-2 MMCode: Benchmarking Multimodal Large Language Models in Code
Generation with Visually Rich Programming Problems

Kaixin Li' Yuchen Tian?

Zhiyong Huang'*

'National University of Singapore

$Nanyang Technological University

Qisheng Hu?
Jing Ma**

>The University of Hong Kong
“Hong Kong Baptist University

Ziyang Luo*

likaixin@u.nus.edu

Abstract

Programming often involves converting de-
tailed and complex specifications into code,
a process during which developers typically
utilize visual aids to more effectively convey
concepts. While recent developments in Large
Multimodal Models have demonstrated remark-
able abilities in visual reasoning and mathe-
matical tasks, there is little work on investigat-
ing whether these models can effectively inter-
pret visual elements for code generation. To
this end, we present MMCode, the first multi-
modal coding dataset for evaluating algorith-
mic problem-solving skills in visually rich con-
texts. MMCode contains 3,548 questions and
6,620 images collected from real-world pro-
gramming challenges harvested from 10 code
competition websites, presenting significant
challenges due to the extreme demand for rea-
soning abilities. Our experiment results show
that current state-of-the-art models struggle to
solve these problems. The results highlight the
lack of powerful vision-code models, and we
hope MMCode can serve as an inspiration for
future works in this domain. The data' and
code? are publicly available.

1 Introduction

Programming is primarily aimed at fulfilling re-
quirements, frequently entailing the translation of
detailed and intricate specifications into executable
code (Nuseibeh and Easterbrook, 2000). In this en-
deavor, human developers regularly employ visual
aids such as images and diagrams to facilitate ef-
fective communication and a better understanding
of concepts (Agarwal and Sinha, 2003).

* Corresponding authors.

lhttps ://huggingface.co/datasets/likaixin/
MMCode

2https ://github.com/likaixin2000/MMCode

Recently, automated code generation tools have
attracted significant attention, largely attributing to
the substantial advance in Code Large Language
Models (Code LLMs) (Chen et al., 2021; Nijkamp
et al., 2023; Roziere et al., 2023; Luo et al., 2023b;
Li et al., 2023a; Guo et al., 2024). These models
demonstrated unprecedentedly remarkable coding
abilities, potentially assist to enhance productivity,
reduce human error and democratize coding skills.
Nevertheless, these models are limited to process-
ing text-only inputs, lacking the ability to interpret
rich information presented through images.

In a closely related development, the field has
also observed the emergence of many powerful
Large Multimodal Models (LMMs), marked by
GPT-4V (OpenAl, 2023b) and Gemini (Team Gem-
ini et al., 2023), representing a significant step
forward in bridging the modality of text and im-
ages. While there are multiple works evaluating
these models in mathematical reasoning (Lu et al.,
2023), perception and reasoning (Liu et al., 2023)
and instruction-following (Ye et al., 2023), there is
a notable gap in evaluating LMMs for code gener-
ation.

To this end, we present MMCode, the first multi-
modal benchmark for rigorously evaluating the
code generation ability of Large Multimodal Mod-
els. It comprises 3,548 questions with 6,620 im-
ages collated from 10 programming-related web-
sites encompassing a broad spectrum of subjects,
extending from fundamental coding concepts to the
application of code for solving mathematical prob-
lems. The generated code is rigorously checked by
test cases. The overall framework is illustrated in
Figure 1.

Our experiments revealed that current LMMs

struggle significantly to solve the tasks in MM-
Code. The most powerful LMMs, GPT-4V and

736

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 736-783
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://huggingface.co/datasets/likaixin/MMCode
https://huggingface.co/datasets/likaixin/MMCode
https://github.com/likaixin2000/MMCode

You have realized that the birthday of your best friend, Misawa, is
approaching, and you've decided to present a rooted binary tree as
a gift. Here, a rooted binary tree is a graph structure as follows.

0[9931(0[3]0
Expected Output:

Evaluation

} (OL2IMI[510

|| Output #2:
1 (013100

))
= . </> {3 Compile & Execute
£ & | PE S —
i = Ko (oo A \
9 & DO Code I g._ Test Case Checking |
d Oute @ I |
® |
S
& JO || Test Input #1: }
'/7 . } (0[9931(0[9]0) |
® T Large 1 00101110 o~ }
The input is in the following format: o } Expected Output #1: {/) }
5 " Multi-modal 1 00111010 & i
|
[a2] | Output #1:
A and B are strings representing the information of the rooted binary . MOde| | 0 }
trees you bought, with lengths of 7 to 1000 ... | |
Output the information of the new rooted binary tree resulting from | Test Input #2: |
the composition of the two rooted binary trees on a single line... } 01010 I
|
Sample Inputs and outputs } 0[1000]0 }
Input: | Expected Output #2: |
O[110)[111]0 I
|
!
|
!
|

0[1110]0

Hidden Inputs and outputs

Input #2:
0[010
([1000]()

Expected Output #2:
(0210510

Test Result: Failed

Case #1 Case #2 Case #3

Case #4 Case #5 Case #6

Figure 1: An illustration of an example question and the automatic testing pipeline of MMCode. The tests in the
judger are selected for display. The actual test cases are harder than the sample inputs and outputs.

Gemini, scored unsatisfactory pass rates as low as
19.4% and 5.0%, potentially due to the requirement
of intense reasoning on the text descriptions and
images. Open-source LMMs (Liu et al., 2024a; Bai
et al., 2023) yield negligible pass rates because of
their inability to understand the abstract meaning
of the images. The findings reveal a significant
deficiency in current LMMs’ ability to interpret
and utilize multimodal information for code gener-
ation, highlighting an imperative need for further
advancements in this area. We believe MMCode
will serve as a pivotal benchmark for evaluating the
forthcoming evolution of Code LMMs and inspire
research in this area.

2 Related Works

2.1 Code Large Language Models

Large Language Models (LLMs) have experienced
significant advancements in recent years, demon-
strating remarkable progress in their capabilities
and applications that were previously unattain-
able (Ouyang et al., 2022; Brown et al., 2020; Ope-
nAl, 2022, 2023a; Touvron et al., 2023a,b; Chowd-
hery et al., 2022; Anil et al., 2023; Hoffmann et al.,
2022; Scao et al., 2022). Building on their increas-
ing proficiency at understanding and generating
human-like text, a set of specialized models known

as Code LLMs have emerged, focusing specifically
on programming code (Chen et al., 2021; Nijkamp
et al., 2023; Roziere et al., 2023; Li et al., 2023a;
Luo et al., 2023b; Guo et al., 2024). Trained on
large corpora of code data, these models have ac-
quired the capacity to comprehend programming
contexts and generate syntactically correct and log-
ically sound code snippets. However, a significant
limitation of these tools is their inability to pro-
cess image inputs, restricting their application to
environments where interaction is solely text- or
code-based. Such a deficiency precludes their use
in scenarios requiring the interpretation of visual
data.

2.2 Coding Benchmarks

Accompanying the rapid development of Code
Large Language Models, numerous benchmarks
and datasets have witnessed the astonishing ad-
vancements of Code LLMs. These benchmarks
cover a wide area of code-related tasks, such as
code completion (Chen et al., 2021; Zheng et al.,
2023; Austin et al., 2021; Yan et al., 2023a), edit-
ing (Li et al., 2024; Tian et al., 2024) and trans-
lation (Yan et al., 2023b). Most relevant to our
work, APPS (Hendrycks et al., 2021) and Code-
Contests (Li et al., 2022) leveraged coding prob-

737

2D

o
o

31
‘ELELELL

5 6 7

WLMAT Tefa3] T]
7 T 2 3 4 7

5 6 7

0 0
0| [0
Bl 1]2]3]4]5]86

Chessboard

NN EESE IR

Linear Data Structure

3 step Vladik Valera

—
=
=
o = R
e
N
FSERARE R
W w oo
[SEF IS

4

Math Pattern Table

Others Pseudocode

Table 1: Examples of images from each category. Some images are cropped for better visualization.

lems from real-world practice and contest coding
websites as benchmarks. Recently, TACO (Li et al.,
2023b) contributed a comprehensive collection of
contest problems. However, it aims to cluster
the problems by the programming skills needed
(e.g. Dynamic Programming and Tree Algorithms),
while MMCode focuses on image-augmented ques-
tions to assess the question-solving skills of multi-
modal language models.

2.3 Reasoning-Intense Visual Question
Answering

Several works have emerged to assess the reason-
ing capabilities of LMMs with visual contexts. Sci-
enceQA (Lu et al., 2022) consists of multimodal
multiple-choice questions across scientific topics,
designed to measure the multi-hop reasoning abil-
ity,. MMMU (Yue et al., 2023) features college-
level questions with multi-disciplinary subjects.
MathVista (Lu et al., 2023) emphasizes mathemat-
ical problem-solving with multi-modal input, in-
volving tasks that require diverse math reasoning
skills. OlympiadBench (He et al., 2024) offers
a set of challenging Olympiad-level mathematics
and physics contest questions. PuzzleVQA (Chia
et al., 2024) benchmarks LMMs on patterns in
order to evaluate if the models’ reasoning ability
generalizes to abstract figures. Our work distin-
guishes itself by necessitating the generation of
solution code of complex problems, which bench-
marks LMMs for long-horizon reasoning.

3 {#3MMCode

In this section, we introduce the source and collec-
tion pipeline of MMCode. The collection pipeline

comprises four stages: 1) Raw data collection; 2)
automatic filtering; 3) human filtering and 4) anno-
tation. This pipeline to be introduced in the follow-
ing sections guarantees the quality and diversity of
the data collected for MMCode.

3.1 Data Sources

The questions of MMCode are collected from
10 coding platforms, including AtCoder, Aizu,
CodeChef, CodeForces, CodeWars, Project Eu-
ler, Geeksforgeeks, HackerRank, Leetcode and
Open Kattis. More information can be found in
Appendix A.

The data sources exhibit a wide range of charac-
teristics and purposes, including competitions, job
interviews, and tutorials, etc. Notably, Project Eu-
ler is distinguished by its collection of challenges
that necessitate a combination of mathematical and
computer programming skills to solve. As a re-
sult, MMCode benefits from the diversity of these
sources, offering programming problems with vary-
ing difficulties, styles, and skill requirements.

3.2 Data Collection Pipeline

Raw Data Collection. For each of the 10 plat-
forms, distinct web crawlers were developed to
retrieve the problem statements. The HTML ele-
ments were then converted to plain texts following
unified rules to ensure cleanliness and readability.
Furthermore, the metadata of these questions was
collected conditionally on availability, e.g. prob-
lem name, time limit, and memory limit. It is
noteworthy that we also included the raw HTML
code in our dataset for further flexible use.

If there were images (tags) encapsulated

738

Number of Questions

e e e
5 o ® © N 5 o
s &8 8 8 & & 3

N
=

500 1000 1500 2000 2500 3060 3500 AObO 4500 5000
Question Length (characters)

(a) The distribution of lengths of the question statements,
measured by the number of characters.

2000

1750

=
@
o
5]

1250

-
o
153
5

Number of problems
<
S
3

Number of images

(b) The distribution of numbers of images per question. Ques-
tions with 10 or more images are combined into the last bin

“10+7.

Figure 2: Data statistics of the questions in MMCode.

within the statements, we saved them and con-
verted them to PNG format. The tags were re-
placed with markdown tags to insert them in the
text (e.g. ![image](1.png)). It is essential to
maintain the locations of the images in the text be-
cause a question may encompass multiple images,
and the images can be closely related to the text
sections around them. This practice ensures the co-
hesion and coherence of the contents, where visual
and textual elements are harmoniously integrated
for better understanding.

Due to the difficulty of obtaining the automated
test cases as a result of the changes in platforms’
designs and policies, we also reused the rich infor-
mation from the TACO dataset (Li et al., 2023b)
where feasible. We matched the crawled questions
with those existing in TACO by URLs?>. Specif-
ically, we crawled all questions from the largest
two data sources, CodeForces and Aizu, including
problem statements and test cases. Additionally,
we included a new platform Project Euler that is
not present in previous datasets. For other plat-
forms, we reused the data from TACO and fetched
the question statements to add the images.

An initial data analysis revealed that 18.8% of
the obtained questions contained images, corrob-
orating our motivation for creating a multi-modal
coding benchmark.

*TACO comprises questions obtained from mixed sources
including CodeContests, APPS, and by crawling the websites.
As a result, not all questions are provided with URLs. We
abandoned the questions without URL metadata to ensure the
overall quality of our data.

Automated Filtering. In this phase, our initial
step involved excluding questions that do not in-
clude associated images. Subsequently, we applied
various post-processing steps to ensure the qual-
ity of the data. We filtered questions with images
unable to load using the PILLOW library*. Addi-
tionally, we converted PNGs with alpha channels
to pure RGB format by painting the background to
pure white, which is critical for discerning the texts
on the images. This avoids distinct behaviors of
different models interpreting the transparent color.
Finally, a strict 5-gram similarity is conducted on
every pair of question statements in the dataset to
remove similar problems with a similarity score
greater than 0.80. This process eliminated 33 ques-
tions from the dataset.

Human Filtering. At this stage, a preliminary in-
spection of sampled questions was first conducted
to scope the quality of the collected data. The
primary source of noise was found to be teaser
images that try to interest the readers but do not
provide information or implications to help solve
the questions. These images mostly originate from
Open Kattis and CodeForces, consisting of pho-
tographs about the background of the question,
anime screenshots, etc. An example is presented in
Appendix D.10, where the question is about devel-
opers’ cooperation, but the image is a humorous
comic about the daily work of programmers. We
also spotted some mixture of website logos and Ul
elements in the images, probably due to mistakes
of the question creators in typesetting.

*https://github.com/python-pillow/Pillow

739

Math

17.9% Graph

2D Geometry 15.3%
3%

Pseudocode
Map
Linear Data Structure

Patterns
12.7%
3D Geometry
Others 9.9% 6.4%
Table
Tree Chessboard

(a) The distribution of lengths of the question statements,
measured by the number of characters.

Figure 3: Data statistics

To address this problem, a convenient solution is
to employ large LMMs such as GPT-4V and Gem-
ini to determine if the image(s) are useful in ad-
dressing the question. Nonetheless, such a method
may potentially introduce bias into the data. There-
fore, we decided to opt for human labor to filter out
these unrelated images. We manually examined ev-
ery image in the dataset to remove the noisy ones.
Note that when an image was deemed irrelevant
but was not the sole image in the question, we ex-
clusively removed this image and its corresponding
markdown tag from the text. The question itself is
only eliminated if there are no images remaining
after this process.

Annotation. In this stage, we annotate the im-
ages in MMCode into distinct categories in order
to facilitate a more detailed analysis of model per-
formance across various types of images. The im-
ages were examined and discussed by expert hu-
man coders who have rich experience in solving
coding contest problems. Following this deliber-
ation, the images were meticulously categorized
into 12 types: Linear Data Structure, Tree,
Graph, 2D Geometry, 3D Geometry, Chessboard,
Map, Patterns, Math, Table, Pseudocode, and
Others. Gemini Pro Vision is leveraged to gener-
ate the coarse labels. Detailed descriptions of the
categories are listed in Appendix B.

This detailed categorization facilitates a focused
analysis on how different types of visual infor-
mation are processed and interpreted by models,
thereby potentially aiding in the identification and
improvement of their abilities in coding contexts.

1000

800

600

Number of Images

02 0.4 06 0.8 1.0
Image Position (location percentage in the text)

(b) The distribution of the position of the images, measured by
the percentage of their placement in the question statement.

of the images in MMCode.

3.3 Data Splits

After performing the previous procedures, we ac-
quired a dataset with 3,548 questions with 6,620
images. Considering the lengthy nature of the ques-
tions and additional tokens needed to represent the
images, evaluating on the full dataset can be ex-
pensive. Following MathVista (Lu et al., 2023), a
conscious decision was made to keep the test set
small. As a result, we sampled 263 questions as
the test set, and applied careful human inspection
to correct the image category labels.

3.4 Testing Pipeline

An execution-based testing pipeline is adopted in
MMCode for rigorous answer checking, follow-
ing (Hendrycks et al., 2021; Li et al., 2023b; Chen
et al., 2021). As demonstrated in Figure 1, the
judger attempts to compile the code generated by
models, followed by a timed execution in a sand-
box. The programs’ outputs are checked against
the ground truth answers in the test cases, and the
solution is judged as correct only if it passes all
hidden test cases.

4 Data Analysis

In this section, we undertake a comprehensive ex-
ploration of MMCode, introducing its and statisti-
cal attributes to provide a nuanced understanding
of MMCode.

Problem Length. The diversity of data sources
incorporated into MMCode results in significant
variance in problem length, as can be seen in Figure
2a. The mean length of the questions reaches 2,256
characters, with the 25th, 50th, and 75th percentile

740

Task Type

Model Average
Linear Tree Graph 2D 3D Chessboard Map Math Patterns Table Pseudocode Others
Language Only Inputs
LLaVA-1.5-7B 80 00 00 0.0 0.0 6.7 00 0.0 0.0 0.0 0.0 0.0 1.1
LLaVA-1.5-13B 80 00 00 0.0 0.0 0.0 00 0.0 3.7 0.0 10.0 0.0 1.5
QWEN-VL 40 00 00 0.0 00 6.7 00 0.0 0.0 0.0 10.0 0.0 1.1
CodeGemma-7b-Instruct 120 00 00 00 338 6.7 36 00 3.7 0.0 20.0 0.0 34
CodeLLaMA-7b-instruct 80 00 00 0.0 0.0 0.0 00 0.0 0.0 0.0 10.0 0.0 1.1
CodeLLaMA-13b-instruct 80 00 00 0.0 0.0 6.7 00 0.0 0.0 0.0 10.0 0.0 1.5
DeepSeekCoder-7b-instruct 16,0 0.0 43 33 38 20.0 36 00 3.7 7.1 10.0 3.8 5.7
DeepSeekCoder-33b-instruct 16.0 0.0 87 100 7.7 20.0 179 8.0 11.1 7.1 30.0 11.5 11.4
LLaMA3-instruct 120 00 43 67 338 0.0 36 00 3.7 14.3 0.0 0.0 4.2
MagiCoder-6.7b 200 00 87 00 00 6.7 7.1 0.0 7.4 7.1 20.0 0.0 5.7
StarCoder-15b-instruct 120 00 00 67 00 0.0 00 4.0 7.4 0.0 10.0 0.0 34
WizardCoder-15b 80 00 00 33 00 6.7 00 0.0 3.7 0.0 20.0 0.0 2.7
“GeminiPro = ~ ~ ~ 7 160 00 43 33 00 ~ 00 ~ 36 00 148 ~00 200 ~ 7.7~ 57 °
GPT-3.5 (gpt-3.5-turbo-1106) 280 69 43 67 17 13.3 10.7 4.0 18.5 14.3 20.0 7.7 11.0
GPT-4 (gpt-4-1106-previen) 280 69 130 100 7.7 13.3 179 16.0 29.6 21.4 40.0 26.9 17.9
GPT-4V (gpt-4-vision-previewy ~ 40.0 103 174 10.0 7.7 26.7 7.1 120 222 21.4 50.0 23.1 18.3
GPT-40 (gpt-40-2024-05-13) 320 69 87 33 115 20.0 10.7 16.0 18.5 7.1 40.0 154 14.8
Vision + Language Inputs
LLaVA-1.5-7B 120 00 0.0 00 00 6.7 00 0.0 0.0 0.0 0.0 0.0 1.5
LLaVA-1.5-13B 80 00 00 0.0 0.0 0.0 00 0.0 3.7 0.0 0.0 0.0 1.1
QWEN-VL 80 00 00 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.8
“Gemini Pro Vision ~ ~ ~ 125 00 43 00 38 ~ 67 ~ 71 00 ~ 74 00 300 ~ 00 ~ 50 °

GPT-4V (gpt-4-vision-previewy ~ 40.0 6.9 13.0 138 3.8 21.4 240 9.5 25.9 21.4 40.0 20.8 19.4
GPT-40 (gpt-40-2024-05-13) 360 69 87 34 77 21.4 240 143 259 14.3 50.0 8.3 17.0

Table 2: Pass@1 (%) results grouped by different image categories. The dashed lines separate open-source models

(above) and proprietary models (below).

at 1,516, 2,127, and 2,791. This can be ascribed
to the distinct style and difficulty of the questions
presented in MMCode. Certain questions articulate
the instructions succinctly and directly, whereas
others elaborate on the contextual background of
the problem in detail.

Image Count per Problem. A notable charac-
teristic that differentiates MMCode from previous
datasets is its inclusion of multiple images per ques-
tion. On average, each question is associated with
1.87 images, with the 25th percentile having 1 im-
age and the 75th percentile having 2 images. These
figures are interleaved with the text contents, and
the understanding of them frequently depends on
their order, posing great difficulty to the models.

Image Position. As Figure 3b illustrates, the im-
ages in the problems of MMCode can appear at any
position in the text, but concentrate at the tail. This
is because many images are drawn to intuitively de-
pict and explain sample inputs and outputs, which
are mostly located at the end of the text.

Image Type. Figure 3a illustrates the portion of
the categories of images following the classifica-
tion criteria introduced in Section 3.2. Graph, Math

and 2D Geometry form the majority comprising
more than half of the dataset, taking up 20.9%
17.9%, and 15.3% respectively. Miscellaneous im-
ages classified under Others account for roughly
one-tenth of the dataset, representing a high level
of heterogeneity. Tree follows up with 9.9%. The
remaining groups sum up to approximately a quar-
ter, demonstrating the diversity of MMCode.

S Experiments

In this section, we benchmark several Language-
Only models and Vision-Language models with
MMCode. A comparative analysis of the experi-
mental results for these models is conducted, pro-
viding a thorough examination of their capabilities.

5.1 Experimental Setup

We evaluate the models by prompting with fixed
templates (see Appendix C) using greedy decoding
and extracting their generated codes, which are
executed by the testing framework to check their
correctness. Pass@1 (Chen et al., 2021) is reported.
The following three setups are compared:

Language-Only Models. We evaluate several
powerful and Language-Only models, including

741

Task Type

Model Average
Linear Tree Graph 2D 3D Chessboard Map Math Patterns Table Pseudocode Others

Gemini Pro 160 00 00 6.7 0.0 6.7 36 0.0 11.1 7.1 20.0 7.7 6.1

GPT-4 (gpt-4-vision-previewy 32.0 10.3 174 6.7 3.8 333 25.0 12.0 333 214 40.0 19.2 19.0

Table 3: The performance of closed-source models with Image Replacement. Results are measured by Pass@1 (%).

Model Task Type Average
Linear Tree Graph 2D 3D Chessboard Map Math Patterns Table Pseudocode Others

Gemini Pro Vision 8.0 00 00 6.7 0.0 133 37 00 3.7 0.0 20.0 0.0 3.8

GPT-4V (gpt-4-vision-preview) 28.0 6.9 8.7 69 7.7 7.1 28.0 9.5 33.3 14.3 40.0 12.5 16.6

Table 4: The performance of closed-source models with Captioning Chain of Thought. Results are measured by

Pass@1 (%).

GPT-3.5 (OpenAl, 2022), GPT-4 (OpenAl, 2023a),
and Gemini Pro (Team Gemini et al., 2023). The
images in the problem statement are removed in
this setup.

Large Multi-modal Models. = Some popular
LMMs are selected as testees on MMCode. This
includes proprietary models such as Gemini Pro
Vision (Team Gemini et al., 2023), GPT-4V (Ope-
nAl, 2023b). Additionally, open-source models
such as the LLaVA series (Liu et al., 2024a) and
QWEN-VL (Bai et al., 2023) are assessed to track
the advancements of the more accessible LMMs.
The first image in the problem is kept for models
that are not trained to support multiple-image in-
puts, i.e. the LLaVA series. For fairer comparison,
text-only inputs performance of these models are
also reported whenever applicable.

Caption-augmented Models. We investigate
whether the inclusion of captions can help the
model better understand the image contexts. In our
early experiments, the open-source models yielded
inferior captions, frequently containing hallucina-
tions and failing to interpret the abstract mean-
ing of the images. Thus, we only benchmark the
proprietary models. We explored two methods of
leveraging the captions: (a) Image Replacement,
where the image slots are replaced by the captions.
(b) Captioning Chain of Thought, where we ex-
plicitly prompt the models to generate captions for
the images first, and then work out the questions,
resembling the Chain of Thought prompting (Wei
et al., 2022).

6 Evaluation Results

6.1 Results and Findings

MMCode poses a great challenge to all mod-
els. As Table 2 depicts, all models except for
the GPT family scored a Pass@]1 rate under 10%,
whereas the best of the models tested, GPT-4V,
yielded a mere 19.4% when equipped with all im-
age contexts. Test case pass rates, as a fine-grained
measure, show a similar trend in Tabel 7 in Ap-
pendix E.1. This renders MMCode a challenging
benchmark for the development of coding LMMs.

Proprietary models take a huge lead on MM-
Code. The GPTs yield superior results, leaving
a huge gap between other models. Gemini Pro,
though underperforms the GPTs, beats all tested
open-source models. The open-source models gen-
erally demonstrate the inability to solve the ques-
tions with negligible pass rates of around 1% and
a majority of zeros in many categories. A plau-
sible reason is that these open-source models are
not trained on such reasoning-heavy code gener-
ation tasks nor to understand abstract diagrams.
The coding ability is only inherited from the base
LLMs, but can be impaired due to catastrophic
forgetting (Luo et al., 2023a).

Visual context helps, but requires advanced
comprehending capability. Interestingly, unlike
previous works such as OlympiadBench (He et al.,
2024) where the text-only inputs beat multi-modal
inputs, the best performance of all experiments is
produced by GPT-4V with vision contexts. The ob-
servation confirms that the images contain critical

742

Math Error
2%

Input Parsin
PULTASIR

Type Error

yp i
Access Error
10%

GPT-4V

Time Limit Exceeded
12%

Math Error

2%
Time Limit Exceeded
2%

Type Error

¥

__Name Error
12%

Problem Understqndin9
42%

LLaVA-13B

Access Error
12%

Problem Understanding
68%

Input Parsin
23?’/0 9

Figure 4: Error distribution of GPT-4V and LLaVA-13B on a sampled subset of 50 problems.

information that can be mined to assist problem-
solving. However, Gemini Pro Vision often fails
to leverage the hints from the images, and the per-
formance drops compared with the language-only
Gemini Pro.

GPT-4V performs better than GPT-4 counter-
parts on less visually-cluttered image types.
Comparing GPT-4V with multi-modal input to text-
only GPT-4 and GPT-4V on problems with differ-
ent types of images, it is observed that improve-
ments are achieved on simpler image types, e.g.
Linear Data Structure, Tree, 2D, and Map. On
other visually cluttered categories such as Graph,
Chessboard and Patterns, the addition of images
hurts the performance. GPT-4V also produces
worse results on Others, which consists of mis-
cellaneous cases including complex annotations,
which are challenging for the model to interpret.

Image replacement with generated captions
helps, but Captioning CoT does not. Table 3
and 4 lists the results with the two caption prompt-
ing strategies. The vision models can generate
informative captions (though often inaccurate; see
case studies in Section 6.3.1), as the text-only mod-
els all improve from their caption-free settings us-
ing the Image Replacement strategy. However,
interestingly, all LMMs prompted with Caption-
ing Chain of Thought suffer a decline in the pass
rates. A possible explanation is that the captions
lengthen the context, while the images still remain
in the context, causing trouble for the models to
determine where to attend.

6.2 Error Analysis

To facilitate the understanding of the models’ bot-
tleneck in solving MMCode problems, an identical
subset of 50 questions are randomly selected from
the failure cases of GPT-4V and LLaVA-13B and
reviewed. Figure 4 presents the results. The ma-
jority of errors arise in the wrong understanding
of the problems, where executable codes are gen-
erated but with wrong results. GPT-4V produces
fewer runtime errors than LLaVA-13B, including
Access Errors (e.g. IndexError, KeyError), Type
Errors (e.g. calling non-existing methods of an
object), and Math Errors (e.g. ZeroDivisionError).
Notably, LLaVA-13B makes many elementary mis-
takes such as wrong Input Parsing and NameError
(e.g. usage of variables undefined or defined af-
terward). These errors prevent the programs from
producing outputs that can be checked, resulting in
a decrease in Problem Understanding errors.

6.3 Case Study

6.3.1 Caption Quality

Figures 5 to 16 in Appendix F showcase the cap-
tions generated by GPT-4V and Gemini Pro Vision
of 12 images from different categories. Generally,
GPT-4V generates more accurate and more insight-
ful captions than Gemini Pro Vision. However,
both models can hallucinate the images, especially
on visually complex elements such as Graph (Fig-
ure 10). On the easier image of a Tree with fewer
nodes and edges, both models produce correct ex-
planations (Figure 9).

6.3.2 Code Quality

We examined solutions generated by GPT-4V in
section G in the Appendix. Apart from complex

743

logic errors and inefficient implementations (Sec-
tion G.1, it still makes trivial mistakes, e.g. nam-
ing variables after built-in functions (Section G.2),
reading inputs when the problem does not ask it to
(Section G.3).

7 Conclusion

In this paper, we present MMCode, the first multi-
modal coding dataset for evaluating algorithmic
problem-solving skills in image-text interwoven
contexts. We benchmarked a range of state-of-
the-art LLMs and LMMs on MMCode and pro-
vide a detailed analysis. Despite their advanced
capabilities, these models demonstrate a signifi-
cant challenge in leveraging visual contexts for
code generation. We believe that MMCode will
catalyze further research and innovation, paving
the way for the creation of Al systems capable of
handling sophisticated visual and textual reasoning
in programming and beyond.

8 Limitations

This work currently focuses on Python solutions,
following the approaches outlined in Li et al.
(2023b); Hendrycks et al. (2021). Although sup-
port for additional programming languages could
be achieved through similar execution-based verifi-
cation, configuring the necessary environments for
these languages is a task for future endeavors.

9 Acknowledgement

This work is partially supported by National Natu-
ral Science Foundation of China Young Scientists
Fund(No. 62206233) and Hong Kong RGC ECS
(No. 22200722).

References

Ritu Agarwal and Atish P Sinha. 2003. Object-oriented
modeling with uml: a study of developers’ percep-
tions. Communications of the ACM, 46(9):248-256.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.

2021. Program synthesis with large language models.
arXiv preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yew Ken Chia, Vernon Toh Yan Han, Deepanway
Ghosal, Lidong Bing, and Soujanya Poria. 2024.
Puzzlevqa: Diagnosing multimodal reasoning chal-
lenges of language models with abstract visual pat-
terns. arXiv preprint arXiv:2403.13315.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
arXiv preprint arXiv:2105.09938.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

744

https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2204.02311.pdf
https://arxiv.org/pdf/2204.02311.pdf

Kaixin Li, Qisheng Hu, James Zhao, Hui Chen, Yuxi
Xie, Tiedong Liu, Michael Shieh, and Junxian He.
2024. InstructCoder: Instruction tuning large lan-
guage models for code editing. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 4: Student Research
Workshop), pages 50-70, Bangkok, Thailand. Asso-
ciation for Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim,
et al. 2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhi-
hong Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li.
2023b. Taco: Topics in algorithmic code generation
dataset. arXiv preprint arXiv:2312.14852.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092-1097.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024a. Visual instruction tuning. Advances in
neural information processing systems, 36.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. 2023. Mm-
bench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507-2521.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023a. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

10

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2023. Codegen: An open large
language model for code with multi-turn program
synthesis. In The Eleventh International Conference
on Learning Representations.

Bashar Nuseibeh and Steve Easterbrook. 2000. Require-
ments engineering: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering,
pages 35-46.

OpenAl. 2022. Introducing ChatGPT.
openai.com/blog/chatgpt.

https://

OpenAl. 2023a. Gpt-4 technical report. https://
arxiv.org/pdf/2303.08774.

OpenAl. 2023b. Gpt-4v(ision) system card.
https://cdn.openai.com/papers/GPTV_
System_Card.pdf. Accessed: 2024-02-03.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al.
2023. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Team Gemini, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugbench: Evaluating debugging capability of large
language models. arXiv preprint arXiv:2401.04621.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,

745

https://aclanthology.org/2024.acl-srw.6
https://aclanthology.org/2024.acl-srw.6
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/pdf/2303.08774
https://arxiv.org/pdf/2303.08774
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://arxiv.org/pdf/2211.05100.pdf
https://arxiv.org/pdf/2211.05100.pdf

Faisal Azhar, et al. 2023a. Llama: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe
Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Shuiguang Deng, et al. 2023a. Code-
scope: An execution-based multilingual multitask
multidimensional benchmark for evaluating llms on
code understanding and generation. arXiv preprint
arXiv:2311.08588.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen,
and Wen Wang. 2023b. Codetransocean: A compre-
hensive multilingual benchmark for code translation.
arXiv preprint arXiv:2310.04951.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023.
mplug-owl: Modularization empowers large lan-

guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2023. Mmmu:
A massive multi-discipline multimodal understand-
ing and reasoning benchmark for expert agi. arXiv
preprint arXiv:2311.16502.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual benchmarking
on humaneval-x. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5673-5684.

11

A Data Sources

The data in MMCode is collected from the follow-
ing websites>:

* AtCoder: https://atcoder. jp

e Aizu: https://judge.u-aizu.ac. jp/
onlinejudge/
e CodeChef: https://www.codechef.com

* CodeForces: https://codeforces.com®

e CodeWars: https://www.codewars.com

* Project Euler: https://projecteuler.

net’

¢ GeeksForGeeks:
geeksforgeeks.org

https://www.

e HackerRank:
com

https://www.hackerrank.

* LeetCode: https://leetcode.com
* Open Kattis: https://open.kattis.com/

The statistical data of the quantity of questions
and images retained from each platform can be
found in Table 5. In total, MMCode comprises
3548 programming questions. Among the sources,
CodeForces and Aizu contribute the most questions
and images in MMCode.

SThe license is Apache 2.0 from TACO unless specifically
stated.

%No license found.

"CC BY-NC-SA 4.0.

746

https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://atcoder.jp
https://judge.u-aizu.ac.jp/onlinejudge/
https://judge.u-aizu.ac.jp/onlinejudge/
https://www.codechef.com
https://codeforces.com
https://www.codewars.com
https://projecteuler.net
https://projecteuler.net
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.hackerrank.com
https://www.hackerrank.com
https://leetcode.com
https://open.kattis.com/

Platform # Questions # Images
AtCoder 139 234
Aizu 694 1349
CodeChef 90 134
CodeForces 1941 3837
Project Euler 132 176
GeeksForGeeks 128 192
Open Kattis 145 195
HackerRank 169 316
CodeWars 33 46
LeetCode 77 141
Total 3548 6620

Table 5: The data sources of MMCode and the number
of questions and images from each source.

B Definition of Image Categories

* Linear Data Structure: This category in-
cludes diagrams that illustrate sequential data
structures such as arrays, linked lists, and
queues, where data elements are arranged in
a linear order.

Tree: Dedicated to the data structure of trees,
focusing on hierarchical representations.

Graph: Includes visuals of graph data struc-
tures where nodes are connected by edges,
e.g., directed and undirected graphs. If the
problem description is about graphs but the
image depicts a tree (e.g. after pruning), it is
still classified under this category.

2D Geometry: Focuses on two-dimensional
geometric shapes and properties, including
points, lines, polygons, etc., emphasizing spa-
tial relationships in a plane.

3D Geometry: Comprises images that de-
pict three-dimensional objects and structures,
such as 3D coordinate systems, orthographic
projections, and nets of cubes, showcasing
the complexity and characteristics of three-
dimensional space.

Chessboard: This category includes images
showing a chessboard, where the model is
expected to solve a problem with respect to
some rules of playing.

12
747

* Map: Pertains to images displaying maps

that show positions. If the image features a
graph functioning as a map, it falls into this
category.

Patterns: Covers images that involve recog-
nizing, generating, or solving puzzles and pat-
terns, which could be numerical, geometrical,
or based on character arrangements.

Table: Dedicated to tabular data presenta-
tions.

Pseudocode: Includes images that contain
pseudocode or simplified code, posing chal-
lenges to the dense OCR ability of the models.

Others: Serves as a miscellaneous category
for visual content that does not fit into other
categories, e.g. bar graphs, pie charts, and
Venn diagrams.

C Prompts

All prompts used in this work are listed in Table 6.

Type

Prompt

Problem Solving

System Prompt (if applicable):

You are a professional programming contester trying to solve
algorithmic problems. The problems come with a description and
some images, and you should write a Python solution.

User Prompt:
You are required to solve a programming problem. Please enclose
your code inside a ~~ “python™ ™" block. Do not write a main()

function. If a Call-Based format is used, return the result in an
appropriate place instead of printing it.

{problem statement}

Caption Generation

Please describe and explain the images in the programming problem.
The readers will not be able to see the image, so make sure you
include all important information for solving the problem. Please
enclose your explanations inside ~~ ~plain” " blocks, one for each
image. Your output should look like:

Caption:

" “plain

The image shows...” ™~

{problem statement with only one image}

Table 6: The prompts used in this study.

13
748

D Data Samples

D.1 An example of a question with a pseudo code image

Bob is playing a game named "Walk on Matrix". In this game, player is given an n X m matrix
A = (a;;), i.e. the element in the i-th row in the j-th column is a; ;. Initially, player is located at
position (1, 1) with score a1 ;. To reach the goal, position (n, m), player can move right or down,
i.e. move from (z,y) to (z,y + 1) or (x + 1,y), as long as player is still on the matrix. However,
each move changes player’s score to the bitwise AND of the current score and the value at the
position he moves to. Bob can’t wait to find out the maximum score he can get using the tool he
recently learnt — dynamic programming. Here is his algorithm for this problem:

Algorithm 1 Bob’s Dynamic Programming Algorithm

Input: matrix A = (a; j)nxm:
Output: maximum score S after reaching the goal:

1: initialize dp; ; <=0, for all 0 <@ < n, 0 < j <m except dpg1 < a1
2: fori=1—ndo

3 for j=1—mdo

4: dp; j < max(dp;—1 j&a; ;. dp; j—1&a; ;)

5: end for

6: end for

7S 4 dppm

However, he suddenly realizes that the algorithm above fails to output the maximum score for
some matrix A. Thus, for any given non-negative integer k, he wants to find out an n x m matrix
A = (a;,j) such that:

* 1 < n,m < 500 (as Bob hates large matrices);
*0<a;; <3- 10° forall 1 < i < n,1 < j < m (as Bob hates large numbers);

* the difference between the maximum score he can get and the output of his algorithm is
exactly k. It can be shown that for any given integer k such that 0 < k < 10°, there exists a
matrix satisfying the above constraints.

Input

The only line of the input contains one single integer k (0 < k < 10°).

Output

Output two integers n, m (1 < n,m < 500) in the first line, representing the size of the matrix.
Then output n lines with m integers in each line, a; ; in the (i 4+ 1)-th row, j-th column.
Examples

Input

0

Output

11
300000

Input
1

14
749

Output

34
7 3 31
4 836
777 3
Note

In the first example, the maximum score Bob can achieve is 300000, while the output of his
algorithm is 300000.

D.2 An example of a question with a 2D geometry image

You have most definitely heard the legend of King Arthur and the Knights of the Round Table.
Almost all versions of this story proudly point out that the roundness of the Round Table is closely
related to Arthur’s belief of equality among the Knights. That is a lie! In fact, Arthur’s choice of
table is conditioned by his childhood traumas. In fact, Arthur was forced to clean up quadratic
tables from a young age after a tournament in pick-up sticks had been played on them. After the
tournament, typically there would be a bunch of sticks on the table that do not touch each other. In
the spirit of the game, the organizers issued strict regulations for the table cleaners. More precisely,
the sticks on the table need to be removed one by one in a way that the cleaners pull them in the
shortest way towards the edge of the table closest to where they are currently sitting. They also
mustn’t rotate or touch the other sticks while doing this (not even in the edge points). In this task,
we will represent the table in the coordinate system with a square that has opposite points in the
coordinates (0,0) and (10000, 10 000), whereas the sticks will be represented with straight line
segments that lie within that square. We will assume that Arthur is sitting at the edge of the table
lying on the z-axis. Then the movement of the stick comes down to translating the line segment
along the shortest path towards the z-axis until the stick falls off the table (as shown in the image).
It is your task to help Arthur determine the order of stick movements that meets the requirements
from the previous paragraph.

o
.

Input
The first line of input contains the integer N (1 < N < 5000), the number of sticks on the table.

15
750

Each of the following IV lines contains four integers x1, y1, 2, y2 (0 < z1,y1, 2, y2 < 10000)
that denote the edge points of a stick.

Output

The first and only line of output must contain space-separated stick labels in the order which they
need to be taken off the table. A stick’s label corresponds to its position in the input sequence. If
there are multiple possible solutions, output any of them.

Sample Input 1

w NN = = b
w = W
U1 N W
w w NN

Sample Output 1
2413

Sample Input 2
4

A~ NN -2
S NV NS
w w S -
—_ W W =

Sample Output 2
4312
Sample Input 3

3
4655
21151
3287

Sample Output 3
2 31

D.3 An example of a question with a 3D geometry image

In AD 3456, the earth is too small for hundreds of billions of people to live in peace. Interstellar
Colonization Project with Cubes (ICPC) is a project that tries to move people on the earth to space
colonies to ameliorate the problem. ICPC obtained funding from governments and manufactured
space colonies very quickly and at low cost using prefabricated cubic blocks.

The largest colony looks like a Rubik’s cube. It consists of 3 x 3 x 3 cubic blocks (Figure J.1A).
Smaller colonies miss some of the blocks in the largest colony.

When we manufacture a colony with multiple cubic blocks, we begin with a single block. Then
we iteratively glue a next block to existing blocks in a way that faces of them match exactly. Every
pair of touched faces is glued.

16
751

e]

v
(3,3,0)

B Point A

Figure J.1: Largest colony

However, just before the first launch, we found a design flaw with the colonies. We need to add a
cable to connect two points on the surface of each colony, but we cannot change the inside of the
prefabricated blocks in a short time. Therefore we decided to attach a cable on the surface of each
colony. If a part of the cable is not on the surface, it would be sheared off during the launch, so we
have to put the whole cable on the surface. We would like to minimize the lengths of the cables
due to budget constraints. The dashed line in Figure J.1B is such an example.

Input

The input contains a series of datasets. Each dataset describes a single colony and the pair of the
points for the colony in the following format.

T1Y121T2Y272

b0,0,001,0,002,0,0

bo,1,001,1,002,1,0

bo,2,001,2,002,2,0

b0,0,161,0,162,0,1

bo,1,101,1,102,1,1

bo,2,1b1,2,162,2,1

b0,0,2b1,0,202,0,2

bo,1,2b1,1,202.1 2

bo,2,2b1,22022 2

(x1,y1,21) and (x2,y2, z2) are the two distinct points on the surface of the colony, where
T1,T2,Y1,Y2, 21, 22 are integers that satisfy 0 < x1,x2,y1,¥2,21,22 < 3. bk is '# when
there is a cubic block whose two diagonal vertices are (¢, j,k) and (i + 1,5 + 1,k + 1), and b; j
is °. if there is no block. Figure J.1A corresponds to the first dataset in the sample input, whereas
Figure J.1B corresponds to the second. A cable can pass through a zero-width gap between two
blocks if they are touching only on their vertices or edges. In Figure J.2A, which is the third
dataset in the sample input, the shortest cable goes from the point A (0, 0, 2) to the point B (2, 2,
2), passing through (1, 1, 2), which is shared by six blocks. Similarly, in Figure J.2B (the fourth
dataset in the sample input), the shortest cable goes through the gap between two blocks not glued
directly. When two blocks share only a single vertex, you can put a cable through the vertex

17
752

(Figure J.2C; the fifth dataset in the sample input).
You can assume that there is no colony consisting of all 3 x 3 x 3 cubes but the center cube.
Six zeros terminate the input.

rz_l:l.fr,;j“ [

C TRainEB (22—

S .
S (2 %
A — 7L ___Ps:ain*tEa !

Figure J.2: Largest colony

Output

For each dataset, output a line containing the length of the shortest cable that connects the two
given points. We accept errors less than 0.0001. You can assume that given two points can be
connected by a cable.

Sample Input

000333
Hi#
Hit#
Hit#
Hit#
Hit#
it
Hit#
Hit#
Hit#
330003
#..
Hit#
H#it#
Hit#
it
Hit#
#.#
Hit#
it
002222

#it.

18
753

#it.

012211

.
#..
#i#.
it
320232
Hit#
L H#

H.
L H#
L H#
LH#
000000

Output for the Sample Input

6.70820393249936941515
6.47870866461907457534
2.82842712474619029095
2.23606797749978980505
2.82842712474619029095

D.4 An example of a question with a tree image

Let’s define the Eulerian traversal of a tree (a connected undirected graph without cycles) as
follows: consider a depth-first search algorithm which traverses vertices of the tree and enumerates
them in the order of visiting (only the first visit of each vertex counts). This function starts from
the vertex number 1 and then recursively runs from all vertices which are connected with an edge
with the current vertex and are not yet visited in increasing numbers order. Formally, you can
describe this function using the following pseudocode:

next_id = 1
id = array of length n filled with -1
visited = array of length n filled with false

function dfs(v):
visited[v] = true
id[v] = next_id
next_id += 1
for to in neighbors of v in increasing order:

19
754

if not visited[to]:
dfs(to)

You are given a weighted tree, the vertices of which were enumerated with integers from 1 to n
using the algorithm described above.

A leaf is a vertex of the tree which is connected with only one other vertex. In the tree given to
you, the vertex 1 is not a leaf. The distance between two vertices in the tree is the sum of weights
of the edges on the simple path between them.

You have to answer ¢ queries of the following type: given integers v, [and r, find the shortest
distance from vertex v to one of the leaves with indices from [to r inclusive.

Input

The first line contains two integers 7 and ¢ (3 < n < 500000, 1 < g < 500 000) — the number
of vertices in the tree and the number of queries, respectively.

The (i — 1)-th of the following n — 1 lines contains two integers p; and w; (1 < p; < 1,
1 < w; < 10%), denoting an edge between vertices p; and 7 with the weight w;.

It’s guaranteed that the given edges form a tree and the vertices are enumerated in the Eulerian
traversal order and that the vertex with index 1 is not a leaf.

The next ¢ lines describe the queries. Each of them contains three integers v;, I;, r; (1 < v; < n,
1 < l; <r; < n), describing the parameters of the query. It is guaranteed that there is at least one
leaf with index x such that [; < x < ;.

QOutput

Output g integers — the answers for the queries in the order they are given in the input.
Examples

Input

3
10

A~ 01 =2 ww = =W,

5

1 1000000000
2 1000000000
1 1000000000
1 1000000000
345

215

245

Output

20
755

3000000000
1000000000
2000000000

Input

11 8
7
1

N
S

_a AN 2 a g a W NN

7 11
10 11
1 11
145

Output

8
8
9
16
9
10
0
34

Note
In the first example, the tree looks like this:

1
2
1
1
5
6
6
5
9
9
5
1
9
6
9
9
8
1

In the first query, the nearest leaf for the vertex 1 is vertex 4 with distance 3. In the second query,
the nearest leaf for vertex 5 is vertex 5 with distance 0. In the third query, the nearest leaf for
vertex 4 is vertex 4; however, it is not inside interval [1, 2] of the query. The only leaf in interval
[1,2] is vertex 2 with distance 13 from vertex 4.

21
756

D.5 An example of a question with a graph image

Fox Ciel just designed a puzzle game called "Polygon"! It is played using triangulations of a
regular n-edge polygon. The goal is to transform one triangulation to another by some tricky rules.

(a) {b) (c)

Triangulation of an n-edge polygon is a set of n — 3 diagonals satisfying the condition that no two
diagonals share a common internal point.

For example, the initial state of the game may look like (a) in the figure. And your goal may look
like (c). In each step, you can choose a diagonal inside the polygon (but not one of the edges of
the polygon) and flip this diagonal.

Suppose you are going to flip a diagonal a — b. There always exist two triangles sharing a — b as a
side, let’s denote them as a — b — cand a — b — d. As a result of this operation, the diagonal a — b
is replaced by a diagonal ¢ — d. It can be easily proven that after the flip operation, the resulting
set of diagonals is still a triangulation of the polygon.

So in order to solve the above case, you may first flip diagonal 6 — 3, it will be replaced by
diagonal 2 — 4. Then you flip diagonal 6 — 4 and get figure (c) as a result.

Ciel just proved that for any starting and destination triangulations, this game has a solution. She
wants you to solve it in no more than 20, 000 steps for any puzzle satisfying n < 1000.

Input

The first line contains an integer n (4 < n < 1000), the number of edges of the regular polygon.
Then follows two groups of (n — 3) lines describing the original triangulation and goal triangula-
tion.

Description of each triangulation consists of (n — 3) lines. Each line contains 2 integers a; and b;
(1 < a4, b; < n), describing a diagonal a; — b;.

It is guaranteed that both original and goal triangulations are correct (i.e., no two diagonals share
a common internal point in both of these triangulations).

Output

First, output an integer k (0 < k& < 20, 000): the number of steps.

Then output £ lines, each containing 2 integers a; and b;: the endpoints of a diagonal you are
going to flip at step 7. You may output a; and b; in any order.

If there are several possible solutions, output any of them.

Examples

Input

41 32 4
Output
11 3
Input

22
757

62 63 64 66 25 24 2

Output

26 36 4

Input

87 12 77 36 34 66 16 26 36 46 8
Output

37 37 27 1

Note
Sample test 2 is discussed above and shown on the picture.

D.6 An example of a question with an unrelated image

Bash got tired on his journey to become the greatest Pokemon master. So he decides to take a
break and play with functions.
Bash defines a function fy(n), which denotes the number of ways of factoring n into two factors
p and ¢ such that ged(p, ¢) = 1. In other words, fo(n) is the number of ordered pairs of positive
integers (p, q) such that p - ¢ = n and ged(p, q) = 1.
But Bash felt that it was too easy to calculate this function. So he defined a series of functions,
where f,;1 is defined as:

fra(n)= ¥ LG
Where (u, v) is any ordered pair of positive integers, they need not to be co-prime.
Now Bash wants to know the value of f,.(n) for different » and n. Since the value could be huge,
he would like to know the value modulo 10° + 7. Help him!
Input
The first line contains an integer ¢ (1 < ¢ < 10%) — the number of values Bash wants to know.
Each of the next ¢ lines contains two integers 7 and n (0 < r < 10%, 1 < n < 10), which denote
Bash wants to know the value f,(n).
Output
Print ¢ integers. For each pair of r and n given, print f,.(n) modulo 10° + 7 on a separate line.
Example
Input

50

301 253
652 54
48

Output
85254630

23
758

D.7 An example of a question with a table image

At a regular competition, Vladik and Valera won a and b candies respectively. Vladik offered 1
his candy to Valera. After that, Valera gave Vladik 2 his candies, so that no one thought that he
was less generous. Vladik for the same reason gave 3 candies to Valera in the next turn.

More formally, the guys take turns giving each other one candy more than they received in the
previous turn.

This continued until the moment when one of them couldn’t give the right amount of candy.
Candies, which guys got from each other, they don’t consider as their own. You need to know
who is the first who can’t give the right amount of candy.

Input

A single line of input data contains two space-separated integers a,b (1 < a,b < 10%) — the
number of Vladik and Valera candies respectively.

Output

Print a single line "Vladik" if Vladik is the first who can’t give the right amount of candy, or
"Valera" otherwise.

Examples

Input

11
Output
Valera
Input
76
Output
Vladik
Note
[lustration for the first test case:
step Vladik Valera
0 1 1

1 0 1

Illustration for the second test case:

step Vladik Valera

0 7 6

1 6 6

2 6 4

3 3 4

4 3 0
24

759

D.8 An example of a question with an linear data structure image

Dima is a beginner programmer. During his working process, he regularly has to repeat the
following operation again and again: to remove every second element from the array. One day
he has been bored with easy solutions of this problem, and he has come up with the following
extravagant algorithm.

Let’s consider that initially, the array contains n numbers from 1 to n and the number % is located
in the cell with the index 2¢ — 1 (Indices are numbered starting from one) and other cells of the
array are empty. Each step Dima selects a non-empty array cell with the maximum index and
moves the number written in it to the nearest empty cell to the left of the selected one. The process
continues until all » numbers will appear in the first n cells of the array. For example if n = 4, the

array is changing as follows:

.

1

IL.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
v I
1L [24713 IV.[1T3[2]4
1 2 3 4 b5 6 7 1 2 3 4 5 6 7

You have to write a program that allows you to determine what number will be in the cell with
index z (1 < z < n) after Dima’s algorithm finishes.

Input

The first line contains two integers n and ¢ (1 < n < 10'8,1 < ¢ < 200, 000), the number of
elements in the array and the number of queries for which it is needed to find the answer.

Next ¢ lines contain integers z; (1 < x; < n), the indices of cells for which it is necessary to
output their content after Dima’s algorithm finishes.

Output

For each of ¢ queries, output one integer number, the value that will appear in the corresponding
array cell after Dima’s algorithm finishes.

Examples

Input

4 3234
Output
324

Input

13 410548
Output
13389

Note
The first example is shown in the picture.
In the second example, the final array is [1,12,2,8,3,11,4,9,5,13,6, 10, 7].

25
760

D.9 An example of a question with an other image

Even polar bears feel cold when lying on the ice. Therefore, a polar bear Alice is going to make a
carpet. The carpet can be viewed as a grid with height /& and width w. Then the grid is divided
into h X w squares. Alice is going to assign one of k different colors to each square. The colors
are numbered from 1 to k. She may choose not to use all of the colors.

However, there are some restrictions. For every two adjacent squares (squares that share an edge)
x and y, there is a color constraint in one of the forms:

* color(x) = color(y), or
* color(x) # color(y).

Example of the color constraints:

I
+
.+.

= #

L 1 |

,
+
-
.+.
N
-
1

Ideally, Alice wants to satisfy all color constraints. But again, life in the Arctic is hard. It is not
always possible to satisfy all color constraints. Fortunately, she will still be happy if at least % of
the color constraints are satisfied.

If she has 4 colors she can color the carpet in the following way:

26
761

And she is happy because %—? of the color constraints are satisfied, and % > %. Your task is to
help her color the carpet.

Input

The first line contains three integers h, w,k (2 < h,w < 1000,1 < k < w - h). The next
2h — 1 lines describe the color constraints from top to bottom, left to right. They contain

w— 1, w,w—1,w,...,w — 1 characters respectively. Each color constraint is represented by
a character "E" or "N", where "E" means " = " and "N" means " # ". The color constraints are
listed in the order they are depicted in the picture.

Output

If there is a coloring that satisfies at least % of the color constraints, print "YES" (without quotes)
on the first line. In each of the next h lines, print w integers describing the coloring. Otherwise,
print "NO" (without quotes).

Examples

Input

3 4 4ENENNEENEEENENENN
Output
YES

w w =
w =
N — N
A =N

27
762

D.10 An example of a question with an unrelated image

It’s another day in the office, and you’re a mastermind

of not doing any work yourself. Instead, you’ll go to

your coworkers for “help,” but secretly have them do ?gg i—'z@ f?’?ﬁﬁ$&%aﬁﬁﬁg%§
all the work. ” . .
You’ve determined that the more one of your coworkers MY CODE'S COrPILING.
helps you, the more annoyed they become. You’ve also
been able to determine how much more annoyed a
coworker gets every time you ask them for help. At the
beginning of the day, a coworker is initially @ annoyed
at you. That’s their annoyance level. Every time you
ask them for help though, they become d more annoyed
at you — their annoyance level a increases by a constant
amount d so that a = a + d.

You want to complete a project of h tasks solely with
“help” from your coworkers, but you need to be careful not to annoy any of them too much.
What’s the best you can do?

HEY! GET BFCK

28
763

Model Linear Tree Graph 2D 3D Chess- Map Math Patterns Table PS;:;?'

board Others Average

Language Only Inputs
LLaVA-1.5-7B (text-only) 8.1 2.1 13 06 01 67 00 02 29 1.8 0.0 2.7 22
LLaVA-1.5-13B (text-only) 98 04 39 04 06 0.1 0.1 42 4.0 1.8 11.1 1.7 29

QWEN-VL (text-only) 4.3 19 02 25 30 93 38 1.7 0.0 1.8 10.2 2.2 2.7
CodeGemma-7b-Instruct 205 7.1 48 66 103 143 108 75 18.1 8.3 20.0 7.5 11.1
CodeLLaMA-7b-instsruct 121 39 54 56 04 36 1.7 59 8.7 6.5 10.3 0.9 54
CodeLLaMA-13b-instruct 9.3 7.9 50 53 28 68 2.1 1.7 3.8 5.4 10.0 1.4 49

DeepSeekCoder-7b-instruct ~ 27.4 10.8 13.8 64 9.8 380 209 174 15.7 12.7 12.4 12.7 16.5
DeepSeekCoder-33b-instruct 31.1 7.2 19.7 22.8 135 310 266 18.7 18.5 15.5 31.1 25.3 21.5

LLaMA3-instruct 178 42 109 104 73 11.1 116 7.7 7.9 22.8 1.2 6.0 9.9
MagiCoder 249 84 17.1 86 3.0 204 175 104 21.5 12.8 21.7 19.5 15.3
StarCoder-15b-instruct 163 5.0 49 126 44 25 36 72 10.3 5.7 10.7 2.9 7.5
WizardCoder 112 54 6.1 82 22 107 63 10.1 15.3 5.9 21.0 6.2 8.6
“GeminiPro ~ ~ ~ T T 250 39 49 75 60 136 132 43 ~ 21.1 T 81 204 171 = 120
GPT-3.5-turbo-1106 383 18.6 179 17.1 146 254 208 16.8 26.9 19.0 21.9 18.6 21.0
GPT-4 40.3 22.0 209 195 17.7 296 253 247 48.4 24.1 33.8 37.2 28.0
GPT-4V (text-only) 524 179 23.1 200 174 379 235 20.3 34.4 30.4 449 39.6 28.5
GPT-4o (text-only) 40.8 10.1 158 183 146 315 162 28.7 30.8 8.8 45.1 29.2 23.3
Vision + Language Inputs
LLaVA-1.5-7B 126 4.5 0.6 34 27 6.7 0.8 0.1 0.2 2.6 0.0 0.4 32
LLaVA-1.5-13B 8.2 39 0.1 0.1 06 07 32 1.0 37 1.8 0.7 0.3 2.3
QWEN-VL 1.1 23 02 07 00 28 0.1 23 4.9 3.7 0.0 1.6 2.5
“Gemini Pro Vision 206 49 ~ 59 7.1 69 108 150 50 ~ 162 ~ 79 312 75 T 107
GPT-4V 59.7 229 21.3 19.1 19.8 372 265 162 39.2 24.8 43.3 29.8 29.5
GPT-40 447 128 200 13.0 159 349 342 316 37.3 15.2 50.0 25.5 27.0

Table 7: Test case average grouped by different image categories.

E More experiments

E.1 Test Case Average Pass Rates

We also report partial success metrics measured by the test case average following APPS[1], presented in
Table 7. We observed that it aligns well with the pass@1 reported in Table 2.

E.2 Image Replacement Captioning

In this experiment, language-only models are prompted with Image Replacement captioning, but the
captions are generated by different models. The results are showcased in Table 8. GPT-4’s accuracy drops
when using Gemini Pro Vision’s captions, while Gemini Pro yields identical results.

Model Caption Model Linear Tree Graph 2D 3D Chess- Map Math Patterns Table Pseudo- Others Average
board code

Gemini Pro Gemini Pro Vision 160 00 0.0 6700 67 36 00 11.1 7.1 20.0 7.7 6.1

Gemini Pro GPT-4V gra-toepreviewy 160 0.0 00 6700 67 3.6 0.0 11.1 7.1 20.0 7.7 6.1

GPT-4 (gi-4-1106-previewy Gemini Pro Vision 320 34 174 6777 333 250 120 259 214 400 19.2 18.6
GPT-4 (gprs-1106-previewy GPT-4V (gpra-tiospreviewy 32.0 103 17.4 6.7 3.8 333 250 12.0 333 214 400 19.2 19.0

Table 8: Image Replacement captioning performance measured by Pass@1 (%) of models with different caption
sources.

E.3 Image Positions

Since the problems are typically long, it is uncertain if the images receive sufficient attention of the model.
Motivated by the findings of Liu et al. (2024b), we explored whether the position of the images affects
the performance.

29
764

The results in Table 9 illustrate the impact of image positioning in the problem statements. Specifically,
for Gemini Pro Vision, maintaining images in their original positions results in the highest pass rates.
Grouping the images at either the beginning or the end of the texts hurt performance. Notably, GPT-4V
demonstrates significant robustness, with its overall accuracy remaining unaffected.

Model Image position Linear Tree Graph 2D 3D Chess- Map Math Patterns Table Pseudo- Others Total
board code

in-place 125 00 43 00 38 67 7.1 0.0 7.4 0.0 30.0 0.0 5.0

Gemini Pro Vision front 87 00 00 0000 00 7.1 0.0 3.7 0.0 30.0 38 34
end 160 00 00 0.0 38 00 36 00 74 0.0 30.0 38 46

in-place 40.0 69 13.0 13.83.8 214 240 95 259 214 400 208 194

GPT-4V (gpt-4-1106-preview) front 360 69 87 69 7.7 500 240 0.0 333 143 400 208 194
end 400 69 130 10377 214 360 143 185 143 400 208 194

T3]

Table 9: The impact of image positioning. “in-place” refers to images interspersed within the text, while “front
and “end” indicate images grouped at the start or end of the problem statement.

30
765

F Case Study: Captions

Linear Data Structure

IL. [9 3

1N

L[4 9

]
e

=]
=]
=t
[S
<
-
[
(==
|

':l"':' —_— [|

L[2[4 IV.[1T3[2]4
1 2 3 4 6 7 1 2 3 4 5 6 7

Gemini Vision Pro

The image shows an array of 4 elements, with indices ranging from 1 to 7. The elements
are arranged as follows:
[17 27 35 47 —_ = _]

GPT-4V

The image shows a sequence of four diagrams labeled I. to IV., representing the steps of
Dima’s algorithm applied to an array with n = 4 elements. Each diagram depicts an array
with seven cells, numbered from 1 to 7 at the bottom. Initially, the numbers 1 to 4 are
placed in cells 1, 3, 5, and 7, respectively. The diagrams illustrate the process of moving
the numbers to the left into the nearest empty cells until all numbers are in the first four
cells of the array. Arrows indicate the movement of numbers from one cell to another.

[|

Figure 5: An example of a Linear Data Structure image. Gemini Pro Vision only sees one subfigure, and
generates unusable captions. GPT-4V’s caption is correct, but the details of step II, III and IV are not included.

766

Algorithm 1 Bob’s Dynamic Programming Algorithm

Input: matrix A = (a; ;)nxm:
Output: maximum score S after reaching the goal:

1: initialize dp; ; < 0, for all 0 <@ <n, 0 < j <m except dpg1 < a1
2: fori=1—ndo

3 for j=1—mdo

4 dp; j < max(dp;_1 j&a; ;. dp; j_1&a; ;)

5 end for

6: end for

7 S 4 dppm

Gemini Vision Pro

The image shows Bob’s dynamic programming algorithm. It takes a matrix A as input and
outputs the maximum score S after reaching the goal. The algorithm initializes a 2D array
dp with all zeros, except for dp[0, O] which is set to A[1, 1]. Then, for each row i from 1
to n, the algorithm iterates through each column j from 1 to m and updates dpl[i, j] to the
maximum of dp[i - 1, j] & A[4, jl, dpli, j - 1] & Ali, j|, and dp[i- 1,] - 1] & A[i, j]. Finally,
the algorithm returns dp[n, m].

GPT-4V

The image shows a text box with the title "Algorithm 1 Bob’s Dynamic Programming
Algorithm" and contains pseudocode for a dynamic programming approach to solve a
problem related to a game named "Walk on Matrix". The algorithm takes as input an n
by m matrix A with elements a; ; and outputs the maximum score S after reaching the
goal. The pseudocode outlines the steps of initializing a 2D array dp with zeros, except
for dp[0,1] which is set to a1 1. It then iterates through the matrix, updating the dp array
with the maximum of two bitwise AND operations involving the current element and its
adjacent elements to the left and above. The final score S is set to the value of dp[n,m].

Figure 6: An example of a Pseudocode image. Gemini Pro Vision makes a mistake in the array index and
hallucinates, while GPT-4V’s caption is correct.

767

2D Geometry

v

e

[y
N
w
B
w
(o)}
~

o

Gemini Vision Pro

The image shows a square representing the table with four sticks on it. The sticks are
represented by line segments. The first stick is a diagonal line from (1, 3) to (2, 2). The
second stick is a horizontal line from (1, 1) to (3, 2). The third stick is a diagonal line from
(2, 4) to (7, 3). The fourth stick is a vertical line from (3, 3) to (5, 3). The red dotted lines
show the shortest paths for removing the sticks. The first stick is removed by moving it
down to the x-axis. The second stick is removed by moving it left to the x-axis. The third
stick is removed by moving it down to the x-axis. The fourth stick is removed by moving it
left to the x-axis.

GPT-4V

The image shows a Cartesian coordinate system with a grid and three line segments
representing sticks on a table. The x-axis is labeled from -1 to 7, and the y-axis is labeled
from -1 to 4. There are three sticks: one is almost horizontal at y=3, another is slanted
and crosses the y-axis at y=1, and the third is vertical at x=3. Red dashed arrows indicate
the direction in which the sticks should be moved towards the x-axis. The vertical stick
has an arrow pointing directly downward, while the slanted stick has an arrow pointing
diagonally down to the nearest point on the x-axis. The horizontal stick does not have an
arrow, but it is implied that it would move straight down as well. This illustrates the rule
that sticks must be moved towards the x-axis along the shortest path without rotation or
touching other sticks.

Figure 7: An example of a 2D Geometry image. Both models struggle to discern the segments and extract their
attributes. 33

768

3D Geometry

A

Gemini Vision Pro

Figure J.1A shows the largest colony, which consists of 3 x 3 x 3 cubic blocks. Figure
J.1B shows a smaller colony with some blocks missing. The dashed line in Figure J.1B is
an example of a cable connecting two points on the surface of the colony.

GPT-4V

The image contains two parts labeled as Figure J.1A and Figure J.1B, illustrating examples
of space colonies made up of cubic blocks. Both parts show a three-dimensional coordinate
system with axes labeled x, y, and z.

Figure J.1A depicts a large colony that resembles a Rubik’s cube, consisting of
3 x 3 x 3 cubic blocks, forming a perfect cube.

Figure J.1B shows a smaller colony with some cubic blocks missing. The colony
is irregularly shaped due to the missing blocks. There are dashed lines indicating the
shortest path for a cable on the surface of the colony, connecting two points labeled as
Point A (3,3,0) and Point B (0,0,3). The path of the cable wraps around the surface of the
blocks, illustrating the requirement that the cable must remain on the surface.

Figure 8: An example of a 3D image. Gemini Vision Pro only saw one of the segmented lines (called “cables” in
the problem). GPT-4V interprets the image correctly.

769

Gemini Vision Pro

The image shows a tree with 5 vertices and 4 edges. The vertices are numbered from 1 to 5.
The edges are: (1, 2) with weight 10, (1, 3) with weight 1, (3, 4) with weight 2, and (3, 5)
with weight 3.

GPT-4V

The image shows a tree graph with 5 vertices labeled 1 through 5. Vertex 1 is connected to
vertex 2 with an edge weight of 10 and to vertex 3 with an edge weight of 1. Vertex 3 is
further connected to vertices 4 and 5 with edge weights of 2 and 3, respectively. The graph
is drawn with vertices represented as circles containing their labels, and the edges are lines
connecting these circles with the weights written alongside.

Figure 9: An example of a Tree image. Both models generate correct captions.

770

(a) (b) (c)

Gemini Vision Pro

The image shows a regular hexagon with 6 vertices labeled 1 through 6. There are 3
diagonals drawn in the hexagon, forming a triangulation.

GPT-4V

The image shows three figures labeled (a), (b), and (c), each representing a different
triangulation of a hexagon (a six-edged polygon). Each vertex of the hexagon is numbered
from 1 to 6 in a clockwise direction. The figures illustrate the process of transforming one
triangulation into another by flipping diagonals.

Figure (a) shows the initial triangulation with diagonals connecting vertices 1-4,
1-5, and 5-3.

Figure (b) shows an intermediate step after flipping the diagonal 6-3 to 2-4.

Figure (c) shows the goal triangulation with diagonals connecting vertices 1-4, 2-4, and
2-3.

Figure 10: An example of a Graph image. Gemini Vision Pro fails to recognize all three hexagons and the caption
is vague, missing key information of how the hexagons are constructed. GPT-4V summarizes all subfigures but
hallucinates on the vertices connected.

36
771

step Vladik Valera
0 7 6

WO N =
W W o o
o B~ D

Gemini Vision Pro

The image shows a 2x3 table with the following values:

step | Vladik | Valera
| |
01716
11617
21518
31419
413110
512111
611112
710113

GPT-4V

The image shows a table with three columns and three rows. The columns are labeled
"step”, "Vladik", and "Valera". The rows represent the steps of the candy exchange process.
At step 0, Vladik has 1 candy, and Valera also has 1 candy. At step 1, after Vladik gives 1
candy to Valera, Vladik has 0 candies left, and Valera has 2 candies.

Figure 11: An example of a Table. Surprisingly, neither of the models were able to transcript the table correctly.

772

Gemini Vision Pro

The image shows a 3x3 grid with a character called Kenus at square (1, 1). The squares are
painted black or white. Kenus can move up, down, left or right by one square. The game
is completed when Kenus reaches square (3, 3) passing only white squares. Snuke can
change the color of some of the white squares to black before the beginning of the game.
However, he cannot change the color of square (1, 1) and (3, 3).

GPT-4V

The image shows a 3x3 grid with a stick figure representing Kenus at the top left corner
(square 1,1). The grid has black and white squares, with the black squares represented by a
solid fill and the white squares by an absence of fill. The left side of the image shows the
initial state of the grid, with the top right square (1,3) and the middle left square (2,1) being
black. The right side of the image shows the same grid after two white squares have been
changed to black, specifically the middle square (2,2) and the bottom middle square (3,2).
Arrows indicate the path Kenus can take to reach the bottom right corner (3,3), moving
right, down, down, and right, avoiding black squares.

Figure 12: An example of a Map image. Gemini Pro Vision’s caption is correct overall, but important details about

the path is missing. GPT-4V recognizes the switched squares, but grounds them to wrong positions.

773

Chessboard

I—'~Mm-¢=~m|m"4

Gemini Vision Pro

The image shows a 7x7 chessboard with 7 green knights placed on it. The green knights
are placed in the following cells: (1, 2), (2, 1), (4, 1), (5, 2), (5, 7), (6, 6), and (7, 6). There
is a red knight in cell (3, 3), and a blue knight in cell (4, 5).

GPT-4V

The image shows a 7x7 section of an infinite chessboard with rows labeled 1 to 7 from
bottom to top and columns labeled 1 to 7 from left to right. There are five cells marked
with green zeroes, representing the initial knights’ positions. These cells are located at
coordinates (1,2), (2,1), (2,6), (5,2), and (5,7). There is one cell marked with a red one at
coordinates (3,3), indicating a knight placed during the process because it is under attack by
at least four knights. Another cell is marked with a blue two at coordinates (4,5), showing
that it will also have a knight placed in it after the knight in the red cell is added, as it will
then be under attack by four knights. The rest of the cells are empty.

Figure 13: An example of a Chessboard image. The descriptions are mostly correct, but both models fail to list all
green squares.

774

fon(n) = 3 Ll0H:0)

U-U=m

Gemini Vision Pro

The image shows a screenshot of a programming problem. The problem statement is as
follows:
...(Repeats the problem statement) f,4; is defined as:

fr+1(n) = Z —fT(U) ;— fr(v)

u?—v2=n

...(The rest of the problem statement)

GPT-4V

The image shows a mathematical function definition for f,;1(n) which is equal to the sum
over all ordered pairs (u,v) such that u * v = n of the average of f,(u) and f,(v). The
function f, is defined recursively, and the base function fy(n) counts the number of ways
of factoring n into two co-prime factors p and q. The image is a part of a programming
problem statement that involves calculating the value of f,(n) for given values of r and n,
modulo 107 + 7.

Figure 14: An example of a Math image. Gemini Pro Vision’s output contains unnecessary parts, and the subscript
of the recognized equation is wrong. GPT-4V’s caption is accurate.

775

Pattern

Gemini Vision Pro

The image shows a 2x2 grid with 4 pipe segments. The segments are numbered 1, 2, 3, and
4.

Segment 1 is a horizontal segment at the top of the grid.

Segment 2 is a vertical segment at the left side of the grid.

Segment 3 is a horizontal segment at the bottom of the grid.

Segment 4 is a vertical segment at the right side of the grid.

GPT-4V

The image shows four types of pipe segments, each represented by a square with two
arrows indicating the ends of the pipe. Segment 1 has ends at the top and left, segment 2
has ends at the bottom and left, segment 3 has ends at the top and right, and segment 4 has
ends at the bottom and right.

Figure 15: An example of a Pattern image. GPT-4V succeeds in describing two of the four blocks, whereas
Gemini Vision Pro fails to interpret any.

776

B : E869120

. : squarel001

Gemini Vision Pro

The image shows a round cake cut into 16 equal fan-shaped pieces.
The pieces are arranged in a circle, and each piece is labeled with a number from 1 to 16.
The colors of the pieces alternate between red and blue.

GPT-4V

The image shows a round cake cut into 16 equal fan-shaped pieces. The pieces are
alternately colored in red and blue to represent the pieces taken by E869120 and square1001,
respectively. There are 5 red pieces and 4 blue pieces, with no two adjacent pieces of the
same color, indicating that the instruction in the note has been followed.

Figure 16: An example of a Others image. Both models are correct.

42
777

G Case Study: Code Analysis

In this section, some samples of machine-generated solution code are presented and studied. Incorrect
segments are colored in red and bolded in the code listed.

G.1 Incorrect and Inefficient solution

Sometimes GPT-4V can generate inefficient code that takes too long to finish execution, leading to a
time-out. An demonstration is given in Figure 17 and Figure 18. Moreover, it implements a wrong
method of calculating the required quantity.

The problem statement is listed in Figure 17. It asks to find the number of faces in a minimum 3D
shape made of unit cubes that cover all integer coordinates within a sphere of radius y/n. In Figure 18,
GPT-4V’s solution loops over all integer points inside —/n < z,y, 2z < y/n. A cleverer method is to
leverage the symmetry and only count the faces perpendicular to an axis, reducing the operations to % of
the original. Moreover, the algorithm for calculating the connected faces in the code is incorrect.

G.2 TypeError caused by naming conflict

As mentioned in Section 6.3.2, despite the advance in understanding complex questions and generating
syntactically correct solutions, GPT-4V still makes basic errors. In this example code shown in Figure 19,
GPT-4V assigns the name len to a local variable, which conflicts with and overrides the Python built-in
len() function. Consequently, when the code attempts to obtain the length of a list on line 14, it raises a
TypeError. This is because 1len now refers to the variable, not the function it originally intended to use.

43
778

Problem

Let J(n) be a three-dimensional body that:
* is a union of unit cubes whose all vertices lie on integer coordinates,
* contains all points that are closer than the distance of /7 to the origin, and
* is the smallest of all such bodies.

Figure 1 below shows how J(1), J(2), and J(3) look.

J(J(2) J(3)

Your task is to calculate how many faces J(n) have. Here, we define two squares belong to the
same face if they are parallel and share an edge, but don’t if they share just a vertex.

Input

The input consists of multiple data sets, each of which comes with a single line containing an
integer n (1 < n < 1000000). The end of input is indicated by n = 0.

Output

For each data set, print the number of faces .JJ(n) have.

Sample Input

S A W N =

Output for the Sample Input

6
30
30
6

Figure 17: The description of the problem of the case study.

44
779

20

21

22

23

24

import math

def count_faces(n):
Calculate the radius of the sphere
r = math.sqrt(n)

Calculate the range for x, y, z
limit = math.ceil(r)

Initialize the count of faces
faces = 0

Iterate through all possible cubes and count the faces
for x in range(-limit, limit + 1):
for y in range(-limit, limit + 1):
for z in range(-limit, limit + 1):
Check if the cube is on the surface of J(n)
if r - 1 < math.sqrt(x**2 + y*xx2 + zx*2) <= r:
Check each face of the cube
for dx, dy, dz in [(1, @, @), (0, 1, @), (9, 0, 1)]:
If the neighboring cube is not part of J(n), count
- the face
if math.sqrt((x+dx)**2 + (y+dy)**2 + (z+dz)**2) > r:
faces += 1

return faces

Read input and process each case

while True:
n = int(input())
if n ==
break

print(count_faces(n))

Figure 18: An inefficient and incorrect solution generated by GPT-4V.

45
780

GPT-4V’s solution

1 def calculate_optimal_sum(n, len, a, k):

2 # Helper function to calculate the sum of a subarray

3 def subarray_sum(i):

4 return sum(ali:i+len])

5

6 # Calculate the initial optimal sum without any operations

7 optimal_sum = max(subarray_sum(i) for i in range(n - len + 1))

8

9 # Sort the array elements by their absolute values in descending order

10 # This will help us to choose which elements to flip to maximize the sum

11 negative_elements = sorted((x for x in a if x < 0), key=abs,
< reverse=True)

12

13 # Perform up to k operations, flipping the most negative elements

14 for i in range(min(k, len(negative_elements))):

15 # Flip the negative element to positive

16 negative_elements[i] *= -1

17 # Update the array with the flipped element

18 ala.index(negative_elements[i] * -1)] = negative_elements[i]

19

20 # Calculate the new optimal sum after performing the operations

21 optimal_sum = max(optimal_sum, max(subarray_sum(i) for i in range(n -
— len + 1)))

22

23 return optimal_sum

24

25 # Read input

26 n, len = map(int, input().split())

27 a = list(map(int, input().split()))

28 k = int(input())

29

30 # Calculate and print the result

31 print(calculate_optimal_sum(n, \textbf{len}, a, k))

Figure 19: A sample of GPT-4V’s wrong solution caused by a name conflict.

46
781

G.3 Input Parsing Error

The problem shown in Figure 20 asks the summation of a certain function with input from 3 to 107.
However, GPT-4V tries to read the upper limit from user input in line 24 in Figure 21, raising an EOFError
(End of File Error) because the input is empty.

Problem

A snowflake of order n is formed by overlaying an equilateral triangle (rotated by 180 degrees)
onto each equilateral triangle of the same size in a snowflake of order n — 1. A snowflake of order
1 is a single equilateral triangle.

Order 1 Order 2

Order 3

Some areas of the snowflake are overlaid repeatedly. In the above picture, blue represents the
areas that are one layer thick, red two layers thick, yellow three layers thick, and so on.
For an order n snowflake, let A(n) be the number of triangles that are one layer thick, and let
B(n) be the number of triangles that are three layers thick. Define G(n) = ged(A(n), B(n)).
E.g. A(3) =30, B(3) =6,G(3) = 6.
A(11) = 3027630, B(11) = 19862070, G(11) = 30.
Further, G(500) = 186 and Y_°%%, G/(n) = 5124.

107

Find Z G(n).
n=3

Figure 20: The description of the problem that causes an input parsing error.

47
782

1 from math import gcd

2

3 def calculate_snowflake_layers(n):
4 # Base values for A(3) and B(3)
5 A = 30

6 B=©6

7 G = gcd(A, B)

8

9 # Calculate A(n) and B(n) using the recursive relationship
10 for i in range(4, n + 1):

11 A=Ax3+12% (i-2)
12 B=B*3+6=* (- 2)

13 G = gcd(A, B)

14

15 return G

16

17 def sum_of_gcds(n):

18 total_sum = @

19 for i in range(3, n + 1):

20 total_sum += calculate_snowflake_layers(i)
21 return total_sum

22

23 # Read the upper limit from standard input
24 upper_limit = int(input())

25

26 # Calculate and print the sum of GCDs

27 print(sum_of_gcds(upper_limit))

Figure 21: GPT-4V tries to read the upper limit from user input but it should be hardcoded 107.

48
783

