agent’s
strong self-correction capability. The powerful self-
correction capability reflects our agent can truly
align with the environment and generate correct
corrective actions that do not violate physical con-
straints. Furthermore, we can observe from Fig-
ure 4 that our agent generates correct actions at
a high proportion in both seen and unseen tasks.
This ensures a reliable self-correction process in
speculative inference.

3.6 Analysis on Speculative Inference

To analyze the contribution of speculative infer-
ence to overall performance, as well as to explore
the quality and effectiveness of self-generated feed-
back, we conduct the following analysis.

Firstly, as shown in Table 3, we conduct three
kinds of experiment settings and test their perfor-
mance on unseen tasks. Employing speculative
inference significantly improves the agent’s exe-
cutability and affordance rate. This shows that spec-
ulative inference effectively reduces errors during
execution, which demonstrates the effectiveness of
the design. Moreover, LCS has not changed regard-
less of using speculative inference. This indicates
that speculative inference contributes to the perfor-
mance gain mainly by generating more executable
actions, instead of recovering the expert trajectories
in the training data.
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Figure 5: Task-solving performance of the agent on
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Random: Randomly select a feedback type from all
available feedback. Boolean: a ground truth boolean
signal, indicating whether the initial action is executable
or not. Ours: The self-generated feedback on the initial
action used in our method. Ground truth: The ground
truth feedback from the environment.

Next, we provide our agent with self-generated
feedback as well as three other types of feedback,
and test its performance on unseen tasks. As
shown in Figure 5, given random feedback to
the agent, the agent performs worst in both affor-
dance rate and LCS, which underscores the impor-
tance of high-quality feedback. When fed with
self-generated feedback, the agent performs better
than that of using random feedback and boolean ex-
ecutability signals, while slightly worse than that of
using ground truth. This suggests that our method
enables the agents to generate feedback with good
quality. Overall, we can observe that feedback with
better qualities yields a better performance, which
demonstrates that the speculative inference process
faithfully relies on high-quality feedback.

3.7 Error Analysis

We also perform an error analysis to identify the
aspects where the agent constructed using our
method outperforms BC. There are a total of
eight types of errors, which can be further clas-
sified into grounding errors (object availability)
and execution-related errors (others). The detailed
demonstration can be found in the Appendix C.1.
As shown in Figure 6, we observe that all error
types decreased by more than 24%, with Over oc-
cupied error showing the highest reduction rate
of 94.4%. This demonstrates the effectiveness of
our method in reducing various types of errors,
highlighting its comprehensiveness. For the two
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Figure 6: Error statistics of our method and BC when
testing on unseen tasks.

most frequent types of execution-related errors,
unflipped boolean state and agent proximity, our
method achieves a reduction in error count by over
37% compared to BC, thereby demonstrating its
effectiveness. Although our method primarily aims
to avoid execution errors related to physical con-
straint and does not specifically target grounding
errors such as object availability, the fact that it
still reduces this type of error demonstrates the
generalizability of our method.

4 Related Work

LM-based Agent Nowadays, due to the increas-
ingly powerful generalization capabilities of lan-
guage models, they are often regarded as the pol-
icy function of agents to plan their behavior (Tan
et al., 2024; Carta et al., 2023). However, one is-
sue is that there may be a misalignment between
the knowledge in the environment and the internal
knowledge of the model. Consequently, a signifi-
cant amount of work aims to ground the language
model to the environment (Brohan et al., 2023; Fu
et al., 2024; Song et al., 2023). Some studies har-
ness the immense capabilities of large language
models and employ intricate prompts or integrate
specifically designed modules (Huang et al., 2022,
2024; Raman et al., 2022; Singh et al., 2023; Wang
et al., 2023; Guan et al., 2023). However, LLM-
based agents would cost heavily and are not suit-
able for offline scenarios. Some line of work de-
ploys language model as decision-making agents
to align with embodied environments via reinforce-
ment learning (Tan et al., 2024; Carta et al., 2023).
This type of approach tends to have low learning
efficiency in embodied environments with large ac-
tion spaces. In addition, similar to our approach,
other research efforts have proposed frameworks
where the agent first explores the environment and
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subsequently utilizes the exploration experience for
learning (Li et al., 2022; Xiang et al., 2024). These
approaches often overly focus on the agent and lack
comprehensive environmental feedback modeling,
making it difficult to avoid execution errors.

Learning from Failure After exploration, the
agent would encounter failure in the past experi-
ence, which is assumed as negative samples. The
topic of learning from negative samples has increas-
ingly gained attention as an alternative approach to
learning solely from positive samples. Tradition-
ally, some studies aim to decrease the probability of
negative samples while increasing the probability
of positive samples in order to achieve better perfor-
mance (Wang et al., 2024a; Zheng et al., 2023; Liu
et al., 2022). Additionally, some works construct
correcting dataset and tuning language models on
these data (An et al., 2023; Wang et al., 2024b;
Bai et al., 2022). Besides, there are other efforts
aimed at leveraging the comprehension abilities of
language models to widen the gap between posi-
tive and negative samples (Liu et al., 2023; Zhang
et al., 2023; Tong et al., 2024). In our work, we
similarly leverage the inherent understanding capa-
bilities of language models and enhance the embod-
ied agent’s learning from environmental feedback
regarding exploration errors, as well as its ability
to self-correct.

5 Conclusion

In this work, we aim to align the embodied agent
with the environment to enhance its task-solving
performance. Firstly, we present E2CL, a novel
framework that leverages exploration-induced er-
rors and environmental feedback to enhance en-
vironment alignment for LM-based agents during
teacher-guided and teacher-free exploration. Fur-
thermore, we introduce speculative inference, a
process in which the agent utilizes learned abilities
for self-feedback and self-correction to reduce ex-
ecution errors. Extensive experiments show that
our method outperforms many existing baseline
methods.

Limitations

The baseline model for the embodied agent con-
structed using our method is a text-based model,
meaning the agent’s observations are input in tex-
tual form. However, there is a gap between textual
descriptions of real-world visual images and the

actual visual information, which cannot fully en-
capsulate all real-world details. This discrepancy
affects the robot agent’s ability to ground itself in
the environment. In future work, we aim to incor-
porate visual information directly into the input to
better align with real-world scenarios. Addition-
ally, although VirtualHome (Puig et al., 2018) is a
relatively complex environment, we have not con-
ducted experimental validation in other embodied
environments or the real world. In the future, we
will perform more experiments for validation.

Ethical Considerations

This work aims to construct an embodied agent
within Virtual Environment. The virtual environ-
ment setup and related data strictly follow the spec-
ifications of VirtualHome (Puig et al., 2018). We
refer to VirtualHome v2.3.01 to conduct out our ex-
periments (MIT license2). The models, i.e. flan-t5-
small, flan-t5-base and flan-t5-large (Chung et al.,
2024), we use for fine-tuning are all open-source,
and we will strictly follow the protocols for the
academic use of these language models (Apache
License 2.03). In addition, we partially use AI as-
sistants, such as Copilot and ChatGPT, to help with
our coding and writing.
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Appendix

A Data

Planning Data Template

Feedback Data Template

Correction Data Template

### Instruction:
{planning instruction, task name, task description}

### Input:
Interaction history:
{Step 1: context, Observation_1: context, Step 2: context,
Observation_2, ...}
Current observation:
{Observation n-1: context}
Next action prefix: {Step n: }

### Output: {context}

### Instruction:
{feedback instruction, task name, task description}

### Input:
Interaction history:
{Step 1: context, Observation_1: context, Step 2: context,
Observation_2, ...}
Initial Action:
{Step n: context}
Feedback prefix: {Feedback: }

### Output: {context}

### Instruction:
{correction instruction, task name, task description}

### Input:
Interaction history:
{Step 1: context, Observation_1: context, Step 2: context,
Observation_2, ...}
Initial Action:
{Step n: context}
Environment feedback:
{Feedback: context}
Correction action prefix: {A corrective step would be: }

### Output: {context}

Figure 7: Data templates of planning data, feedback
data and correction data.

B Additional Details of VirtualHome
Environment

VirtualHome provides diverse and customizable
household environments that support a wide array
of possible interactions in the form of atomic ac-
tion steps. There are three kinds of action template
based on the action type, which are "[Action]",
"[Action] <Object> <id>" and "[Action] <Object>
<id> <Object> <id>". Each [Action] refers to one
of 42 atomic actions supported in Virtualhome.
Full list of atomic actions are shown in Table 6.
In each scene, there are approximately 350 objects
with which the embodied agent can interact, each
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Planning Data Example

Feedback Data Example

Correction Data Example

###Input:
You are a robot agent. You need to complete some housework
activities under the given instructions. 
Task: Write an email 
Description: go to the home office and write an email 
step1:

###Output:
Walk to home office

###Input:
You are a world simulator. You need to generate the feedback
according to plans. 
Task: Go to sleep 
Description: Walk to bedroom, walk to bed, lay down on bed,
close eyes, go to sleep.
step1: Find stairs
observation1:  None
step2: Open door
Feedback: 

###Output:
Error, Robot agent is not close to door

###Input:
You are a replanner. Given the original plan, you are expected to
generate the new plan according to the feedback. 
Task: Go to sleep
Description: Walk to bedroom, walk to bed, lay down on bed, close
eyes, go to sleep.
step1: Find stairs
observation1: 
step2: Open door
Feedback: Error, Robot agent is not close to door 
A corrective step would be 

###Output:
Walk to bedroom

Figure 8: Data examples of planning data, feedback
data and correction data.

identified by a specific <id>. These objects have
properties (e.g., drinkable, eatable) corresponding
to their action affordances. Some objects also pos-
sess a semantic state, such as heated, washed, or
used.

In ActivityPrograms (Puig et al., 2018) knowl-
edge base, there are 292 unique high-level house-
hold tasks, with 1374 unique action plans and 6201
unique environments in total extracted from Virtu-
alHome, and task and action plan samples manually
annotated by Amazon Mechanical Turk workers.
Each data sample consists of a high-level task, a de-
scription of the task, and complete action programs
that can be directly executed in the VirtualHome
environment. A piece of data sample is shown in
Table 4.

Task: Work
Description: I walk to the office. I sit down in the chair.

I turn on the computer. I start typing on the keyboard.

Natural language Programs
Walk to home office [WALK] <home_office> (319)

Walk to chair [WALK] <chair> (356)
Find chair [FIND] <chair> (356)

Sit on chair [SIT] <chair> (356)
Find computer [FIND] <computer> (417)

Switch on computer [SWITCHON] <computer> (417)
Find keyboard [FIND] <keyboard> (415)

Type on keyboard [TYPE] <keyboard> (415)

Table 4: A piece of data sample from ActivityPrograms
knowledge base

C Additional Analyses of Experiment
Results

C.1 Illustration of Error Types

During the interaction between the agent and the
environment, we collect error feedback from the
environment and classify it into eight categories as
followings.

Unflipped Boolean State error occurs when an
action meant to change the state of an object with
a Boolean attribute (such as open/closed or on/off)
does not achieve the intended effect, like attempt-
ing to open an already open door. Missing Object
error arises when the agent is not holding the nec-
essary object to complete an action, preventing
the task’s execution. Enclosed Object error occurs
when the target object is contained within a closed
structure, preventing the action from freeing the
object for use. Invalid Action error occurs when the
agent attempts to perform an action on a target ob-
ject that is not afforded to it, such as trying to pull a
ceiling. Over-occupied Agent error happens when
the agent’s hands are occupied or already interact-
ing with objects, leaving it unable to interact with
the target object in the current step. Agent Proxim-
ity errors arise when the agent is not close enough
to the target object to perform the action. Object
availability errors occur when the agent attempts
to interact with an object that does not exist in the
environment. The remaining errors are categorized
as Others.

C.2 Length Analysis

Following our common sense, tasks with a greater
number of steps are generally considered more chal-
lenging for the agent. To evaluate the performance
of the agent on tasks of varying difficulty, we col-
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Figure 9: Comparison of Our method and BC in terms
of executability across different tasks (varying lengths
of generated steps)

Loss epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7

BC 4.4470 0.2956 0.2631 0.1987 0.1476 0.1075 0.0967
NAT 5.8337 0.2164 0.1308 0.1207 0.0758 0.0600 0.0503
Ours 5.3267 0.1252 0.1134 0.0849 0.0708 0.0423 0.0354

Table 5: Comparison of convergence speed between our
method and baseline methods

lected and analyzed the executability of tasks with
different lengths of generated steps between our
method and BC. As shown in Figure 9, in terms
of execution rates for different lengths of gener-
ated steps, our method outperforms BC, particu-
larly in tasks with longer steps. This indicates the
widespread efficacy of our method.

C.3 Convergence Speed Analysis

We report the variations of training losses among
our method and two representative baseline meth-
ods. The results are shown in the Table 5. We
observe that as the number of epochs increases, the
loss for our method decreases more rapidly than
that of BC and NAT, ultimately converging at a
lower bound. It indicates that our method con-
tributes to the convergence speed during model
training.

D Additional Implementation Details

In our work, we primarily fine-tuned three mod-
els of different sizes: flan-t5-small with 77 million
parameters, flan-t5-base with 248 million param-
eters, and flan-t5-large with 783 million parame-
ters (Chung et al., 2024).

All experiments were conducted on eight
NVIDIA RTX A6000 GPUs. During the pre-tuning
phase, we selected 1000 samples from the expert
planning data Dp and trained for one epoch. During

Atomic actions VirtualHome accepted format

CLOSE [CLOSE] <Object> <id>
DRINK [DRINK] <Object> <id>
FIND [FIND] <Object> <id>

WALK [WALK] <Object> <id>
GRAB [GRAB] <Object> <id>

LOOKAT [LOOKAT] <Object> <id>
OPEN [OPEN] <Object> <id>

POINTAT [POINTAT] <Object> <id>
PUTBACK [PUTBACK] <Object> <id> <Object> <id>

PUTIN [PUTIN] <Object> <id> <Object> <id>
PUTOBJBACK [PUTOBJBACK] <Object> <id>

RUN [RUN] <Object> <id>
SIT [SIT] <Object> <id>

STANDSUP [STANDSUP]
SWITCHOFF [SWITCHOFF] <Object> <id>
SWITCHON [SWITCHON] <Object> <id>

TOUCH [TOUCH] <Object> <id>
TURNTO [TURNTO] <Object> <id>
WATCH [WATCH] <Object> <id>
WIPE [WIPE] <Object> <id>

PUTON [PUTON] <Object> <id>
PUTOFF [PUTOFF] <Object> <id>
GREET [GREET] <Object> <id>
DROP [DROP] <Object> <id>
READ [READ] <Object> <id>

LIE [LIE] <Object> <id>
POUR [POUR] <Object> <id> <Object> <id>
TYPE [TYPE] <Object> <id>
PUSH [PUSH] <Object> <id>
PULL [PULL] <Object> <id>
MOVE [MOVE] <Object> <id>
WASH [WASH] <Object> <id>
RINSE [RINSE] <Object> <id>
SCRUB [SCRUB] <Object> <id>

SQUEEZE [SQUEEZE] <Object> <id>
PLUGIN [PLUGIN] <Object> <id>

PLUGOUT [PLUGOUT] <Object> <id>
CUT [CUT] <Object> <id>
EAT [EAT] <Object> <id>

SLEEP [SLEEP]
WAKEUP [WAKEUP]
RELEASE [RELEASE] <Object> <id>

Table 6: Full list of atomic actions and accepted form
of virtualhome environment

the training process, we set the following hyper-
parameters: a batch size of 30, training for three
epochs, and selecting the best-performing check-
points from these epochs. The learning rate was
set to 1e-4. During the inference process, all gen-
eration parameters were kept consistent with the
default generation parameters of the flan-t5 series
models. The results reported in the paper are all av-
erages. All experiments are expected to reproduce
in one day.

E Pseudocode

This section presents the pseudocode of E2CL in
Algorithm 2. A detailed discussion of the method
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Algorithm 2: Exploration-based Error Correction Learning
Input: Dp: Expert planning data, πθ: initial robot agent policy, T1: number of epochs in pre-tuning

phase, ES: Environment Simulator, |J |: Number of tasks, ni: the step length of task i, M:
GPT-4o, T2: number of epochs in training phase.

Output: Final policy πθ
// Construct a weak robot agent to explore the environment
Randomly select few planning training data Dp′ ⊆ Dp

for h = 1 to T1 do
Optimize θ on BC objective: L(θ) = E(qp,jt)∼Dp′ [− log πθ (at | (qp, jt−1))]

// Teacher-guide Exploration
for i = 1 to |J | do

for t = 1 to ni do
Predicting the action ât ∼ πθ(qp, jt−1)
ât executed in ES and obtain new observation ot, environmental execution feedback ft
if (ât ̸= at) & ât is non-executable then

Correction data sample: (qc, jt−1, ât, ft, at) added to Dc

Feedback data sample: (qf , jt−1, ât, ft) added to Df

at executed in ES and obtain new observation ot

if ât == at then
Feedback data sample: (qf , jt−1, at, T rue) added to Df

// Teacher-free Exploration
for i = 1 to |J | do

while the agent assumes the task is not finished do
Predicting the action ât ∼ πθ(qp, jt−1)
ât executed in ES and obtain new observation ot, environmental execution feedback ft
if ât is non-executable then

Gain corrected action at ∼ M(qc, jt−1, ât, ft)
Correction data sample: (qc, jt−1, ât, ft, at) added to Dc

Feedback data sample: (qf , jt−1, ât, ft) added to Df

// Learning from Exploration Experience
for h = 1 to T2 do

Optimize θ on autoregressive objective loss: LSFT(πθ) = E∼Dp [− log πθ(at | qp, jt−1)] +
E∼Df

[− log πθ(ft | qf , jt−1, ât)] + E∼Dc [− log πθ(at | qc, jt−1, ât, ft)]

return πθ

is given in Section 2.2.
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