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Abstract
In the fact verification domain, the accu-
racy and efficiency of evidence retrieval are
paramount. This paper presents a novel ap-
proach to enhance the fact verification process
through a Multi-stage ReRanking (M-ReRank)
paradigm, which addresses the inherent limita-
tions of single-stage evidence extraction. Our
methodology leverages the strengths of ad-
vanced reranking techniques, including dense
retrieval models and list-aware rerankers, to op-
timise the retrieval and ranking of evidence of
both structured and unstructured types. We
demonstrate that our approach significantly
outperforms previous state-of-the-art models,
achieving a recall rate of 93.63% for Wikipedia
pages. The proposed system not only improves
the retrieval of relevant sentences and table
cells but also enhances the overall verification
accuracy. Through extensive experimentation
on the FEVEROUS dataset, we show that our
M-ReRank pipeline achieves substantial im-
provements in evidence extraction, particularly
increasing the recall of sentences by 7.85%, ta-
bles by 8.29% and cells by 3% compared to the
current state-of-the-art on the development set.

1 Introduction

The proliferation of false and misleading informa-
tion, fuelled by the rapid progress in artificial in-
telligence (AI), poses a significant societal threat,
as highlighted in the World Economic Forum’s re-
port (WEF, 2024). For example, the widespread
mis/dis-information about COVID-19 vaccines has
caused a surge in anti-vaccination sentiment online,
leading to a low vaccination coverage (Islam et al.,
2021). A recent study shows that low-veracity
media-induced overconfidence exacerbates the ad-
verse effects of widespread misinformation (i.e.,
fake news), especially in current global election
scenarios (Kartal and Tyran, 2022). To combat this,
researchers are focusing on developing automatic
fact verification systems to prevent disinformation
from spreading online (Guo et al., 2022).

Claim:
The San Luis Obispo Railroad Museum located at San Luis Obispo, California
(founded in 1772), opened in 2013, features different track displays and a
museum store that sells railroad books, lanterns and other items.
Label: SUPPORTS

Gold sentences:
There is a children's play area incorporating hands-on train tables and a Museum Store offering
railroad books, lanterns, and clothing, and other items.

The San Luis Obispo Railroad Museum, in San Luis Obispo, California, was founded to preserve
and present the railroad history of California, and specifically the Central Coast, by collecting,
restoring, displaying, and operating historic railroad equipment.

Opened in 2013, the museum occupies the restored former Southern Pacific Freighthouse (built
1894) at 1940 Santa Barbara Avenue, adjacent to the Union Pacific main line and about one-quarter
mile south of the San Luis Obispo Amtrak station.

Founded in 1772 by Spanish Franciscan Junípero Serra, San Luis Obispo is one of California's
oldest European-founded communities.

A standard-gauge display track extends along the east side of the building, and a short narrow-
gauge display track is on the west side.

Gold tables
San Luis Obispo Railroad Museum

Established 2013

Location 1940 Santa Barbara Ave
San Luis Obispo, California

Type Railroad museum

San Luis Obispo, California

Country United States

State California

County San Luis Obispo

Government Body San Luis Obispo City Council

Figure 1: An example in FEVEROUS: The blue, yellow
and green rectangle contains claim, sentence evidence,
and table evidence, respectively. Arrows depict the
interaction between two pieces of text. Keywords are
underlined to show claim-evidence overlap and boldly
highlighted to indicate intra-evidence interactions.

To answer the increasing demand for such sys-
tems, a number of datasets have been released,
ranging from claims collected from fact-checking
websites, e.g. LIAR (Wang, 2017), to complex
collections of claims associated with proof-of-
evidence, e.g. FEVER (Thorne et al., 2018), CLEF
CheckThat! (Nakov et al., 2021), SemEval (Wang
et al., 2021), FEVEROUS (Aly et al., 2021). In
this paper, we focus on solving the FEVEROUS
task, where the challenge is not only to extract
evidence sentences/table cells from millions of pas-
sages (Wikipedia), but also to combine them to ver-
ify a given claim. Unlike other datasets, FEVER-
OUS proposes a real-world scenario where the evi-
dence could be in both structured (e.g. Tables, lists)
or unstructured format (e.g. sentences, passages).
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Key advancements on FEVEROUS task are not
only on improving the claim verification procedure
(Hu et al., 2022), but also focusing on evidence
extraction in various formats (Hu et al., 2023; Wu
et al., 2023). The DCUF, a fact-verification model
introduced by (Hu et al., 2022), performs inter-
action of evidence in each format to improve the
final verification accuracy, leaving the evidence
extraction within each format separately. Recent
works, e.g. UnifEE (Hu et al., 2023), SEE-ST
(Wu et al., 2023), give attention to evidence extrac-
tion, focusing either on individual format or inter-
action across various formats. They mostly look for
lexical (word-based) or semantic (meaning-based)
overlaps between the claim and evidence pieces.
They do not take into account how different pieces
of evidence might relate to one another within the
same format.

Figure 1 illustrates an example from FEVER-
OUS, where the goal is to extract both unstruc-
tured (e.g., sentences) and structured (e.g., tables
or cells) evidence to verify a claim. The figure
highlights two types of overlap: (1) between the
claim and its associated evidence, and (2) among
the evidence pieces themselves. Recognising inter-
actions among evidence is crucial for determining
the retrieval score of individual evidence. Criti-
cal evidence may not have obvious overlaps with
the claim, but their relevance becomes clear when
viewed in the context of other evidence. For in-
stance, one piece of evidence might state the “Rail-
road Museum” is in “San Luis Obispo, Califor-
nia”, while another mentions it opened in the year
“2013”. The underutilisation of interactions among
these evidence pieces can lead to the omission of
crucial information that could otherwise strengthen
the verification process. Therefore, leveraging in-
teractions between candidate evidence in each for-
mat is essential for effective evidence extraction.

In this paper, we propose the Multi-stage Rerank-
ing (M-ReRank) paradigm, which exploits over-
lapping among connected evidence candidates as
collaborative filtering (Zhang et al., 2022b, 2023)
to improve evidence extraction, thereby achieving
higher accuracy in veracity prediction. To the best
of our knowledge, this has been largely unexplored
in the fact-verification domain. We design a novel
pipeline, M-ReRank, which comprises a sequence
of robust rerankers, e.g. Cross-Encoder (improved
recall) (Humeau et al., 2019), HybRank (collabora-
tive assessment) (Zhang et al., 2023), and HLATR

(list-aware reranking) (Zhang et al., 2022b). It
helps improve the first and second steps in the
FEVEROUS pipeline, i.e. wiki-page retrieval and
evidence extraction. Experiments on FEVEROUS
show that our M-ReRank model significantly en-
hances evidence extraction performance and, con-
sequently, boosts final fact verification scores. De-
tailed ablation experiments exhibit the effective-
ness of M-ReRank in evidence extraction, showcas-
ing how each component contributes to the overall
improvement. A case study further highlights its
role in accurately retrieving and utilising evidence
for verification.

The contributions of this work can be sum-
marised as follows: (i) We propose a Multi-stage
ReRanking (M-ReRank) pipeline investigating how
the retrieval and reranking architectures influence
the evidence retrieval process. (ii) We show how
evidence extraction can be improved by leverag-
ing the relationships that exist among the evi-
dence through collaborative filtering and list-aware
reranking. (iii) Experiments show that our pro-
posed multi-stage reranking significantly outper-
forms previous works on both the evidence extrac-
tion and the final verification accuracy. Detailed
analysis reveals that our M-ReRank performs well
in retrieving multi-hop evidence and combining ev-
idence in both formats (e.g., sentences and tables).

2 Background

2.1 Multi-stage Text Retrieval

Traditionally, information retrieval has relied on
lexical methods such as TFIDF and BM25 (Robert-
son and Zaragoza, 2009), treating queries and docu-
ments as sparse bag-of-words vectors and matching
them at the token level. Recently, text retrieval sys-
tems armed with pre-trained language models have
become a dominant paradigm to improve the over-
all performance where queries and documents are
encoded into dense contextualised semantic vec-
tors (Ren et al., 2021; Zhang et al., 2022a), and
performing retrieval with optimised vector search
algorithms (Johnson et al., 2021).

Recent approaches in reranking concatenate
query-passage pairs and input them into a Trans-
former pre-trained on large corpora, allowing for
more nuanced relevance estimation and improved
retrieval outcomes through enhanced interaction
(Humeau et al., 2019; Nogueira and Cho, 2020).
However, these methods typically treat each candi-
date passage in isolation, neglecting valuable con-
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textual information from other retrieved passages in
the list. Some learning to rank techniques (Rahimi
et al., 2016) and pseudo-relevance feedback ap-
proaches (Zhai and Lafferty, 2001; Zamani et al.,
2016) leverage the ordinal relationship or list-wise
context of retrieved documents for enhanced re-
trieval, a need corroborated in multi-stage retrieval
systems (Liu et al., 2022). HybRank (Zhang et al.,
2023) investigates collaboration among the can-
didate text in the retrieval lists and shows that
collaborative filtering improves the precision of
retrieval systems by exploiting linguistic aspects
of sparse and dense retrieval methods. HLATR
(Zhang et al., 2022b) has shown improved perfor-
mance as a multi-stage text retrieval system by
coupling features from both retrieval and reranking
stages. We combine HybRank and HLATR in our
M-ReRank pipeline.

2.2 Multi-stage Evidence Reranking for
Fact-Verification

Multi-stage text retrieval can be highly beneficial
for fact verification by enabling a more comprehen-
sive and nuanced approach to rank the evidence
and assess the veracity of claims or statements.
Evidence in the same format also provide context
information to each other. Past works on FEVER-
OUS mainly rely on using a single-stage evidence
extraction (Aly et al., 2021; Bouziane et al., 2021;
Saeed et al., 2021; Hu et al., 2022). Some meth-
ods propose to fuse evidence in different formats
to leverage cross-format dependence but still leave
the evidence extraction within each format separate
(Hu et al., 2023; Wu et al., 2023). Utilising the
collaboration that exists among candidate evidence
has largely been unexplored for fact verification.
Intuitively, for a specific claim, a set of evidence
relevant to the claim tends to describe the same en-
tities, events and relations (Lee et al., 2019), while
irrelevant ones address a variety of unrelated topics.

2.3 FEVEROUS Task & Dataset

We use FEVEROUS1 as the test bed for our ap-
proach because it is the only open-domain fact
verification benchmark, to our knowledge, that in-
tegrates both unstructured and structured evidence.
FEVEROUS has two main objectives: first, to ex-
tract sentences and table cells evidence from En-
glish Wikipedia and second, to predict the verac-
ity of a given claim labelled as SUPPORTS, RE-

1https://fever.ai/dataset/feverous.html

FUTES, or NOT ENOUGH INFO (NEI). Each
claim in the FEVEROUS dataset can be verified in
multiple ways, represented by different evidence
sets, each potentially comprising multiple pieces
of evidence. For a response to be considered cor-
rect, participating systems only need to provide
one complete evidence set. Hence, a prediction
is considered correct only if at least one complete
gold evidence set E is a subset of the predicted ev-
idence Ê and the predicted label is correct. Statis-
tics for the FEVEROUS dataset are provided in
Appendix A.

3 Our Approach

The aim of the FEVEROUS open-domain fact
verification (Aly et al., 2021) benchmark’s task
is to verify a claim c based on content from
Wikipedia. We follow the widely adopted three-
step pipeline, which involves (i) retrieving relevant
pages from the Wikipedia dump, (ii) extracting
sentences and table cells as evidence from these
pages, and (iii) predicting the veracity label of the
given claim based on the compiled evidence set.
In this work, we explore improving the first and
second steps—wiki-page retrieval and evidence ex-
traction—by employing our multi-stage retrieval
pipeline.

In the three-step pipeline, as shown in Figure 2,
the Wikipedia pages are first retrieved and refined
by our M-ReRank approach. The top five pages are
then used to extract evidence of both formats (e.g.,
sentences and tables) in the second step. We train
the models in the M-ReRank pipeline separately for
page, sentence and table retrieval. Combining the
first five sentences and five tables, we use SEE-ST’s
(Wu et al., 2023) cell-retriever to extract potential
cell evidence. Finally, at the third step, verification,
we utilise DCUF (Hu et al., 2022), a method that
converts evidence into dual-channel encodings to
verify the claim.

3.1 Wikipedia Page Retrieval

Firstly, given a claim c, a set of relevant Wikipedia
pages P=[p1, p2, ..., pnp ] are retrieved from TFIDF
and BM25-based retrievers to narrow down the
search space from millions of pages to a few hun-
dred (Robertson and Zaragoza, 2009). We combine
the results from TFIDF and BM25, retaining the
top np documents. TFIDF is effective at captur-
ing the importance of terms within a document,
and across the corpus, while BM25 is a probabilis-

7297

https://fever.ai/dataset/feverous.html


Sent-Evidence
(Wikipedia)

Tab-Evidence
(Wikipedia)

Cross-Encoder
Sent-Recall

(RoBERTa)

Table-Encoder
Tab-Recall

(TAPAS)

Sparse-Dense
Reranker

(HybRank)

Sparse-Dense
Reranker

(HybRank)

List-Aware
Reranker

(HLATR)

List-Aware
Reranker

(HLATR)

Graph-based
Cell-Retrieval

(SEE-ST)

Verdict Predictor
(DCUF)

CLAIM
Wikipedia 

Pages
(BM25+TFIDF)

Cross-Encoder
Sent-Recall

(RoBERTa)

Sparse-Dense
Reranker

(HybRank)

List-Aware
Reranker

(HLATR)

Step-1: Wikipedia Page Retrieval

Step-2: Evidence Retrieval

Step-3: Veracity Prediction

Figure 2: Overview of the M-ReRank pipeline for claim-based evidence retrieval and veracity prediction.

tic model that adjusts term weights based on term
frequency saturation and document length normal-
isation. The retrieved pages are further reordered
by robust upstream retrievers within the proposed
M-ReRank pipeline, as shown in Figure 2 (Step-1).

3.2 Evidence Retrieval

Top five pages from the previous step are selected to
extract the relevant evidence for veracity prediction.
We use Cross-Encoder (Humeau et al., 2019) to ex-
tract k sentences S={si}ki=1 and TAPAS2 based
SEE-ST (Wu et al., 2023) model to extract n ta-
bles T={ti}ni=1. The set of initial sentence and ta-
ble evidence are then reordered by our M-ReRank
(see Figure 2). All the models in the proposed
multi-stage pipeline are trained separately using the
FEVEROUS dataset’s train and dev splits. Based
on the extracted sentence/table evidence, we use the
Graph-based cell retriever proposed by (Wu et al.,
2023), which leverages the row and column seman-
tics of tables to retrieve r cell evidence C={ci}ri=1.

3.3 Multi-stage ReRanking (M-ReRank)

Once the initial set of documents, e.g. pages,
sentences, tables, are retrieved, the proposed M-
ReRank framework reorders them by prioritising
their relevance to the given claim based on con-
textual understanding and semantic similarity. Ini-
tially, unstructured candidates like sentences, are
reranked using a Cross-Encoder (Humeau et al.,
2019). Subsequently, we utilise advanced rerankers
HybRank (Zhang et al., 2023) and HLATR (Zhang
et al., 2022b) in the pipeline. HybRank lever-
ages both sparse and dense information to enhance
reranking, while HLATR integrates retrieval and
reranking features for hybrid list-aware reranking.

For tables, the reranking pipeline starts with the
SEE-ST model (Wu et al., 2023), which is effective
in capturing the row and column relevance of ta-

2TAPAS: Table Parser (Herzig et al., 2020)

bles, thereby achieving a more precise extraction of
structured candidates. As depicted in Figure 2, the
retrieved tables are further reranked sequentially
by HybRank and HLATR. Both rerankers take the
flattened table (linearised as a single line) as input.
After all reranking stages, the retrieved tables and
sentences are utilised by SEE-ST’s cell-retriever to
extract relevant cells.

The following subsections provide detailed dis-
cussions of the proposed pipeline.

3.3.1 Cross-Encoder with Contrastive
Learning

(Humeau et al., 2019) showed that cross-encoders
typically outperform bi-encoders on sentence-
scoring tasks by enabling rich interactions between
the claim and candidate evidence. In this stage,
the claim and evidence are jointly encoded us-
ing a transformer architecture into a single vec-
tor as Es=RoBERTa(claim, cand), “cand” repre-
sents the candidate evidence. The scoring mech-
anism involves reducing this embedding through
multiple layers, including dropout (D), linear lay-
ers (L1, L2), and activation functions (relu R, sig-
moid σ) to obtain a final score S(claim, cand) =
σ(L2(R(L1(D(Es))))). The network is trained
using contrastive learning criteria, aiming to min-
imise margin ranking loss between pairs of positive
x1 and negative x2 candidate evidence:

MRL(x1, x2, y) = max(0,−y · (x1 − x2)) (1)

where x1 and x2 are the predicted scores of positive
and negative evidence, respectively. y is set to 1,
indicating a positive candidate ranked higher than
the negative.

3.3.2 Table Parser Contrastive Learning
SEE-ST (Wu et al., 2023) showed that leveraging
both row and column semantics significantly im-
proves the recall of structured evidence, e.g. ta-
bles, table-cells. SEE-ST begins by extracting ta-
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bles from selected Wikipedia pages targeting the
most relevant rows and columns for the given claim,
thereby minimising confusion from irrelevant cells.
First, the claim and table pair are fed to TAPAS, a
pre-trained table model aware of table structures
(Herzig et al., 2020), to generate table embed-
ding. In parallel, TAPAS tokenizer also provides
row (Rpool) and column (Cpool) pooling matrix as
Et, Rowpool, Colpool=TAPAS(claim,table) which
are later used for estimating table, row and column
losses Lr, Lc, respectively, and final loss L:

Lr = CrE(R(L(RpoolEt)))

Lc = CrE(R(L(CpoolEt)))

Lt = σ(R(L(Et)))

Lt = MRL(Ltpos, Ltneg, 1)

L = αtLr + βtLc + γtLt

(2)

Since a cell represents the intersection of a row
and a column, its relevance can be determined by
analysing both dimensions. During inference, the
table score is estimated based on criteria such as
Lr+Lc, Lr×Lc, Lr or Lc. For the Table retrieval
task, Lr × Lc provides higher retrieval accuracy:

S(claim, table) = Lr × Lc (3)

3.3.3 HybRank
HybRank (Zhang et al., 2023) utilises the strategy
of collaborative filtering (Goldberg et al., 1992)
by incorporating lexical and semantic properties
of both sparse and dense retrievers in reranking.
We utilise BM25 as sparse and RoBERTa as dense
retriever to rerank the candidates for a given claim
through a 3-stage process:

(a) Retrieval Stage:

Sparse Retrieval: Given the claim c and the can-
didate d, the BM25 score is obtained by summing
the BM25 weights over the terms that co-occur in
c and d. Refer to (Robertson and Zaragoza, 2009)
for more details about BM25.

Dense Retrieval: The relevance score is esti-
mated as the dot product of encoded claim c and
candidate d, as Sd(c, d) = E(c)⊤E(d), where E(·)
denotes the encoder (RoBERTa), which generates
the embeddings for the claim and candidate text.

(b) Collaborative Filtering Stage: The collab-
orative filtering stage leverages the sparse and
dense scores between candidates, distinguishing

positive ones in the retrieval list. For each can-
didate and claim, a sequence of similarity scalars
xdi=[si1, si2, ..., siL] ∈ R is estimated with a set of
Top-L anchors from both sparse and dense scores.
After applying softmax and min-max normalisa-
tion, the sparse and dense scores are stacked in a
dual channel manner xij = [s

sparse
ij , sdense

ij ] ∈ R2.
Thus, the similarity sequence vector becomes like
Xdi = [xi1, xi2, ..., xiL] ∈ RL×2. This dual-
channel similarity vector is transformed to D di-
mensions with a trainable projection layer eij =
xijW , where W ∈ R2×L is a learnable parameter
and eij ∈ RD are embedded similarities. There-
after, candidate di becomes a sequence of similar-
ity embeddings Edi = [ei1, ei2, ..., eiL] ∈ RL×D,
which consists of candidate di similarity informa-
tion with anchor list. As a result, we obtain a total
of Nd + 1 collaborative sequences, where each
sequence corresponds to either a candidate or a
query and incorporates both lexical and semantic
similarity information with respect to L anchors.

(c) Aggregation Reranking Stage: To perform
anchor-wise interaction, we gather the j-th similar-
ity embedding e∗j from the claim sequence and all
candidate sequences, refining them using a Trans-
former encoder as:

e′cj , e
′
1j , . . . , e

′
Ndj

= Transinter(ecj ; e1j ; . . . ; eNdj)
(4)

where, e′∗j ∈ RD. This transforms the similarity
embedding sequence E∗ to E′

∗. We transform these
sequences into dense vectors by consolidating the
refined similarity embeddings. Specifically, we add
a [CLS] token at the beginning of the collaborative
sequence, process it through another Transformer
encoder, and take the output of the [CLS] token as
the representation of candidate di and claim c as:

hdi = Transaggr([CLS]⊕ E′
di
)[CLS] (5)

hc = Transaggr([CLS]⊕ E′
c)[CLS] (6)

where [CLS] ∈ R1×D and ⊕ denotes the concate-
nation operation. Finally, the dot product between
encoded vector hdi of candidate and claim vector
hc determines the similarity score.

3.3.4 HLATR
HLATR (Zhang et al., 2022b) improves text re-
trieval by combining retrieval and reranking fea-
tures using a lightweight transformer encoder. As
a retrieve-then-reranking architecture, HLATR fol-
lows a three-stage pipeline: (a) the Retrieval Stage
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identifies potentially relevant documents, (b) the
Reranking Stage refines the relevance scores of
the retrieved documents, and (c) the HLATR Stage
consists of a multi-stage feature fusion layer and a
transformer encoder to further improve the ranking:

(a) Retrieval Stage: In the Retrieval Stage, we
consider the candidate documents retrieved from
previous modules in our pipeline, e.g. HybRank,
Cross-Encoder/SEE-ST, instead of using a sepa-
rate dense retrieval model, as the original HLATR
algorithm suggests.

(b) Reranking Stage: The Reranking Stage fur-
ther refines the retrieval scores using an interaction-
based model, e.g. Cross-Encoder. Each claim-
candidate pair (c, d) is rescored as score(c, d) =
f(E(c, d)), where, E(·,·) denotes the encoder
(RoBERTa), and f is the score function, e.g. σ (se-
quence classifier). Training involves a contrastive
learning objective (Lc), optimising the model with
groups of (c, d) pairs consisting of one positive
candidate d+ and multiple negatives as:

Lc = − log
exp(score(c, d+))∑
p∈Gd

exp(score(c, d))
(7)

(c) HLATR Stage: The core of this reranking
paradigm is the HLATR component, which fea-
tures a multi-stage fusion layer and a transformer
encoder. It enhances the reranking results by com-
bining features from both retrieval and reranking
stages, creating a comprehensive representation.
The combined features are processed through a
lightweight transformer encoder, which models the
interactions among all candidates, highlighting mu-
tual relationships. The combined relevance score
in HLATR is formulated as follows:

scoreHLATR(c,Dr) = fHLATR(EHLATR(c,Dr)) (8)

where Dr represents a candidates list to be
reranked, EHLATR is the encoder that processes the
combined features, and fHLATR is the final rele-
vance estimation function. Like the previous stage,
this stage is also optimised with a list-wise con-
trastive loss, as defined by Eq 7.

4 Experimental Evaluation

4.1 Evaluation Metrics
In the FEVEROUS task, two primary official
metrics are employed: accuracy (Acc.) and the
FEVEROUS-score (F.S). Accuracy measures the

Models Page Sentence Table Cell Evidence

Baseline 63 53 56 29 30
FaBULOUS 63 56.6 - 34.2 40.4
DCUF 85.20 62.54 75.59 58.41 43.22
UnifEE 85.20 75.59 75.36 67.44 55.08
SEE-ST 85.20 75.50 80.86 77.16 61.43

M-ReRank (ours) 93.63 83.35 89.15 80.16 66.69

Table 1: Recall of different formats of evidence on the
development set.

proportion of instances for which the model cor-
rectly predicts the veracity label. The FEVEROUS-
score evaluates not only the correctness of the final
veracity label but also the adequacy of the extracted
evidence set. It quantifies the proportion of in-
stances where the extracted evidence aligns with
one of the gold sets, and the predicted veracity la-
bel matches the gold standard. Three additional
official metrics are utilised to assess the quality of
extracted evidence sets in the FEVEROUS task:
Evidence Precision (E-P), Evidence Recall (E-R),
and Evidence F1 (E-F1). It also provides multiple
gold evidence sets for each claim, and a piece of
extracted evidence is deemed correct only if it is
included in any of the gold evidence sets. For each
instance, evidence precision represents the propor-
tion of correctly predicted evidence. The overall
evidence precision is determined by averaging this
score across all instances. Evidence recall mea-
sures the proportion of instances with a correctly
extracted evidence set, where correctness is defined
by covering any of the gold evidence sets. Lastly,
evidence F1 is the harmonic mean of evidence pre-
cision and recall, providing a balanced assessment
of precision and recall in evidence extraction.

4.2 Implementation Details
Implementation details for all the algorithms used,
as well as training hyperparameters, are provided
and discussed in Appendix B. To understand com-
plexity and scalability impacts, we also perform
computational analysis, included in Appendix C

4.3 Main Results
Evidence Extraction Results: Table 1 presents
the evidence extraction results of our M-ReRank
pipeline on the development set and compares it
with the recent state-of-the-art. Previous meth-
ods, such as the official baseline (Aly et al.,
2021) and FaBULOUS (Bouziane et al., 2021),
employ a weaker document retrieval module,
i.e. BM25/TFIDF, leading to error propaga-
tion and lower evidence recall. Recent methods,
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Models
Development set Test set

F.S Acc. E-P E-R E-F1 F.S Acc. E-P E-R E-F1

Official Baseline 19 53 12 30 17 17.73 48.48 10.17 28.78 15.03
EURECOM 19 53 12 29 17 20.01 47.79 13.73 33.73 19.52

Z team - - - - - 22.51 49.01 7.76 42.64 13.12
CARE 26 63 7 37 12 23 53 7 37 11
NCU 29 60 10 42 17 25.14 52.29 9.91 39.07 15.81
Papelo 28 66 - - - 25.92 57.57 7.16 34.60 11.87

FaBULOUS 30 65 8 43 14 27.01 56.07 7.73 42.58 13.08

DCUF 35.77 72.91 15.06 43.22 22.34 33.97 63.21 14.79 44.10 22.15
UnifEE 44.86 73.67 19.04 55.08 28.30 41.50 65.04 18.35 53.87 27.37
SEE-ST 49.73 74.68 10.60 61.43 18.07 44.75 65.16 9.81 60.01 16.89

M-ReRank (ours) 60.57 87.58 10.68 66.69 18.40 47.13 65.24 10.35 63.71 17.81

Table 2: Model performance on the development set and test set. F.S is FEVEROUS-score, and Acc. is the accuracy
of veracity labels. E-R, E-P, and E-F1 are recall, precision, and F1, which are computed based on the evidence set.

Retriever T-150 T-5

Baseline TFIDF 91.43 62.71

TFIDF (T) 92.33 69.46
BM25 (B) 90.53 71.40
Ensemble(T,B) (E) 94.87 73.98

E+Cross-Encoder (C) 94.87 87.14
E+HybRank (Hy) 94.87 90.83
E+HLATR (Hl) 94.87 92.90

E+C+Hy 94.87 91.39
E+C+Hy+Hl 94.87 93.63

Table 3: Wikipedia page retrieval results with rerankers
in our M-ReRank pipeline in Top-150/5 settings.

DCUF, UnifEE, SEE-ST, utilise ensemble of Cross-
Encoder3 and BM25, improving page recall by
85.20%. However, limited page retrieval limits the
overall evidence recall and, consequently, low accu-
racy in veracity prediction. Our multi-stage rerank-
ing improves the page recall by 8.43%. Notably,
M-ReRank extracts 36% more gold-standard evi-
dence compared to the official baseline and 5.26%
compared to the best model SEE-ST. Through M-
ReRank, we obtain substantial recall jump in all
formats of evidence retrieval. This is also proved
by our ablation study in (§4.4).

Overall Results: Our primary results, sum-
marised in Table 2, demonstrate significant per-
formance improvement in evidence extraction com-
pared to the previous best models, i.e. DCUF,
UnifEE, SEE-ST, thereby improving FEVEROUS-
score (F.S) overall. Specifically, our model shows
improvements of 5.26%/3.70% in evidence recall
on the development/test set, respectively. Adopting
the verification approach from (Hu et al., 2022),

3cross-encoder/ms-marco-MiniLM-L-12-v2

T-5 Pages Retriever T-100 T-20 T-5

E

TFIDF 71.56 67.11 54.38
RoBERTa (R) 88.13 80.35 77.13
R+HybRank (HyS) 88.13 86.65 78.76
R+HLATR (HlS) 88.13 86.99 79.09
R+HyS+HlS 88.13 87.02 80.06

E+C+Hy+Hl

TFIDF 90.03 82.65 67.30
RoBERTa (R) 92.36 90.15 80.33
R+HybRank (HyS) 92.36 90.50 81.73
R+HLATR (HlS) 92.36 89.92 82.49
R+HyS+HlS 92.36 90.60 83.35

Table 4: Sentence retrieval results with various rerankers
in our M-ReRank pipeline in Top-100/20/5 settings.

we achieved accuracy rates of 87.58% on the de-
velopment set and 65.24% on the test set. These
gains indicate that by leveraging context informa-
tion from other evidence in the candidate list, our
multi-stage reranking (M-ReRank) enhances the
accuracy of evidence extraction.

Following the constraint on selecting the maxi-
mum number of sentences and cells, there are two
ways to construct an evidence set. One way is to
apply a threshold when selecting evidence to priori-
tise high precision, slightly sacrificing recall. For
example, a former SOTA method, UnifEE, follows
the same criteria for high precision, but the label ac-
curacy remains largely unaffected by changes in the
evidence set. We employ the maximum number of
sentences and cells as constraints, keeping higher
evidence recall as another way of constructing the
evidence set (an ablation study on precision/recall
tradeoff is presented in Appendix D). Demonstrat-
ing the effectiveness of our approach, an example
of evidence extraction in both formats is presented
in Appendix E.
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T-5 Pages Retriever T-20 T-5 T-3

E

TFIDF 82.17 80.84 76.89
SEE-ST (S) 88.84 86.27 83.99
S+HybRank (HyT) 88.84 87.33 84.29
S+HLATR (HlT) 88.84 87.45 85.23
S+HyT+HlT 88.84 87.52 85.35

E+C+Hy+Hl

TFIDF 89.30 85.75 79.83
SEE-ST (S) 93.40 88.44 86.87
S+HybRank (HyT) 93.40 90.81 88.54
S+HLATR (HlT) 93.40 90.83 88.65
S+HyT+HlT 93.40 91.61 89.15

Table 5: Tables retrieval results with various rerankers
in our M-ReRank pipeline in Top-20/5/3 settings.

The test set accuracy is typically lower than the
development set accuracy. This discrepancy is pri-
marily due to the unequal distribution of NEI (Not
Enough Information) claims across the different
splits. Our analysis of verdict prediction results re-
veals that DCUF underperforms on NEI instances,
which accounts for the accuracy gap between the
development and test sets.

4.4 Ablation Study

To evaluate the effectiveness of M-ReRank, we
conducted a series of ablation experiments focus-
ing on three aspects: i) Wikipedia page retrieval,
ii) sentence extraction, and iii) table extraction.
We first examined the impact of each reranker in
M-ReRank by applying them individually. Sub-
sequently, we applied them in a multi-stage man-
ner, prioritising the order based on their individual
performance to understand the cumulative effect.
Since M-ReRank obtains the maximum number of
Wikipedia pages, we also experiment with extract-
ing sentence and table evidence solely from pages
retrieved by Ensemble(T,B), excluding M-ReRank
for page retrieval as shown in Table 4 and Table 5.
This enables a fairer comparison of rankers in the
M-ReRank pipeline for sentence and table retrieval.

Wikipedia Page Retrieval: Table 3 presents
the recall of various methods for Wikipedia page
retrieval, ranging from FEVEROUS’s baseline
TFIDF to all rerankers in the M-ReRank pipeline.
The FEVEROUS baseline achieves a 91.43% re-
call in the Top-150 setting but struggles to main-
tain relevance in the Top-5. By converting Uni-
code characters to their nearest ASCII equivalents
during pre-processing, we observe a 6.75%/8.69%
improvement by TFIDF(T) and BM25(B), respec-
tively, in Top-5 recall. Further improvements are
seen by applying ensemble reranking on the T and
B results, increasing the page recall to 94.87%

for Top-150 and 73.98% for Top-5 settings. We
see a significant jump in page recall specific to
Top-5 retrieval on applying Neural rankers, e.g.
Cross-Encoder, HybRank, and HLATR, by 13.16%,
16.85%, and 18.92%, respectively. When com-
bined (E+C+Hy+Hl), they achieve the highest page
recall of 93.63% in the Top-5 setting.

Sentence Extraction: Table 4 depicts the ab-
lation results on sentence retrieval. To show the
effectiveness of M-ReRank based rerankers, we
perform ablation with the Top-5 pages retrieved by
earlier step via both EnsembleT,B and E+C+Hy+Hl
settings. M-ReRank performs well for sentence
retrieval in both scenarios. RoBERTa-based Cross-
Encoder improves sentence recall in both cases by
22.75% and 13.03%. Using the RoBERTa results,
the other rankers, HybRank, and HLATR, consis-
tently achieve higher recall. In the E+C+Hy+Hl
setting, M-ReRank achieves the highest recall by
83.35% for sentence retrieval, which is 7.85%
higher than the previous SOTA methods.

Table Extraction: Table 5 display the effec-
tiveness of M-ReRank on table retrieval. Like
the ablation experiments of sentence extraction,
we again choose the Wikipedia pages retrieved
via both EnsembleT,B and E+C+Hy+Hl settings
to fairly compare the rerankers’ strengths. The re-
trievers’ performance is compared on Top-3/5/20
recall. SEE-ST (Wu et al., 2023) has shown a sig-
nificant recall improvement of 3-7% compared to
the TFIDF baseline by incorporating row and col-
umn semantics. M-ReRank retrievers reorder the
table candidates in flattened form. For retrieved
pages in both EnsembleT,B and E+C+Hy+Hl set-
ting, M-ReRank consistently improves the table
recall, similar to that found in the sentence extrac-
tion. We observe a jump of 1.36% and 2.28% table
recall in E and E+C+Hy+Hl settings, respectively.

In conclusion, M-ReRank performs well on evi-
dence reranking, which is crucial for fact-checking
systems. It demonstrates superior performance in
reranking unstructured evidence, e.g., sentences
and passages, compared to structured evidence.
The reason is that structured evidence retrieval
requires row and column semantics information,
which is crucial for structured evidence retrieval.
On the other hand, M-ReRank performs retrieval
on the flattened table. However, it is still able to
perform collaborative filtering by exploiting inter-
action among table candidates. Further analysis of
the errors of M-ReRank is provided in Appendix F.
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5 Conclusion

In this paper, we presented M-ReRank, a multi-
stage reranking framework designed to enhance
the evidence retrieval process for fact verifica-
tion tasks. Our experiments with the FEVEROUS
dataset demonstrate that M-ReRank significantly
improves the recall of evidence extraction, achiev-
ing a FEVEROUS-Score jump of 10.84%/2.38%
on development/test data compared to previous
state-of-the-art methods. M-ReRank pipeline is
comprised of a sequence rerankers, e.g. Cross-
Encoder/SEE-ST, HybRank, HLATR. By leverag-
ing the contextual interactions among multiple ev-
idence pieces and incorporating both lexical and
semantic similarities, M-ReRank effectively ad-
dresses the challenges of retrieving relevant evi-
dence in both unstructured formats, e.g. sentences,
and structured formats, e.g. tables or cells. Our
ablation studies further validate the efficacy and
contribution of each reranking stage, showcasing
the robustness and adaptability of our approach.
Overall, M-ReRank sets a new benchmark in the
domain of fact verification, paving the way for
more accurate and reliable verification systems.

Future work could explore more efficient multi-
stage reranking architectures that reduce computa-
tional overhead while maintaining accuracy. This
might involve developing lightweight rerankers or
incorporating parallel processing techniques (Sanh
et al., 2020; Leonhardt et al., 2024). Moreover,
further investigation is needed into handling the un-
derrepresented NEI category, possibly by adopting
advanced data augmentation strategies or rebalanc-
ing techniques to improve the model’s performance
on rare labels (Tayyar Madabushi et al., 2019; Cao
et al., 2019). Additionally, expanding the model’s
capacity to better utilise inter-evidence interactions
in more complex evidence structures, such as multi-
modal data, would also be a valuable direction.

6 Limitations

Despite the promising results, our multi-stage
reranking approach has several limitations that
need addressing in future work. One significant
challenge is the computational complexity intro-
duced by the multi-stage process, which can lead
to increased processing time and resource con-
sumption, making real-time applications challeng-
ing. Additionally, scalability issues arise when
handling large-scale datasets like the extensive
Wikipedia corpus, potentially impacting the sys-

tem’s performance. The model’s dependence on
high-quality data means incomplete or noisy data
can significantly reduce retrieval and verification
performance.

Another limitation arises from the imbalance in
the distribution of the three veracity labels. Specif-
ically, as detailed in Appendix A, The NEI (Not
Enough Information) label accounts for only 3%
of the training data, making it difficult for models
to predict accurately.
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A FEVEROUS Dataset Statistics

FEVEROUS is based on English Wikipedia, which
contains a vast collection of 95.6 million sentences
and 11.8 million tables. Within this dataset, there
are 87,026 distinct claims, each with an average
length of 25.3 words. On average, verifying each
claim requires referencing 1.4 sentences and 3.3
cells (equivalent to 0.8 tables). Notably, evidence
for verification is exclusively text-based in 34,963
cases, solely table-based in 28,760 cases, and a
combination of both formats in 24,667 instances.
Among these claims, 49,115 are classified as SUP-
PORTS, 33,669 as REFUTES, and the remaining
4,242 are categorised as NEI. Table 6 provides a
detailed breakdown of label and evidence distribu-
tions across different splits.

Train Dev Test

Supported 41,835(59%) 3,908(50%) 3,372 (43%)
Refuted 27,215(38%) 3,481(44%) 2,973 (38%)
NEI 2,241 (3%) 501 (6%) 1,500 (19%)

Total 71,291 7,890 7,845

Sentences 31,607(41%) 3,745(43%) 3,589 (42%)
Cells 25,020 (32%) 2,738(32%) 2,816 (33%)
Sentence+Cells 20,865 (27%) 2,468 (25%) 2,062 (24%)

Table 6: Details of each split in FEVEROUS. The first
three rows highlight the distribution of classes across the
splits, and the last three rows represent the distribution
of claims in each split requiring only sentence evidence,
cell evidence, or both, respectively.

B Implementation Details

In the document retrieval step, we retrieve np = 5
pages from the Wikipedia dump for each claim.
As a first step, 150 pages per claim are extracted
by TFIDF and BM25 separately and merged to-
gether by ensemble reranking (Dwork et al., 2001)
to retrieve a final set of 150 pages per claim. We
keep the top 5 pages for evidence extraction after
Multi-stage reranking. For the evidence retriever,
the nk=5 sentences and nt=5 tables are extracted
from the retrieved pages, and the sentence and table
evidence are combined to extract nr = 25 cells.

For Cross-Encoder, we use a RoBERTa-base4

model, finetune it with contrastive learning criteria
where for each positive example, a negative exam-
ple is selected to determine MarginRanking loss as
explained in (§3.3.1). The hyperparameters are set
as batch size of 16 and learning rate 10-5.

4RoBERTa-base
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For table extraction, we use SEE-ST (Wu et al.,
2023) that encodes the claim-table pair by TAPAS-
base5 model. The hyperparameters are set to their
default values as mentioned in (Wu et al., 2023),
i.e. batch size of 8, learning rate 10-7 for TAPAS
and 10-7 for the classifier, αt = 1 and βt = 1.

For cell extraction, we use SEE-ST’s evidence
graph approach, which forms a graph of sentences
and cells evidence and then scores each cell on the
basis of row and column semantics. RoBERTa-base
and TAPAS-base are used to encode sentence nodes
and cell nodes in the graph. The hyperparameters
are set as batch size of 4, learning rate 10-6, αc = 2,
βc = 2, and γc = 1.

In HybRank, the outputs from earlier step are
used to extract sparse features by BM25 and dense
features by a finetuned RoBERTa model6. Number
of anchors are set to 100 for page/sentence retrieval
and 20 during table retrieval. The remaining hy-
perparameters are set to default as mentioned in
(Zhang et al., 2023).

In HLATR, retrieved candidates from the earlier
step are used for reranking. We finetune a trans-
former model7 to be used as reranker in the second
step. Finetuning hyperparameters are batch size 4,
train group size 16, learning rate 10-5, and number
of epochs 5. In HLATR’s third step, we finetune
a lightweight RoBERTa-base model with reduced
hidden_size as 128, num_attention_heads 2, and
num_hidden_layers 4, with a learning rate 10-3,
batch size 256, and 30 epochs.

Model Page Sentence Table

Base-Model† 18 hrs 12hrs 30min 1hrs 46min
HybRank 62s 46s 4s
HLATR 45min+122s 10min+90s 3min+11s

Table 7: Inference time on dev data using various mod-
els for Page, Sentence and Table retrieval. †Base-Model
represents Cross-Encoder, RoBERTa and SEE-ST used
respectively for {Page,Sentence,Table}-Retrieval.

C Computational Analysis

To test the efficiency, we compare the inference
time for different ranking models used in the
pipeline, e.g. Base-Model, HybRank, and HLATR.
All experiments were conducted on NVIDIA RTX
4090 24GB type GPUs.

In Table 7, we can observe that major time is

5TAPAS-base
6sentence-transformers/msmarco-bert-base-dot-v5
7CoROM-Reranking

Evidence Recall Precision FEVEROUS-Score

Sentences=5, Cells=25 0.6669 0.1067 0.6058
Sentences=5, Cells=15 0.6300 0.1462 0.5752
Sentences=5, Cells=5 0.5258 0.2294 0.4833

Table 8: Ablation study illustrating the precision-recall
tradeoff based on the number of evidence pieces consid-
ered, showing its impact on the FEVEROUS-score.

taken by the Base-Model to retrieve the top candi-
date evidence, e.g. page, sentence or tables. The
other models in the pipeline, HybRank (Zhang
et al., 2023) and HLATR (Zhang et al., 2022b),
take comparatively less time during inference. In
contrast, the SOTA models, e.g. UnifEE (Hu et al.,
2023), SEE-ST (Wu et al., 2023), use graph-based
methods for joint evidence rescoring, which is
more time-consuming.

D Precision/Recall Tradeoff

Our model has been optimised to achieve the high-
est FEVEROUS-score possible, as this is the best
indicator of overall best performance. However,
this indeed leads to a precision/recall tradeoff tar-
geting a high FEVEROUS-score. We conducted
an ablation study by changing the number of evi-
dence considered, as shown in Table 8. By reduc-
ing the number of evidence considered, precision
increases, but both recall and FEVEROUS-score
decrease. We observe that keeping the maximum
number of sentences and cells helps achieve higher
evidence recall, leading to the best performance.

E Case Study

A case is shown for evidence extraction of both sen-
tence and table types in Figure 3. For the claim on
San Luis Obispo Railroad Museum, our M-ReRank
successfully retrieves sentences and tables of evi-
dence by reordering them from the initial retrievals.
We use RoBERTa (Cross-Encoder) and TAPAS
(SEE-ST) retrieval results, respectively, for unstruc-
tured and structured evidence extraction. The main
challenge in this case is multi-hop evidence extrac-
tion, where evidence is to be extracted from multi-
ple sources to verify the claim. For sentence extrac-
tion, we observe that the initial retrieval could only
retrieve three pieces of evidence in Top-5. Through
M-ReRank, the pieces of evidence are rescored,
retrieving the Top-5 from them. For instance, sen-
tences with evidence ID San Luis Obispo, Cali-
fornia_sentence_6 and San Luis Obispo Railroad
Museum_sentence_6, were earlier ranked six and
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Claim:
The San Luis Obispo Railroad Museum located at San Luis Obispo, California (founded in 1772), opened in
2013, features different track displays and a museum store that sells railroad books, lanterns and other items.
Label: SUPPORTS

Sentence Evidences

Retrieval:
(1)San Luis Obispo Railroad Museum_sentence_0", 

(2)"San Luis Obispo Railroad Museum_sentence_8", 

(3)"San Luis Obispo Railroad Museum_sentence_5",  

(6)”San Luis Obispo, California_sentence_6", 

(10)”San Luis Obispo Railroad Museum_sentence_6” 

There is a children's play area incorporating hands-on train tables and a Museum Store offering
railroad books, lanterns, and clothing, and other items.

The San Luis Obispo Railroad Museum, in San Luis Obispo, California, was founded to preserve
and present the railroad history of California, and specifically the Central Coast, by collecting,
restoring, displaying, and operating historic railroad equipment.

Opened in 2013, the museum occupies the restored former Southern Pacific Freighthouse (built
1894) at 1940 Santa Barbara Avenue, adjacent to the Union Pacific main line and about one-quarter
mile south of the San Luis Obispo Amtrak station.

Founded in 1772 by Spanish Franciscan Junípero Serra, San Luis Obispo is one of California's
oldest European-founded communities.

A standard-gauge display track extends along the east side of the building, and a short narrow-
gauge display track is on the west side.

M-ReRank:
(1)San Luis Obispo Railroad Museum_sentence_8", 

(2)"San Luis Obispo Railroad Museum_sentence_5", 

(3)"San Luis Obispo Railroad Museum_sentence_0",  

(4)”San Luis Obispo, California_sentence_6", 

(5)”San Luis Obispo Railroad Museum_sentence_6” 

There is a children's play area incorporating hands-on train tables and a Museum Store offering
railroad books, lanterns, and clothing, and other items.

The San Luis Obispo Railroad Museum, in San Luis Obispo, California, was founded to preserve
and present the railroad history of California, and specifically the Central Coast, by collecting,
restoring, displaying, and operating historic railroad equipment.

Opened in 2013, the museum occupies the restored former Southern Pacific Freighthouse (built
1894) at 1940 Santa Barbara Avenue, adjacent to the Union Pacific main line and about one-quarter
mile south of the San Luis Obispo Amtrak station.

Founded in 1772 by Spanish Franciscan Junípero Serra, San Luis Obispo is one of California's
oldest European-founded communities.

A standard-gauge display track extends along the east side of the building, and a short narrow-
gauge display track is on the west side.

Multi-stage
Reranking

Table Evidences

Retrieval:

(3)"San Luis Obispo Railroad Museum_table_0", 

(8)"San Luis Obispo, California_table_0", 

Multi-stage
Reranking

San Luis Obispo Railroad Museum

Established 2013

Location 1940 Santa Barbara Ave
San Luis Obispo, California

Type Railroad museum

San Luis Obispo, California

Country United States

State California

County San Luis Obispo

Government Body San Luis Obispo City Council

M-ReRank:

(2)"San Luis Obispo Railroad Museum_table_0", 

(4)"San Luis Obispo, California_table_0", 

San Luis Obispo Railroad Museum

Established 2013

Location 1940 Santa Barbara Ave
San Luis Obispo, California

Type Railroad museum

San Luis Obispo, California

Country United States

State California

County San Luis Obispo

Government Body San Luis Obispo City Council

Figure 3: An example in FEVEROUS. The blue rectangle contains the claim. The yellow rectangle highlights the
initially retrieved evidence (Retrieval), while the green rectangle depicts the reranked evidence set by our Multi-stage
reranking (M-ReRank) paradigm. Text in red for each piece of evidence shows the order number (parenthesised)
followed by its ID in the dataset. Words and phrases are underlined to show interactions between the claim and
evidence, while bold text indicates inter-evidence interactions in the group, e.g. sentences or tables.

ten respectively, however, M-ReRank reranks them
as four and five. Without this, the fact-verification
model would be unable to confirm when San Luis
Obispo was founded and what kind of display track
the Railway Museum offers.

In structured evidence, the initial retrieval is
unable to retrieve San Luis Obispo, Califor-
nia_table_0 in Top-5, but M-ReRank reorders it to
be included in Top-5 tables. It helps identify San
Luis Obispo as a county in California state. This
demonstrates M-ReRank’s robustness in leverag-
ing interactions among evidence to reorder them
effectively, thereby improving overall evidence ex-
traction in each format.

F Error Analysis

To investigate error propagation within the FEVER-
OUS pipeline, we conduct a thorough error source
analysis for both page and evidence retrieval stages.
We also perform the error analysis on the challenge
types to show M-ReRank’s strengths and weak-
nesses.
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Figure 4: Overall error source analysis of extracted
evidence set for the development set.

F.1 Error Source Analysis

Candidates not retrieved at any stage can lead to
error propagation through the pipeline. In the three-
step pipeline, the Page source error is determined
by instances that fail to retrieve all pages contain-
ing evidence. Furthermore, sources of error can
also arise when a specific evidence format is not
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Figure 5: Proportion of errors per source in relation to challenge type on the development set.

fully extracted. For instances with a complete doc-
ument set, errors are categorised by the format of
evidence that fails to be retrieved: Unstructured
(sentences), Structured (tables or cells), and Both.
Figure 4 displays the proportion of instances with
failed evidence retrieval. We also show the per-
centage of instances with complete evidence set
as Complete. Comparing the results with recent
models, i.e. UnifEE and SEE-ST, our proposed M-
ReRank approach performs well on each evidence
type. On page retrieval, M-ReRank decreases the
error from 15.8% to 9.2%. The decrement is also
observed in proportion to source error on struc-
tured and unstructured evidence retrieval. These
results demonstrate the effectiveness of M-ReRank
in evidence extraction.

F.2 Analysis Based on Challenge Types
In the FEVEROUS challenge, the samples are also
categorised into various challenge categories. A
fact-checker system’s strength should also be anal-
ysed based on challenge types. These challenges
encompass Multi-hop Reasoning (MR), performing
Numerical Reasoning (NR), Entity Disambigua-
tion (ED), dealing with Search terms not present in

claim (ST), and Combining Tables and Text (CT).
Any challenges outside these five categories are
classified as Other (OT). We evaluate M-ReRank’s
performance to demonstrate its capability in retriev-
ing evidence for claims with various challenges. M-
ReRank achieves higher performance on almost all
challenges with a major improvement on Multi-hop
Reasoning and Combining Tables and Text chal-
lenges comparing SEE-ST and UnifEE as shown in
Figure 5. M-ReRank achieves evidence extraction
recall rates of 65.43%, 57.89%, 79.66%, 71.52%,
71.05%, and 76.75% for MR, NR, OT, ED, ST, and
CT, respectively, showing that the collaborative fil-
tering and modelling of inter-evidence context can
effectively improve the evidence retrieval.

Our multi-stage reranking approach shows en-
hanced evidence retrieval capabilities, particularly
in complex, challenging scenarios. M-ReRank de-
creases the error rate for Unstructured evidence by
4.71% against UnifEE and 2.92% against SEE-ST.
For Structured evidence, it reduces the errors sig-
nificantly by 28.97% against UnifEE, while less
margin of 0.54% against SEE-ST as SEE-ST does
well in structured evidence retrieval.
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