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Abstract
In recent years, Graph Neural Networks
(GNNs) have become successful in molecular
property prediction tasks such as toxicity
analysis. However, due to the black-box nature
of GNNs, their outputs can be concerning
in high-stakes decision-making scenarios,
e.g., drug discovery. Facing such an issue,
Graph Counterfactual Explanation (GCE) has
emerged as a promising approach to improve
GNN transparency. However, current GCE
methods usually fail to take domain-specific
knowledge into consideration, which can result
in outputs that are not easily comprehensible by
humans. To address this challenge, we propose
a novel GCE method, LLM-GCE, to unleash
the power of large language models (LLMs)
in explaining GNNs for molecular property
prediction. Specifically, we utilize an autoen-
coder to generate the counterfactual graph
topology from a set of counterfactual text pairs
(CTPs) based on an input graph. Meanwhile,
we also incorporate a CTP dynamic feedback
module to mitigate LLM hallucination, which
provides intermediate feedback derived from
the generated counterfactuals as an attempt
to give more faithful guidance. Extensive
experiments demonstrate the superior perfor-
mance of LLM-GCE. Our code is released on
https://github.com/YinhanHe123/new_LLM4G
NNExplanation.

1 Introduction

Molecular property prediction has attracted increas-
ing attention in recent years, where Graph Neural
Networks (GNNs) have achieved significant suc-
cess in the related downstream tasks, such as drug
discovery (Xiong et al., 2021) and toxicity anal-
ysis (Cremer et al., 2023). However, GNNs are
typically considered as black-box models, making
it difficult for users to understand how a given pre-
diction is derived. Such a lack of explainability
brings obstacles against their broader real-world
applications to understand molecular properties.
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Figure 1: Example of graph counterfactual explanation.
(a) the original input molecule graph; (b) an example
counterfactual graph.

Facing such an issue, a series of approaches
have been proposed to explain the predictions of
GNNs, where graph counterfactual explanations
(GCE) have become a prevalent approach in recent
years (Ying et al., 2019; Lucic et al., 2022; Ma et al.,
2022; Zhang et al., 2023a). Specifically, GCE aims
to identify the minimum modification over a given
graph, such that a trained GNN yields a desired pre-
diction for the post-modified graph. Here, the graph
with the identified modification is called the coun-
terfactual graph, or simply counterfactual for short.
The identified modifications may involve adding or
removing nodes and/or edges, as well as altering
the node/edge attributes. For instance, given an un-
desired (non-AIDS drug) molecule as in Fig. 1(a),
a GCE method may generate modifications to pro-
duce a molecule as a “desired” graph (i.e., pre-
dicted as an AIDS-drug by the GNN model) as
shown in Fig. 1(b).

However, existing GCE models have two sig-
nificant limitations: (i) Incomprehensible Counter-
factual Optimization. Most GCE models are opti-
mized to generate counterfactuals either through
heuristic methods, such as random walk (Huang
et al., 2023b), or black-box deep learning meth-
ods (Ying et al., 2019; Bajaj et al., 2021; Lucic
et al., 2022; Ma et al., 2022; Tan et al., 2022), which
fail to involve any human-interpretable knowledge
in optimizing the counterfactuals. (ii) Lack of Do-
main Knowledge. Most current GCE methods do
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not consider any domain-specific knowledge (Ying
et al., 2019; Bajaj et al., 2021; Lucic et al., 2022;
Ma et al., 2022; Tan et al., 2022) thus the gener-
ated counterfactuals may not be realistic in real-
world contexts. Continuing the example shown
in Fig. 1, although the generated counterfactual
Fig. 1(b) is classified as in the desired class, it is
not chemically stable since it violates the valence
bond theory (Lewis, 1933). To handle the above
limitations, large language models (LLMs) (Rad-
ford et al., 2018; Wu et al., 2024) are ideal for
addressing these limitations due to their ability to
(i) generate comprehensible natural language texts,
(ii) make the counterfactual optimization process
human-interpretable, and (iii) leverage inherent do-
main knowledge from extensive pretraining to pro-
duce realistic counterfactuals. However, harnessing
LLMs to improve counterfactual explanation gen-
eration faces challenges: (i) there exists a natural
mismatch between texts (sequential data) and graph
structures (Wang et al., 2024; Li et al., 2023); and
(ii) LLMs may hallucinate, i.e., generate seemingly
plausible while incorrect information (Huang et al.,
2023a).

To handle these challenges, we propose a novel
framework: LLM-GCE (Large Language Models
guided Graph Counterfactual Explainer). Specif-
ically, to mitigate the first challenge, instead of
directly generating the counterfactual graphs by
LLMs, we utilize a counterfactual autoencoder
(CA) to construct counterfactual graph structures
based on the the text pairs (TPs) and counterfactual
text pairs (CTPs) given by LLMs. To tackle the sec-
ond challenge, the hallucination, we design a CTP
dynamic feedback module enlightened by Madaan
et al. (2024) to update CTPs iteratively based on
previously generated counterfactuals.

Our main contributions are summarized as fol-
lows: (i) Dataset Construction. We collect LLM-
generated text pairs over five molecule datasets.
They not only support our empirical evaluations
but also facilitate future studies for researchers in
this field. (ii) Algorithmic Design. We propose a
novel LLM-GCE framework that learns to generate
graph counterfactual explanations under the guid-
ance of an LLM. LLM-GCE unlocks LLM’s strong
reasoning ability in GCE by addressing hallucina-
tions and graph structure inference limitations. (iii)
Experimental Evaluation. We conduct extensive
experiments on multiple real-world datasets, vali-
dating the effectiveness of LLM in generating more
feasible counterfactuals while providing a compre-

hensive optimization trajectory.

2 Preliminaries

In this section, we introduce the problem settings
for GCE and the evaluation metrics used. We
denote a molecule graph of m nodes (atoms) as
G = (X,A,E), where A ∈ {0, 1}m×m is the ad-
jacency matrix, X ∈ R+m×d is the node attribute
(atom type) matrix (d is the dimension of the node
attributes), and E ∈ R+(m(m−1)/2)×s denotes the
edge attribute (bond type) matrix where s is the
number of edge attributes. Note that the real-world
molecules have 3-D structures; we leave the GCE
for 3-D molecule graphs for future work. Further-
more, to determine if a generated counterfactual is
classified as desired, we assume that there exists
a ground-truth Graph Neural Network (GT-GNN)
represented as ϕ : D → Y , which provides label
predictions for graphs in the input graph domain
D. This assumption is widely adopted in current
literature (Ma et al., 2022; Mahajan et al., 2019).
We define the problem of GCE:

Definition 1. (Graph Counterfactual Explana-
tion). Let ϕ : D → Y be the GT-GNN, and let
G = (X,A,E) be an input graph with ϕ(G) = 0.
The aim of graph counterfactual explanation is
to find a model f : D → D which computes
f(G) = Ĝ where Ĝ is a minimally perturbed ver-
sion of G such that ϕ(Ĝ) = 1.

Here, perturbations on the input graph G may
include node/edge insertions and removals as well
as changes to node/edge features. We refer to Ĝ as
the counterfactual of the original graph G. For an
input graph dataset G sampled from the input graph
domain D, we evaluate the performance of a GCE
model with the following metrics: (i) Validity. Va-
lidity measures the fraction of the generated coun-
terfactual graphs f(G) for which ϕ(G) = 0 and
ϕ(f(G)) = 1. Intuitively, it measures how many
generated counterfactual graphs actually flip the
GT-GNN’s prediction of the non-perturbed graph.
Accordingly, for convenience, let Valid(G) to de-
note the set {f(G) | ϕ(G) = 0, ϕ(f(G)) = 1}.
We then define the validity metric of G as

Validity(G) = |Valid(G)|
{G ∈ G | ϕ(G) = 0} (1)

(ii) Proximity. Proximity measures the mean graph
distance d(·|·) between the original graphs G and
their generated valid counterfactuals f(G) = Ĝ
(see Appendix B.1.2). Low proximity indicates
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Please describe this molecule O=C1CC2CCCC(C1)S2=O
"strictly" in the form of "This molecule contains __, __, __, and
__ functional groups, in which __ may be the most influential
for AIDS treatment. " Pay attention: NO OTHER sentence
patterns are allowed. 
Here, __ is the functional groups (best each less than 10 atoms)
or significant subgraphs alphabetically. If you can not find four,
you may put all you have found in the underlined areas.

This molecule contains a cyclohexane ring, a dithiane ring, a
ketone group, and a thiocarbonyl group, in which the ketone
group may be the most influential for AIDS treatment.

Figure 2: Prompt-answer pair in text pairs generation.

higher-quality counterfactual graphs since they
should be made as similar as possible to the graphs
they are explaining. The proximity of G is

Proximity(G) =
∑

Ĝ∈Valid(G) d(G, Ĝ)

|Valid(G)| . (2)

In alignment with this, we also provide the valid-
ity and proximity results with the feasibility check,
where we only calculate the two metrics to the
set of feasible counterfactuals Ĝs, i.e., those coun-
terfactuals that are chemically stable according to
valence-bond theory (Lewis, 1933).

3 Data Construction

There exist multiple datasets of molecules paired
with text descriptions (Qian et al., 2023; Fang et al.,
2023; Zeng et al., 2023); however, most of these
datasets only have text pairs describing the graph
labeling information. To support the evaluation of
GCE methods, a text pair should contain at least
three aspects: graph structure information, graph
label information, and the significant subgraphs
that contribute the most to the graph’s label. Gen-
erating satisfying text pairs for GCE is expensive
since it requires the most advanced LLMs, such as
GPT-4 and customized prompts, so we release five
molecule datasets with our generated high-quality
text pairs for the convenience of the community.
Construction Process. We construct five new
text-paired graph datasets based on datasets com-
monly used in graph explanation (Abrate and
Bonchi, 2021; Ying et al., 2019; Huang et al.,
2023b), including AIDS and Mutagenicity from
TUDataset (Morris et al., 2020); BBBP, ClinTox,
and Tox21 from MoleculeNet (Ramsundar et al.,
2019). In all datasets, each graph is a molecule with
a binary label indicating a molecular property such
as AIDS treatment effectiveness (see details in Ap-
pendix B.2.2). To generate the text-paired graphs,
we take the following steps: (1) Dataset Prepro-
cessing. We first convert all input molecular graphs

to their SMILES representations (Weininger, 1988).
We remove molecules that only have one atom or
greater than 100 atoms. For Tox21, since the graph
label distribution is heavily skewed (more than
95% of the labels are 0), we randomly select 600
zero-labeled graphs from the dataset. (2) Text Pair
Generation. Using a custom prompt, we prompt
GPT-4 with the SMILES representations and graph
labeling semantics for each input graph and ask
for a description of the molecule’s graph structure,
graph label, and subgraphs that are most respon-
sible for its label. (3) Data Post Processing. For
some graphs, the responses from GPT-4 would be
erroneous (i.e., it does not identify the significant
subgraphs/functional groups correctly). We fix this
by reprompting until desired response is generated.
Prompt Design. We generate a text pair (TP) for
each graph in a dataset with LLMs, incorporating
the graph structure, label semantics, and significant
subgraphs. Our prompts use the following template:
“Please describe this graph strictly in the form of
‘This graph contains __, __, __, and __ significant
subgraphs, in which __ may be the most influen-
tial for the_label_semantic.’ No other sentence
patterns are allowed. If you can not find four, you
may put all you have found in the underlined areas.”
The first half lists the significant subgraphs, reveal-
ing the graph’s structural information. The second
half provides the label semantics so the LLM de-
termines the most significant subgraph for graph
labeling.

4 Methodology

4.1 Model Overview
An overview of the LLM-GCE model is shown in
Fig. 3. The proposed LLM-GCE has three modules:
(1) Contrastive Pretraining of Text Encoder. We
pretrain the text encoder with contrastive learning
to align the embeddings of the GT-GNN and the
text encoder. (2) Training of the Counterfactual
Autoencoder. We design a counterfactual autoen-
coder composed of the pretrained text-encoder and
a graph decoder, which is trained to recover the
counterfactual topology. (3) Dynamic Feedback
of CTP Generation. To tackle hallucination, we
prompt the generated counterfactuals with the GT-
GNN predictions back to the LLM as the dynamic
feedback for further calibration.

4.2 Contrastive Text Encoder Pretraining
The first step of LLM-GCE is to pretrain the text
encoder so that every TP’s embedding aligns with
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Figure 3: An overview of the proposed LLM-GCE model.

its corresponding graph embedding produced by
GT-GNN (via a projection implemented by a multi-
layer perception (MLP) (Haykin, 1994)). We
choose BERT (Kenton and Toutanova, 2019) as
the text encoder due to its proven effectiveness in
generating high-quality embeddings for natural lan-
guage processing tasks. In the graph domain D,
we employ a contrastive learning strategy to align
the text encoder’s embeddings with the GT-GNN’s
embeddings. First, we sample from D a dataset
G = {Gi}ni=1 and their TPs. We then train the text
encoder with batches of size N , which includes
N ×N possible graph-TP pairings. Next, we train
an MLP to project the TP embeddings from the
BERT (Kenton and Toutanova, 2019) text encoder
into the embedding space of the GT-GNN and max-
imize the cosine similarity for the matching graph-
TP embedding pairs while minimizing similarity
for non-matching pairs. The contrastive loss is the
symmetric cross-entropy given in Appendix C.1.

4.3 Training of the CA

After pretraining the text encoder, we generate
counterfactuals from natural language. We first
provide an overview of our counterfactual autoen-
coder’s (CA) architecture. Then, we elaborate on
each of its components, including CTP generation,
the text encoder, the latent embedding combina-
tion, the graph decoder, and finally, we introduce
the overall objective function for our LLM-GCE.

4.3.1 Architecture Overview.
We first generate a CTP, CTPG, for each in-
put graph G as a high-level instruction for GCE.
Next, inspired by graph variational autoencoders
(VGAEs) (Simonovsky and Komodakis, 2018), we
design a CA with a text encoder and a graph de-
coder. The text encoder, pretrained as introduced
in Section 4.2, maps the CTPG to a probability
distribution over a latent space, which is then de-
coded via an MLP to the counterfactual graph’s
adjacency matrix Â and node & edge attribute ma-
trices X̂ & Ê. Training the CA maximizes the

likelihood of Ĝ being a real counterfactual, i.e.,
P (Ĝ|G,CTPG, Y

∗ = 1).

4.3.2 CTP Generation.
For each graph G from the dataset G, we query
the LLM for a CTP, a natural language sentence
describing the potential counterfactual Ĝ of G. We
use this CTP to instruct the generation of counter-
factuals from the autoencoder. The CTP generation
prompt is shown in Figure 4, which aims to perform
functional group substitution to achieve a higher
probability of generating a counterfactual.

 In  O=C1CC2CCCC(C1)S2=O, carbonyl may be the most
influential for AIDS treatment; what can we change carbonyl
with to make it more likely for AIDS treatment? Please fill in
the found substitution functional group for "carbonyl" at __.
DO NOT reply to anything out of the reply form sentence. 
"The molecule contains __, cyclohexane, sulfone, and thioether
functional groups, in which __ may be the most influential for
AIDS treatment."

The molecule contains hydroxylamine, cyclohexane, sulfone, and
thioether functional groups, in which hydroxylamine may be the
most influential for AIDS treatment.

Figure 4: Illustration of the prompt for CTP generation.
The red underlined phrases vary from graph to graph.
The LLM strictly follows the input sentence pattern in
the answer, which is the same as the one used for TPs.

4.3.3 Text Embedding Generation.
The text encoder maps our generated CTPs into a
latent space for counterfactual structure reconstruc-
tion. The input to our text encoder is the CTP
of each input graph, denoted as {CTPGi}n{i=1},
where n = |G| is the number of input graphs.
Given CTPG, the text encoder generates a Gaus-
sian distribution N (µG,σG) in the latent space,
where µG ∈ Rl and σG ∈ Rl are the distribu-
tion’s mean and variance. The output of the en-
coder is a latent embedding z ∈ Rl sampled from
N (µG,σG). In practice, the text encoder is imple-
mented with BERT (Kenton and Toutanova, 2019)
and initialized with the pretrained parameters from
Section 4.2. Recall that our contrastive pretraining
objective encourages the latent text embedding of
each TPG to be close to its corresponding graph
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latent embedding provided by the GT-GNN under
a projection by an MLP. Therefore, although the ex-
act graph structure, node, and edge attributes of the
desired counterfactual Ĝ are not immediately ac-
cessible, the embedding of the CTP approximates
Ĝ’s GT-GNN embedding, which guides counter-
factual decoding. Intuitively, the text encoder’s
embeddings contain the information of a high-level
counterfactual generation instruction, while the GT-
GNN’s embeddings encode each counterfactual’s
graph structure and node & edge attributes. Next,
we introduce how we combine the embedding of
the text encoder with that of the GT-GNN.

4.3.4 Latent Embedding Combination.
The generated CTP and acquired latent embedding
from the text encoder for an input graph G are still
insufficient for counterfactual generation. This is
for two reasons. (1) Each CTP, as introduced in
Section 4.3.2, only contains information about the
significant subgraphs (e.g., functional groups for
molecule graphs) of the counterfactual Ĝ while the
specific structure of the counterfactual is not de-
scribed in detail. (2) While the pretraining process
enhances the consistency of each text embedding
with its corresponding GT-GNN embedding, the
limited availability of a large amount of pretraining
data prevents the model from achieving high pre-
training accuracy. Therefore, to merge information
from both the counterfactual text and graph embed-
dings, we update the final encoded embedding eG
by concatenating the text encoder embeddings zG
of {CTPGi}n{i=1} with the GT-GNN embeddings
qG of the input graphs G, written as eG = zG⊕qG.

4.3.5 Graph Decoder.
In the graph decoder, the resulting latent embed-
dings {eGi}ni=1 are used to reconstruct the adja-
cency matrix ÂG ∈ Rm×m, node attribute matrix
X̂G ∈ Rm×d, and edge attribute matrix ÊG ∈
Rm(m−1)/2×s of the counterfactual graph Ĝ for
each input graph G. The graph decoder is im-
plemented as an MLP with a sigmoid activation,
restricting its output range to (0, 1). As a result,
every entry of the generated matrices is a contin-
uous probabilistic real number. However, a real
graph’s adjacency matrix is a 0, 1-matrix, where
Âij = 1 indicates the presence of an edge between
nodes i and j, and Âij = 0 indicates the absence of
an edge. Furthermore, each row of the node/edge
attribute matrix is a one-hot code indicating the
discrete node/edge type. To make the decoder com-

patible with these constraints, we discretize the
generated adjacency matrix ÂĜ by thresholding its
probabilistic entries, setting entries to 1 if the cor-
responding value exceeds 0.5 and to 0 otherwise.
Similarly, we generate the one-hot node and edge
attribute matrices X̂Ĝ and ÊĜ by taking the one-
hot row-wise argmax of each probabilistic matrix.

4.3.6 Objective Function.
As discussed in Section 4.3.1, the optimization
target is to maximize the likelihood of the gen-
erated graph being a real counterfactual Ĝ con-
ditioned on CTPG and the desired label Y ∗, de-
noted as P (Ĝ|G,CTPG, Y

∗ = 1). We formalize
this objective with the Kullback-Leibler (KL) di-
vergence (Csiszár, 1975) of the distribution given
by the encoder Q(e|G,CTPG, Y

∗) and the poste-
rior distribution P (e|Ĝ,CTPG, Y

∗). For simplic-
ity, we write the condition {CTPG, Y

∗} as T , and
the divergence term KL[Q(e|G,T )||P (e|Ĝ, T )] =
−Ee∼Q[logP (e|Ĝ, T )− logQ(e|G,T )]. By
logP (e|Ĝ, T ) = logP (e|T )+logP (Ĝ|e, T ), we
have the equation

logP (Ĝ|CTPG, Y
∗)− KL[Q||P ]

=Ee∼Q[logP (Ĝ|z, T )]− KL[Q||P ],
(3)

where Q = Q(e|G,T ) and P = P (e|Ĝ, T ). In
this equation, the first term in the left-hand side
(LHS) is our optimization target, and the second
term is a KL divergence, which is inaccessible
since the posterior P (e|Ĝ) is intractable. However,
the right-hand side is available for direct calcula-
tion. Therefore, we optimize the log-likelihood
P (Ĝ|G,CTPG, Y

∗ = 1) with its Evidence Lower
Bound (ELBO) (Kingma and Welling, 2013):

logP (Ĝ|T ) ≥Ee∼Q[logP (Ĝ|z, T )]
− KL[Q(e|G,T )||P (e|T )].

(4)

However, due to the lack of the ground-truth coun-
terfactual Ĝ, we substitute the first term of RHS in
Equ. (4) with two loss terms. (1) Graph Distance
Loss (Ldist) encourages small graph distances be-
tween G and its counterfactual Ĝ. Formally,

Ldist := Σ{G∈G}r(G, Ĝ), (5)

where r(·, ·) is the weighted sum of the distances
between graph adjacency matrices rA(·, ·), node
attribute matrices rX(·, ·), and edge attribute ma-
trices rE(·, ·), i.e., r(G, Ĝ) = rA(AG,AĜ) +
rX(XG,XĜ)+rE(EG,EĜ) (see Appendix B.1.2
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for definitions). (2) Counterfactual Prediction Loss
(Lpred) is the log-likelihood that the generated coun-
terfactual is classified as desired by GT-GNN:

Lpred := − logPGT-GNN(ϕ(Ĝ) = Y ∗). (6)

In conclusion, our overall loss function is

L =αLdist + βLpred − LKL, (7)

LKL = KL[Q(e|G,CTPG, Y
∗)||P (e|CTPG, Y

∗).

4.4 Dynamic Feedback of CTP Generation

Graph Serial.

Adjacency Matrix 

Node
Attribute
Matrix 

Edge
Attribute
Matrix 

...

GT-GNN

CTA Generator

O=C1...C....CC...
CC(C)...S2=O

P(Φ(G)=1)=0.4

This molecule contains
a cyclohexane ring, a
dithiane ring, a ketone
group, and a hydraz-
ine group, in which the
hydrazine group may
be the most influential
for AIDS treatment.

Figure 5: Illustration of the CTP’s dynamic feedback.
“Graph Serial.” is short for “Graph serialization” which
converts graphs to their SMILES representations.

The CTP generator acts as a commander, giving
high-level instructions (CTPs) for counterfactual
graph generation. The CA is the executor, imple-
menting the instruction to create a specific counter-
factual graph. However, CTPs can be inaccurate
due to LLM hallucination (Zhang et al., 2023b) and
limited graph decoding ability. To remedy this, a
CTP dynamic feedback scheme is designed to cali-
brate CTP with the CA-generated counterfactuals.

An illustration of the scheme is shown in Fig. 5.
We first convert the counterfactual molecule gen-
erated by the CA into its SMILES representation.
Then, we combine it with the GT-GNN’s probabil-
ity that the graph is a valid counterfactual into a
specific prompt asking for a new, calibrated CTP
for the original graph G. This concludes a sin-
gle iteration of dynamic feedback, which we treat
as a hyperparameter. Each iteration of dynamic
feedback can be seen as an indirect reasoning step,
forcing the model to reflect on its past outputs and
the label information from the GT-GNN in order to
produce more truthful CTPs. A similar calibration
approach is verified effective in Dhuliawala et al.
(2023); Madaan et al. (2024)

5 Experiments

In this section, we evaluate LLM-GCE with exten-
sive experiments on five real-world datasets. Our

experiments aim to answer the following research
questions (RQs): RQ1: How does LLM-GCE per-
form w.r.t. validity and proximity compared with
state-of-the-art baselines? RQ2: How does each
component of LLM-GCE affect its overall perfor-
mance? RQ3: What insights can LLM-GCE pro-
vide given its counterfactual explanation results?

5.1 Experimental Setup

5.1.1 Datasets.
Our experiments utilize five real-world datasets
(AIDS, Mutagenicity, BBBP, ClinTox, Tox21).
Among them, AIDS and Mutagenicity are from
TUDataset (Morris et al., 2020), while BBBP,
SIDER and Tox21 are from MoleculeNet (Ram-
sundar et al., 2019). In these datasets, graphs rep-
resent chemical compounds with nodes as atoms
and edges as bonds. They are labeled based on
relevance to properties such as blood-brain barrier
penetration, mutagenicity, HIV activity, side effects
resource, and toxicological activity. We associate
each graph with a text pair by the procedure in
Section 3. For details, see Appendix B.2.2.

5.1.2 Baselines
We adopt the following state-of-the-art baselines.
(1) GNNExplainer (Ying et al., 2019) is a graph
factual explanation (GFE) model. GFE is a graph
explanation strategy slightly different from GCE,
and so we adjust it for GCE by revising its loss
function. See Appendix B.2.1 for details. (2) CF-
GNNExplainer (Lucic et al., 2022) is targeted at
node-level GCE. We adapt it for graph-level GCE
by changing the input from ego-graphs to whole
graphs and changing the supervisory signal from
node labels to graph labels. (3) CLEAR (Ma et al.,
2022) is a generative GCE model that is based on
graph variational autoencoders (Simonovsky and
Komodakis, 2018). We adapt it by removing its
causality-specific component for a fair comparison.
(4) RegExplainer (Zhang et al., 2023a) is a GCE
model for graph regression that can be directly
adapted to graph classification. We evaluate those
GCE baselines based on Appendix B.1.2.

5.1.3 GNN Classifier
Before training LLM-GCE, we first train a two-
layer Graph Convolutional Network (GCN) slightly
modified to incorporate edge attributes (see Ap-
pendix B.1.1) for the five datasets to serve as
the GT-GNN. The GT-GNN has a node embed-
ding dimension of 32, a maximum pooling layer,
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Table 1: The performance of different GCE methods. The best results are in bold, and the runner-up results are
underlined. ‘n/a’ refers to unavailable proximity scores since there is no valid counterfactual graph.

GNNExplainer CF-GNNExplainer CLEAR RegExplainer LLM-GCE

AIDS
Validity w. Feas. 0.25± 0.00 0.25± 0.00 2.56± 3.10 0.25± 0.00 0.25± 0.27

w/o Feas. 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Proximity w. Feas. 2.00± 0.00 n/a 109.82± 1.18 7.28± 0.00 5.86± 5.62
w/o Feas. 4.27± 0.00 n/a 109.57± 0.96 15.11± 0.00 86.37± 2.65

Mutagenicity
Validity w. Feas. 0.00± 0.00 0.00± 0.00 4.89± 6.92 0.00± 0.00 13.52± 9.93

w/o Feas. 65.96± 0.00 50.17± 2.32 100.00± 0.00 100.00± 0.00 100.00± 0.00

Proximity w. Feas. n/a n/a 406.42± 0.00 n/a 1.75± 2.48
w/o Feas. 27.71± 0.078 8.77± 0.48 409.52± 1.11 24.91± 0.00 56.31± 2.57

BBBP
Validity w. Feas. 0.74± 0.00 0.00± 0.00 9.56± 8.34 0.74± 0.00 38.25± 10.25

w/o Feas. 22.79± 0.00 34.38± 4.42 100.00± 0.00 100.00± 0.00 100.00± 0.00

Proximity w. Feas. 16.06± 0.00 n/a 141.85± 0.71 18.25± 0.00 11.68± 0.14
w/o Feas. 17.26± 0.00 6.84± 0.76 142.00± 0.11 27.45± 0.00 55.98± 5.79

ClinTox
Validity w. Feas. 0.00± 0.00 0.00± 0.00 1.33± 1.89 0.00± 0.00 30.86± 26.41

w/o Feas. 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Proximity w. Feas. n/a n/a 50.10± 72.27 n/a 0.95± 0.93
w/o Feas. 16.61± 0.00 n/a 150.50± 0.97 28.74± 0.00 42.89± 3.72

Tox21
Validity w. Feas. 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 3.70± 4.01

w/o Feas. 0.21± 0.00 0.00± 0.00 100.00± 0.00 0.00± 0.00 100.00± 0.00

Proximity w. Feas. n/a n/a n/a n/a 5.93± 4.91
w/o Feas. 18.28± 0.00 n/a 190.70± 1.72 n/a 77.34± 4.28

Table 2: GT-GNN accuracy (%) on adopted datasets.

AIDS Muta. BBBP ClinTox Tox21
Training 0.995 0.781 0.887 0.749 0.970

Validation 0.996 0.722 0.852 0.782 0.972
Testing 0.994 0.762 0.850 0.783 0.974

and a fully connected layer for graph classifica-
tion. We set the edge embedding dimension d
to 1. The model is trained with the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
1e-3 for 500 epochs. The train/validate/test split is
50%/25%/25%. Accuracies are shown in Table 2.

5.1.4 Explainer Settings.
We detail the experimental settings for pretraining
(the second part in Fig. 3) and training (the third
part in Fig. 3) stages of our pipeline. The list of all
the prompts used are in Appendix B.1.3.
Pretraining. We use GPT-4 as the TP generator.
The BERT text encoder is implemented through
Huggingface (Wolf et al., 2020). We use the
AdamW optimizer (Loshchilov and Hutter, 2018)
for pretraining BERT over 100 epochs with a learn-
ing rate of 0.01.
Training. We choose GPT-3.5-Turbo as the CTP
generator, where feedback is performed three itera-
tions in every epoch. Finetuning hyperparameters
are the same as those used in pretraining.

5.2 RQ1: Performance of Different Methods

We evaluate our LLM-GCE framework on five real-
world datasets and compare its validity and proxim-
ity performance against state-of-the-art baselines,
with and without a feasibility (Feas.) check (Ta-

ble 1) as determined by checking for stability un-
der valence theory with RDKit (RDKit, online).
We have the following observations: (1) From the
perspective of validity, LLM-GCE achieves com-
parable validity with other baselines without the
chemical feasibility check. However, with the fea-
sibility check, our model achieves the highest valid-
ity among almost all baselines across all datasets.
(2) From the perspective of proximity, LLM-GCE
achieves the lowest proximity among chemically
feasible counterfactuals among almost all baselines.
This means that our model can find valid counter-
factuals that are not only feasible but also have a
minimal graph distance from their corresponding
input graph. (3) Based on these observations, LLM-
GCE achieves satisfying graph counterfactual ex-
planation performance, especially when chemical
feasibility is considered. This reveals the effective-
ness of LLM’s pretrained knowledge and reasoning
abilities in GCE. For details on the efficiency of
LLM-GCE, see Appendix D.2.

5.3 RQ2: Ablation Study

We experiment with three ablated variants of LLM-
GCE: LLM-GCE-NP: Without pretraining our
BERT text-encoder, we directly train the counter-
factual autoencoder with a dynamic CTP feedback
module. LLM-GCE-NT: We freeze the counter-
factual autoencoder in LLM-GCE, i.e., the counter-
factual autoencoder is not optimized between two
dynamic CTP feedback iterations. LLM-GCE-NF:
We remove the CTP dynamic feedback module and
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Figure 6: Ablation study on BBBP. -NP: No Pretraining.
-NF: No Feedback. -NT: Bert Autoencoder Frozen.

Figure 7: Generated molecules by LLM-GCE and GN-
NExplainer. a) from ClinTox, b) by LLM-GCE, c) by
GNNExplainer. Proximity of b) is 16.52, c) is 24.40.

generate graph counterfactuals only from the au-
toencoder and the initial CTP. From Fig. 6, we
make the following observations. (1) LLM-GCE-
NP: Refraining from pretraining decreases model
validity and increases proximity. The small decline
in performance is possibly due to insufficient data
for contrastive learning. (2) LLM-GCE-NT: Va-
lidity dramatically degrades when the autoencoder
is frozen. Proximity also decreases, possibly be-
cause a frozen autoencoder can only generate a
small number of counterfactuals that are less di-
verse. (3) LLM-GCE-NF: Removing the feedback
module significantly reduces validity and slightly
increases proximity, revealing the importance of
dynamic feedback for GCE. We have similar obser-
vations on other datasets. For more ablation studies,
see Appendix D.5. Additionally, we substitute the
text encoder of the CA and CTP generator to other
language models, see the results in Appendix D.4.

5.4 RQ3: Case Study
We highlight two main advantages of LLM-GCE:
(1) More Faithful Counterfactuals. The generated
counterfactuals by LLM-GCE have consistently
lower proximity across datasets than that of the
baseline methods. We show a counterfactual gener-
ated by our LLM-GCE compared with that by GN-
NExplainer in Fig. 7. Molecule a) is from the Clin-
Tox dataset, b) is generated by LLM-GCE, and c)
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Figure 8: Parameter Analysis on BBBP. (a) Validity and
proximity w.r.t. CTP feedback iterations. (b) Validity
and proximity w.r.t. text encoder pretrain epochs.

by GNN Explainer. LLM-GCE’s output better pre-
serves the original molecule’s structural integrity
than GNNExplainer. (2) More Feasible Counter-
factuals. With the LLMs’ extensive domain knowl-
edge, our LLM-GCE generates more counterfac-
tuals satisfying valence bond theory, while those
given by baselines do not satisfy this theory. Only
CLEAR generates a high proportion of feasible
ones, but they reveal no chemical insight as most
are disconnected carbon atoms, misleadingly pass-
ing the feasibility check (Weininger, 1988). For
more case studies, see Appendix D.3.

5.5 RQ4: Parameter Analysis

We study how dynamic CTP feedback iterations
and text encoder pretrain epochs affect LLM-
GCE’s performance on BBBP. We test feedback
iterations from 1 to 5 and pretraining epochs in
{10, 50, 100, 200}. We observe from Fig. 8 that
(1) validity improvement saturates after two feed-
back iterations while proximity remains nearly un-
changed. While a small number of feedback itera-
tions can enhance performance, it is possible that
simply increasing rounds worsens hallucinations.
Also, (2) increasing pretraining epochs to around
100 boosts validity. At the same time, proximity
initially improves up to 100 epochs, but then grad-
ually increases. This trend suggests a correlation
between validity and proximity regarding pretrain-
ing epochs, with the ideal count being approxi-
mately 100. Similar findings are observed on other
datasets. For more results, see Appendix D.5.

6 Conclusion

In this work, we explore the ability of LLMs in
guiding the GCE for molecule properties predic-
tion. Specifically, we propose a novel model called
LLM-GCE, comprised of a contrastive pre-training
module, a counterfactual autoencoder, and a dy-
namic feedback module. Extensive experiments
validate the superior performance of LLM-GCE.
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8 Limitations

Firstly, the effectiveness of LLM-GCE relies heav-
ily on the quality and relevance of the pretraining
data used for the large language models. If the pre-
training data is biased or lacks sufficient coverage
of the target domain, it may lead to less accurate
or relevant counterfactuals being generated. Ensur-
ing the LLMs are trained on high-quality, domain-
specific data is crucial for optimal performance.

Additionally, the computational cost associated
with using large language models can be a draw-
back. Training and inference with LLMs are more
time-consuming and resource-intensive than other
graph counterfactual explanation methods. Al-
though we have shown that the time execution time
is comparable for our methods with other base-
lines on the adopted datasets, LLM-GCE can be
time consuming when dealing with extremely large-
scale graphs, such as some big proteins.

Furthermore, while the experiments demonstrate
the effectiveness of LLM-GCE on several real-
world datasets, the evaluation is still limited to
specific domains, such as molecular property pre-
diction. The generalizability of the proposed frame-
work to other types of graphs and application ar-
eas remains to be investigated. Further research
is needed to assess the performance and adaptabil-
ity of LLM-GCE across a wider range of graph
structures and problem domains.

Lastly, the potential for hallucinations or incon-
sistencies in the generated counterfactuals remains
a solid challenge. Although the dynamic feedback
module aims to mitigate this issue, there may still
be cases where the LLMs produce counterfactuals
that are not entirely faithful to the original graph or
the desired properties.

9 Ethics Statement

In this work, we propose a novel LLM-guided
graph counterfactual explanation method that uti-
lizes the strong reasoning ability of LLMs. We
do not anticipate any ethical issues that should be
specifically highlighted in this paper.
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A Potential Risks

One risk of our LLM-GCE is the misuse or mis-
interpretation of the generated counterfactual ex-
planations. If the explanations are not carefully
validated or if the users lack the necessary do-
main knowledge, they may make incorrect deci-
sions based on the provided counterfactuals. This
could lead to adverse consequences, especially in
sensitive domains such as healthcare or finance.
Moreover, the reliance on large language models
raises concerns about the perpetuation of biases
present in the pretraining data. If the LLMs exhibit
biases, these may be propagated through the gener-
ated counterfactuals, potentially leading to unfair
or discriminatory explanations.

B Reproducibility

In this section, we provide more details of model
implementation of our LLM-GCE and experiment
setup of our evaluation results.

B.1 Details of the Model Implementation

B.1.1 GNN as the Prediction Model
We train a two-layer Graph Convolutional Network
(GCN) on molecular graphs across all five datasets
as GT-GNN with a slight change to incorporate
various edge types. Specifically, we calculate the
edge embeddings for each type of edge separately
and construct the enhanced adjacency matrix Â
used as Âij = Aij ∗ Eij for all 1 ≤ i, j ≤ m,
where m is the number of nodes in the graph.
A ∈ [0, 1]m×m denotes the original adjacency ma-
trix that allows the elements to be decimal numbers,
E ∈ Rm×m×d represents the embedding of each
edge (with a dimension of d). The GNN has a node
embedding dimension of 32, a maximum pooling
layer, and a fully connected layer for graph classifi-
cation. We set the edge embedding dimension d as
1. The model is trained with an adaptive moment es-
timation optimizer (Adam) (Kingma and Ba, 2014)
with a learning rate of 1e-3 for 500 epochs. The
train/validate/test split is 50%/25%/25%. The ac-
curacy of the GNNs is shown in Table 2

B.1.2 Graph Distance Calculation
We approximate graph edit distance with

d(g, gcf ) =λ1 · dA(Ag,Agcf )

+ λ2 · dX(Xg,Xgcf )

+ λ3 · dE(Eg,Egcf ).

(8)

Here, dA(A1, A2) = ||A1 ⊙ (1− A2)||2, dX and
dE are calculated with l2 pairwise distance. As the
computation of dA is time-consuming, we simplify
this value as cross-entropy with logits in the train-
ing of the counterfactual autoencoder. In all other
situations, such as the evaluation of GlobalGCE
and all baselines, we adopt the definition with the
dot product. We set the α = 10, β = γ = 1 to
emphasize the counterfactual’s structural change.

B.1.3 Prompts
TA Query: Please describe this molecule:
{molecule data} Your generated response is a text
description STRICTLY in the form of: “This
molecule contains __, __, __, and __ functional
groups, in which __ may be the most influential
for {dataset description}.” NO OTHER sentence
patterns are allowed. Here, __ is the functional
groups (best each less than 10 atoms) or signifi-
cant subgraphs alphabetically. If you can not find
4 functional groups as significant subgraphs, you
may just put all you have found in the __ areas).
CTA Query: In {smiles}, {key component}
may be the most influential for {dataset descrip-
tion}; what can we change {key component}
to {increase/decrease} the likelihood of it being
{molecule description}? Please find the best substi-
tution functional group for {key component} that
can replace the “__” in the last sentence (shown
below within “ ”). DO NOT reply with more than
3 words. Reply ONLY the substitution function
group. “{text pairs to be revised}”.
Feedback: The generated counterfactual is
{SMILES}. The probability of it being {molecule de-
scription} is {true prob}. Please adjust ONE of the
functional groups in the last sentence (shown below
within “ ”) to {increase/decrease} the likelihood
of the generated counterfactual being {molecule
description}. ONLY the functional group names
in the sentence may be changed. Reply ONLY in
the format (old functional group) : (new functional
group). “{original text pairs}”.

B.2 Details of Experiment Setup

B.2.1 Baseline Settings
GNNExplainer: For each graph, GNNEx-
plainer (Ying et al., 2019) outputs an edge mask
that estimates the importance of different edges in
model prediction. We adapt this model to counter-
factual generation by changing the prediction loss
term from the GNN prediction value on the entry
of the original classified class to the entry of the de-
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sired counterfactual class. We set a threshold of 0.5
and remove edges with edge mask weights smaller
than the threshold. The perturbation on node fea-
tures cannot be designed as straightforwardly as
the perturbation on the graph structure; thus, we do
not perturb graph node features in GNNExplainer.
CF-GNNExplainer: CF-GNNExplainer (Lucic
et al., 2022) is originally proposed for node clas-
sification tasks, focusing on the perturbations on
the graph structure. Originally, for each explainee
node, it takes its neighborhood subgraph as input.
To apply it on graph classification tasks, we use the
whole graph as the neighborhood subgraph and as-
sign the graph label as the label for all nodes in the
graph. We set the number of iterations to generate
counterfactuals as 500.
CLEAR: CLEAR (Ma et al., 2022) is a genera-
tive model that produces counterfactuals of all the
counterfactuals simultaneously while preserving
causality. This model generates both a graph ad-
jacency matrix and a graph node feature matrix
perturbation, which allows all forms of graph edi-
tion such as node/edge addition/deletion/feature
perturbation. We adapt it by removing the causal-
ity component for fair comparison. We train the
model with 500 epochs, other hyperparameters are
in default according to Ma et al. (2022).
RegExplainer: RegExplainer (Zhang et al., 2023a)
explains graph regression models with information
bottleneck theory to help solve the distribution shift
problem. Although the original model is tailored
for graph regression tasks, it can be directly applied
to the graph classification tasks. We implement
the RegExplainer with GNNExplainer as the base
explainer model in Algorithm 2 of the original pa-
per (Zhang et al., 2023a) and train the model for
500 epochs. Other hyperparameters are tuned for
the best performance in each dataset.

B.2.2 Datasets
We utilize five datasets from TUDataset (Mor-
ris et al., 2020) and MoleculeNet (Ramsundar
et al., 2019). All of them are real-world molecule
datasets. The meta-data of these datasets are pre-
sented in Table 3.
AIDS: The AIDS dataset is designed for the study
of chemical compounds’ effectiveness against HIV,
focusing on the identification of potential inhibitors.
It contains molecular structures with binary labels
indicating the activity. AIDS plays a crucial role in
facilitating drug discovery and predictive modeling
efforts aimed at finding new treatments for HIV.

Mutagenicity: The Mutagenicity dataset is aimed
at predicting the mutagenic potential of chemical
compounds, which is vital for assessing chemical
safety and drug development. It features chemical
structures alongside binary labels indicating muta-
genic (1) or non-mutagenic (0) effects, making it a
useful dataset for computational toxicology.
BBBP: The BBBP (Blood-Brain Barrier Penetra-
tion) dataset focuses on identifying compounds’
ability to cross the blood-brain barrier, which is
crucial for CNS drug design. It includes molecular
structures and binary labels indicating the pene-
trability. The BBBP dataset is a key resource for
predictive modeling in drug discovery.
ClinTox: The ClinTox dataset offers insights into
chemical compounds’ clinical toxicity and FDA ap-
proval status, essential for evaluating human health
impacts and drug development potential. It in-
cludes chemical structures with binary labels for
toxicity and FDA approval, serving as a key re-
source in computational pharmaceutical research.
Tox21: The Tox21 dataset is designed for the pre-
diction of chemicals’ toxicity, contributing to en-
vironmental health and safety assessments. It in-
cludes chemical compounds’ structures and binary
labels for various toxicity endpoints, aiding in the
identification of potentially hazardous substances.
Tox21 supports the development of computational
models for toxicity prediction.

Table 3: Dataset metadata. “Av.” stands for average.
“N.C.” stands for the number of node classes.

dataset Max Nodes Av.Nodes Av.Edges #graphs
AIDS 95 15.69 16.20 2000
Muta. 96 16.59 17.45 2000
Tox21 132 17.18 17.74 2000
BBBP 132 24.05 25.94 2000

ClinTox 121 27.74 29.40 478

C Extended Elaboration on LLM-GCE

C.1 Contrastive Pretraining for Text Encoder

We provide a detailed illustration of contrastive pre-
training of our text encoder, as shown in the middle
part of Fig. 3 in the main paper.

C.1.1 Intuition
Ideally, the text pairs possess the graph structure,
labeling, and significant subgraph information, al-
lowing us to utilize them solely as model input for
counterfactual generation. However, experiments
show that the graph structural information embed-
ded in the text pairs is insufficient in producing

7092



satisfying counterfactuals. Therefore, we regular-
ize the text embedding of TPs with fixed graph
embeddings of the GT-GNN, which enhances the
graph structural information of text embeddings.
This method allows the information contained in
the text pairs about significant subgraphs for GCE
to be effectively embedded. We may consider this
pretraining process to produce the encoded model
embedding to be the perturbation of the GT-GNN
graph embedding with the additional significant
subgraph information given by LLM text forms.

Specifically, given a graph Gi, we generate the
corresponding text attribute as the text pair TPi

of Gi. Our goal is to maximize the alignment
between Gi and TPi for all Gi in the dataset,
maxϕ P (Gi, TPi), where P (Gi, TPj) denotes the
probability score for a text pair. Formally, we find

max
ϕ

sim(GT-GNN(Gi), ϕ(TPi)).

where sim(·) is the cosine similarity function and ϕ
represents the parameters of the BERT text encoder.

C.1.2 Contrastive Pretraining
During pretraining, each batch consists of B graph-
TP pairs. Within each batch, the positive and nega-
tive samples are

• Positive samples: the original pairs in the
batch {(Gik , TPik) | 0 ≤ k ≤ B}.

• Negative samples: dissimilar (graph, text)
pairs {(Gik , TPil) | 0 ≤ k, l ≤ B, k ̸= l}.

We optimize to increase the alignment of positive
pairs and decrease the alignment of negative pairs.
Thus, following Radford et al. (2021), we design
the contrastive pretraining loss as the symmetric
cross-entropy

Lcontr =
1

2
(CEr(M(G,TP ), L) + CEc(M(G,TP ), L)),

where the CEr(M(G,TP ), L), CEc(M(G,TP ), L)
are the row-wise and column-wise cross-entropy
for the graphs and text-pairs, respectively. Here,
the M(G,TP ) represents the similarity matrix of the
graph set and their TP set, L is the label vector
[0, 1, .., B − 1] (n is the number of graphs).

D Supplementary Experiments

D.1 Generating Counterfactuals Directly
from LLM

We conduct experiments on directly generating
counterfactual graphs with GPT3.5 and GPT 4.

Table 4: Validity and Proximity results for generating
counterfactual graphs directly from GPT-4.

Validity Proximity
AIDS 0 na

Mutagenicity 0 na
BBBP 0 na

ClinTox 0 na
Tox21 0 na

For GPT-3.5, despite multiple trials with various
prompts, the LLM denies the request with “I am
sorry, I can not help with that.”

For GPT-4, after applying some warnings such
as “Please only output...”, “Do not output...”, and
“Under no circumstances are you to ... else ...”
to regularize the LLM output to generate stan-
dard SMILES representations, we acquire some
molecule SMILES as answers. Specifically, our
utilized prompt is: “Minimally edit {SMILES} to
be a {desired graph description} and output its
SMILES representation only. Please only output
one SMILES molecule without brackets and quo-
tation marks. Do not output anything besides the
SMILES. Under no circumstance are you to output
anything else lest your experiments fail.”

The results of validity and proximity of the gen-
eraed counterfactuals are shown in Table 4, from
which we observe that the current most advanced
large language models, GPT-4, cannot generate
valid counterfactuals, i.e., the ones that can be pre-
dicted by GT-GNN as in the desired class.

D.2 Model Efficiency

We measure the time efficiency of our LLM-GCE
with comparison with that of other state-of-the-art
GCE models on AIDS and ClinTox. We train all
those models with 250 epochs and the results are
shown in Table 5. The reported results represent
the average of five separate experiments. All of
the experiments were conducted on a single Nvidia
RTX A6000 serially on a server equipped with
512GB RAM and dual AMD EPYC 7543 32-core
CPUs. According to the table, our LLM-GCE takes

Table 5: Run time for baselines and LLM-GCE (s).

AIDS ClinTox
GNNExplainer 1112.28 80.13

CF-GNNExplainer 2878.85 215.40
RegExplainer 3457.97 201.26

CLEAR 1061.05 250.24
LLM-GCE 2023.70 597.03

approximately twice as long to execute compared
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Figure 9: Comparison between the original molecule
(left), our generated counterfactual (center), and CF-
GNNExplainer’s generated counterfactual (right).

to other baselines on the ClinTox dataset. How-
ever, on the AIDS dataset, the execution time of
LLM-GCE is similar to that of other baselines. In
conclusion, while the integration of the BERT text
encoder and the LLM-implemented CPT feedback
module increases the computational complexity
and training time of our LLM-GCE model, the re-
sulting execution time remains acceptable, making
it a viable approach for practical applications.

D.3 Case Studies

We strengthen our claims regarding LLM-GCE’s
more feasible counterfactuals with another exam-
ple from BBBP in Figure 9 where we compare
CF-GNNExplainer with LLM-GCE on molecule
273 from BBBP. LLM-GCE is successfully able to
produce a counterfactual with minimal changes to
the original input, compared to CF-GNNExplainer,
which removes a large portion of the original
molecule. Further, LLM-GCE’s output has a supe-
rior proximity of 19.26 versus the performance of
CF-GNNExplainer, which is 24.76.

In addition, we inspect the invalid coun-
terfactuals generated from the baseline
outputs and compare them with the out-
put from LLM-GCE. For example, for
molecule 450 from BBBP, CLEAR produce
[AsH3].[As]#B[AsH]#Cl12(=[AsH])#[As](=[
As]1)=[AsH]=2 while the ground-truth is
CSC1OC(C)(C)OC1=O. In contrast, LLM-GCE pro-
duces CSC1OC(C)(C)OC1=O, which is chemically
stable under valence-bond theory, while CLEAR
struggles to produce a SMILES string which is
chemically feasible.

Furthermore, we consider a case where LLM-
GCE fails to generate a perfect counterfactual but
still shows improvement over CF-GNNExplainer.
For molecule 1737 from Tox21 with the SMILES
string c1ccc2cc(CC3=NCCN3)ccc2c1, LLM-GCE
produces OClSNCCCNCCNCCNCCN, while CF-
GNNExplainer generates C=CC.C=CC.CCC.O=CO.
Although LLM-GCE’s output is not a valid

counterfactual and includes hallucinated sulfur
and oxygen atoms, it still demonstrates some
improvements over CF-GNNExplainer, which is
because LLM-GCE’s counterfactual incorporates
nitrogen and avoids hallucinating double bonds.

D.4 Performance Regarding Various LLMs

There are two applications of LLMs in LLM-CGE:
(i) counterfactual autoencoder utilize a language
model (which can be LLMs such as LLaMa given
sufficient computational resources) as the encoder
to embed the input graph into latent space of the
autoencoder; and (ii) CTP generator generates CTP
for GCE optimization in each iteration.

D.4.1 Different counterfactual auto-encoder

We conduct extensive experiments regarding differ-
ent language models as autoencoders on the Clin-
Tox and AIDS datasets. The language models are
employed through the Huggingface library. We
present the results in Table 6 and Table 7. In both
datasets, our LLM-GCE achieves the best GCE per-
formance, whereas Deberta and Electra performed
poorly. Specifically, our LLM-GCE achieves valid-
ity of 12.04% while the other two methods achieve
almost zero validity under feasiblity check.

D.5 Parameter sensitivity of α and β

In Fig. 10 and Fig. 11, we show the sensitivity of
our method with varying choices for α (the weight
applied to the loss term Ldist) and β (the weight
applied to the loss term Lpred) on datasets AIDS
and ClinTox, with β

α scaling from 0.2 to 5. Both
figures demonstrate that the validity and proximity
performance of LLM-GCE are largely inversely
related as expected: high validity corresponds to
low proximity, and low validity corresponds to high
proximity. Intuitively, graphs with large perturba-
tions are less likely to be feasible, given that the
input graph is a ground-truth molecule. We conjec-
ture that this relationship is not visible when ignor-
ing chemical feasibility since the model is free to
generate whatever graphs it needs to achieve high
validity, leading to high proximity as well as high
validity. We find that the best validity and proxim-
ity performance achieves simultaneously at around
α/β ∈ [0.5, 1.0] for both datasets. We recommend
that one adopts a ratio in this range. We also have
similar observations on other datasets.
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Table 6: Performance with different encoders for AIDS

Validity Proximity Validity w/o Feas. Proximity w/o Feas.
LLM-GCE (ours) 0.05± 0.1 0.6± 3.2 100.0± 0.0 82.30± 13.37

microsoft/deberta-base 0.0± 0.0 n/a 100.0± 0.0 83.95± 5.2
google/electra-base-discriminator 0.0± 0.0 n/a 100.0± 0.0 85.29± 6.1

Table 7: Performance with different encoders for ClinTox

Validity Proximity Validity w/o Feas. Proximity w/o Feas.
LLM-GCE (ours) 12.04± 7.15 0.82± 0.94 100.0± 0.0 40.93± 3.12

microsoft/deberta-base 0.19± 0.38 1.89± 5.78 100.0± 0.0 112.00± 12.55
google/electra-base-discriminator 0.0± 0.0 n/a 100.0± 0.0 89.51± 5.52
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Figure 10: Performance with varying β/α ratios for AIDS
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Figure 11: Performance with varying β/α ratios for ClinTox
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E Related Works

E.1 Large Language Models

Since the advent of BERT (Kenton and Toutanova,
2019) and other transformer-based pretrained lan-
guage models (PLMs), the research community has
made a concerted effort to significantly enhance
performance by scaling up these models. Large
language models (LLMs) refer to PLMs with bil-
lions (or more) of parameters (Shanahan, 2024),
which are trained on large-scale corpus and able to
solve general purpose tasks.

Currently, there are some generative large lan-
guage models such as BART (Lewis et al., 2019)
that follow the encoder-decoder architecture as pre-
sented in the original Transformer paper (Vaswani
et al., 2017). Benefiting from the excellent ability
of the encoder to understand contextual content,
these types of models are adept at sequence-to-
sequence (seq2seq) tasks (Sutskever et al., 2014)
such as translation. However, in text generation
tasks, the input sequence might not directly match
a specific output text, such as creating a story from
a topic. Another type of LLMs predominantly em-
ploy the Transformer’s decoder component, classi-
fying them as decoder-only models. Studies have
shown these models excel in text generation by
leveraging output text as context, particularly en-
hancing unsupervised learning tasks (Radford et al.,
2019). Currently, models such as GPT-4 (Achiam
et al., 2023), LLaMA 2 (Touvron et al., 2023) and
many other LLMs (Xu et al., 2023), primarily adopt
a decoder-only architecture.

E.2 GNN Counterfactual Explanation

GCE problem has become popular among the re-
search community, and several works have been
proposed in recent years (Prado-Romero et al.,
2023; Ying et al., 2019; Bajaj et al., 2021; Lucic
et al., 2022; Ma et al., 2022; Tan et al., 2022; Huang
et al., 2023b). Among them, GNNExplainer (Ying
et al., 2019) aims to find the counterfactual by
maximizing the mutual information between the
GNN prediction and the distribution of possible
subgraphs.

However, GNNExplainer is not robust to in-
put noise. To address this problem, the RGCEx-
plainer (Bajaj et al., 2021) generates robust counter-
factuals by removing edges such that the remaining
graph is just out of the decision boundary. The
explanation is robust because the decision bound-
ary is in GNN’s last-layer feature space, where

the features are naturally robust under perturba-
tions. Similarly, CF-GNNExplainer (Lucic et al.,
2022) and CF2 (Tan et al., 2022) also generate
counterfactuals by removing edges. Some gener-
ated counterfactuals may violate causality, Ma et al.
(2022) propose a generative model, named CLEAR,
to generate causally feasible counterfactuals. Be-
sides, there are also some methods particularly de-
signed for a certain domain, such as biomedical
and chemistry (Abrate and Bonchi, 2021; Wu et al.,
2021). Recently, (Huang et al., 2023b) propose
the first global-level GCE model, GCFExplainer,
which formulates global GCE as finding a small set
of representative graph counterfactuals. However,
these models overlook the incorporation of domain
knowledge in GCE and provide explanations that
cannot be easily understood by humans.

F Future Work

The proposed LLM-GCE framework shows encour-
aging results in generating graph counterfactual ex-
planations for molecular property prediction. Here,
we propose several areas that future research could
explore to further enhance the capabilities and ap-
plicability of LLM-GCE.

One direction is to investigate the generalizabil-
ity of LLM-GCE to other domains beyond molec-
ular graphs, such as social networks or biological
networks. This would help assess the framework’s
versatility and potential for broader impact.

Another avenue for future work is to extend
LLM-GCE to incorporate 3D molecular structures,
as the current framework focuses on 2D molecular
graphs. Considering the crucial role of 3D structure
in determining molecular properties, this extension
could lead to more accurate and informative coun-
terfactual explanations.

Additionally, efficiency is another important as-
pect to consider. Future research could explore
techniques to reduce the computational cost and im-
prove the scalability of LLM-GCE, such as knowl-
edge distillation or model compression. This would
make the framework more accessible and practical
for real-world applications.

Finally, to further assess the interpretability and
usefulness of the generated counterfactual explana-
tions, future work could involve human evaluation
and user studies. These studies would provide valu-
able insights for improving the LLM-GCE frame-
work and making it more user-friendly for domain
experts since more realistic metrics are adopted.
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