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Abstract

Large language models (LLMs) have become
the preferred solution for many natural lan-
guage processing tasks. In low-resource en-
vironments such as specialized domains, their
few-shot capabilities are expected to deliver
high performance. Named Entity Recognition
(NER) is a critical task in information extrac-
tion that is not covered in recent LLM bench-
marks. There is a need for better understanding
the performance of LLMs for NER in a vari-
ety of settings including languages other than
English. This study aims to evaluate genera-
tive LLMs, employed through prompt engineer-
ing, for few-shot clinical NER. We compare 13
auto-regressive models using prompting and 16
masked models using fine-tuning on 14 NER
datasets covering English, French and Span-
ish. While prompt-based auto-regressive mod-
els achieve competitive F1 for general NER,
they are outperformed within the clinical do-
main by lighter biLSTM-CREF taggers based on
masked models. Additionally, masked models
exhibit lower environmental impact compared
to auto-regressive models. Findings are consis-
tent across the three languages studied, which
suggests that LLM prompting is not yet suited
for NER production in the clinical domain.

1 Introduction

Electronic Health Records (EHR) are rich sources
of clinical information (Demner-Fushman et al.,
2009), which often appear in unstructured text only
(Escudié et al., 2017). Efficiently extracting infor-
mation from EHRs into a more structured form
can help advance clinical research, public health
surveillance and clinical decision support (Wang
et al., 2018).

Named Entity Recognition (NER) is a critical
primary step in information extraction that aims to
identify and categorize mentions of relevant entities
in text. In the context of clinical information extrac-
tion, these can be mentions of clinical entities such
as disorders or drugs. Extracting these entities can

significantly enhance concept normalization (Cho
etal., 2017; Wajsbiirt et al., 2021; Sung et al., 2022)
as well as facilitate interpreting patient profiling
and phenotyping (Gérardin et al., 2022). Clinical
NER is widely regarded as a challenging problem :
clinical entities are often jargon or ambiguous, and
clinical texts have a nonstandard phrasal structure
(Luo et al., 2020; Leaman et al., 2015). Addition-
ally, the sensitive nature of EHRs results in a lack of
publicly available clinical corpora, which are often
restrictively licensed and predominantly available
in English. Moreover, the annotation of clinical
NER data demands substantial domain expertise,
rendering such campaigns both costly and time-
intensive (Luo et al., 2020; Névéol et al., 2014;
Dogan et al., 2014; Baez et al., 2020). Additionally,
due to the diversity of clinical cases, data annotated
for one biomedical application might not neces-
sarily be helpful for another. Consequently, there
is a critical need for data-efficient clinical NER,
specifically few-shot NER approaches.

Large Language Models (LLMs) - specifically,
causal, generative models - have demonstrated sig-
nificant promise in few-shot learning across a wide
variety of tasks, including text classification, ma-
chine translation, and question answering (Brown
et al., 2020; Radford et al., 2019). This supports
our main research question: Can few-shot learning
performance of LLMs transfer to the task of named
entity recognition?

This study aims to evaluate generative LLMs,
employed through prompt engineering, for few-
shot clinical NER from the perspective of F1 per-
formance and environmental impact.

Challenges of few-shot NER We identify
methodological challenges with the evaluation of
few-shot prompting for NER.

First, there is no standard, widely adopted man-
ner of prompting LL.Ms for NER tasks (Li et al.,
2022; Shen et al., 2023; Wang et al., 2023b; Ker-
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aghel et al., 2024), resulting in significant chal-
lenges for reproducibility and variations in results
that are difficult to interpret. Second, many efforts
towards "few-shot learning" with LLMs design
prompts based on their performance on large held-
out validation datasets (Brown et al., 2020; Tam
et al., 2021; Radford et al., 2021; Qin and Eisner,
2021), which is not consistent with a few-shot set-
up. In addition, in-context learning performance is
shown to depend greatly on the prompt structure:
a small change in task phrasing, the examples pre-
sented, the order of examples, or the tagging format
can affect the performance (Zhao et al., 2021; Lu
et al., 2022; Min et al., 2022). Therefore, making
these choices assuming large annotated validation
dataset leads to performances that are shown (Perez
etal., 2021) to be over-optimistic and impossible to
find in a real few-shot setting. Third, Zaghir et al.
(2024) show that the majority of recent studies
employing prompt engineering in medical applica-
tions lack a non-prompt-related baseline, such as
fine-tuned BERT-like Masked Language Models
(MLMs), which complicates the accurate assess-
ment of the performance of these LLMs. Finally,
most of these studies are mainly concentrated on
English, and based on GPT, which is mainly trained
on English, (Jimenez Gutierrez et al., 2022; Wang
et al., 2023b; Ashok and Lipton, 2023; Hu et al.,
2023b; Zaghir et al., 2024), limiting the general-
izability of evaluations to other languages. The
contributions of this work are as follows:

1. We describe a systematic algorithm for creat-
ing and optimizing prompts for NER, bring-
ing a particular attention to tagging prompts
(Wang et al., 2023b), a novel NER prompt-
ing technique that recently showed particular
promise (Garcifa-Barragédn et al., 2024; Ma-
gron et al., 2024).

2. We evaluate our algorithm in a true few-shot
setting, by allowing prompt optimization only
on the few annotated instances through cross-
validation. 14 NER tasks were evaluated,
spanning 6 general-domain datasets and 8 clin-
ical datasets, with a focus on English, French
and Spanish.

3. We compare this approach, applied to 13
generative LLMs, to the standard fine-
tuning approach, applied to 16 MLMs,
both in terms of performance and environ-
mental impact. We provide our code at

github.com/marconaguib/autoregressive_ner

2 Few-shot & clinical NER

Few-shot NER with pre-trained MLMs Lever-
aging MLMs for NER usually involves using them
as encoders, and training a linear projection to
map vector representations into an NER tagging
of the sentence, while jointly fine-tuning the pa-
rameters of the language model itself for the down-
stream task of NER (Devlin et al., 2019). This ap-
proach has been widely studied (Liu, 2019; Petroni
et al., 2020; Joshi et al., 2020; Schweter and Akbik,
2021). Wajsbiirt (2021) propose a similar architec-
ture, enhanced with an entity decoder, to iteratively
predict entity spans in the input, allowing the model
to detect nested entities.

Few-shot NER can be performed by simply train-
ing such systems with the limited data available.
Other approaches have been proposed to leverage
MLMs specifically in few-shot setting. Namely,
metric learning (Fritzler et al., 2019; Yang and Kati-
yar, 2020; Huang et al., 2021a) proposes to train
systems to instead learn a metric over the output
space. New instances can then be classified based
on the distance separating them from other labeled
instances. Label encoding (Aly et al., 2021; Ma
et al., 2022a; Hou et al., 2020) suggests, instead, to
leverage label names or textual label descriptions
and encode them along with the instances in order
to better tag them.

Few-shot NER with generative LLMs Recently,
prompt construction has gained interest in the com-
munity (Brown et al., 2020; Liu et al., 2023). While
most related work focused on studying prompt for-
mulation and exploring better-performing prompt
structures (Wei et al., 2022; Ashok and Lipton,
2023; Vilar et al., 2023; Wang et al., 2023b)
also known as "prompt engineering", other work
proposed continuous optimization of the prompt
through prompt tuning (Ma et al., 2022b; Layegh
et al., 2023; Hu et al., 2023a), usually reporting
marginal improvements over baselines.

There is no standard, widely adopted manner
of building NER prompts (Liu et al., 2023). In
fact, NER associates to each instance a set of spans,
each of which having a type. This structured nature
of the prediction make it hard to find an intuitive
but efficient manner to prompt a language model
for NER, that adapts well to all contexts.

For instance, the main practice is to use separate
prompts for different entity types (Li et al., 2020;
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Liu et al., 2022; Chen et al., 2023a). This choice
seems well-suited when the task is interested in a
handful of types of entities (typically 5-10). When
interested in less entity types, a single prompt can
be used for detecting all entities (Ashok and Lip-
ton, 2023). On the other hand, if there is more
entity types, it could be interesting to enumerate
every possible span in the input sentence and let
the model predict the entity type of the span, if any
(Cui et al., 2021). This method, on the inverse, is
impractical for long inputs.

We identify three strategies for prompting LLM:s.
Constrained prompting attempts to better formu-
late the NER task by constraining the generation
to fill in specific hand-crafted templates, usually
adapted to MLMs (Cui et al., 2021; Shen et al.,
2023; Ye et al., 2023; Schick and Schiitze, 2021).
Listing prompts consist in simply making the lan-
guage model predict the entities in a list (Ashok
and Lipton, 2023). Tagging prompts were studied
more recently by Wang et al. (2023b). They make
the language model surround entity mentions with
special tags.

Few-shot clinical NER MILM-based few-shot
NER has also been explored in the biomedical do-
main (Ge et al., 2023). Metric leaning (Yang and
Katiyar, 2020) and label encoding (Aly et al., 2021;
Ma et al., 2022a) have been explored, as well as
other approaches such as active learning (Kormil-
itzin et al., 2021), supervised pretraining (Huang
et al., 2021b) and prompt-based learning (Lee et al.,
2022; Chen et al., 2023b; Cui et al., 2024).

Few studies have focused on LLM-prompting-
based few-shot clinical NER. In Hu et al. (2024),
GPT-3 and ChatGPT are evaluated on the 2010
12b2/VA task (Uzuner et al., 2011) in a zero-shot
context. In Jimenez Gutierrez et al. (2022), GPT-3
is evaluated on a set of biomedical information ex-
tractions tasks including the NCBI-Disease Dogan
et al. (2014).

On languages other than English,Meoni et al.
(2023) use InstructGPT-3 is used to build multilin-
gual training corpora to train smaller models, and
in Ateia and Kruschwitz (2023), ChatGPT is eval-
uated on an NER challenge focused on extracting
medical procedures in Spanish.

Another interesting direction is partly fine-
tuning (Liao et al., 2023) a general-domain LLM
on clinical text (Han et al., 2023; Toma et al., 2023;
Yang et al., 2024), and prompting the resulting
LLM.

3 Named Entity Recognition Experiments

3.1 Evaluation tasks

We use 14 publicly-available NER datasets (de-
scribed in the next section) to compare prompted
causal models to fine-tuned masked language mod-
els in few shot settings. For each study language,
we selected two out-domain datasets and two or
three in-domain datasets, aiming to use compara-
ble resources (same genre, tagset, annotation guide-
lines) across languages whenever possible. We use
official training, validation, and test subsets when
available; otherwise, we apply an 80%-10%-10%
split for training, validation, and testing.

3.1.1 General-domain evaluation datasets

WikiNER (Nothman et al., 2013) is a multilingual
silver-standard annotated NER dataset. It consists
of a late-2010 snapshot of Wikipedia in nine lan-
guages. Hyperlinks referring to persons, locations
or organizations were automatically annotated. We
use the English, French and Spanish versions of
this dataset.

CoNLL-2002 (Tjong Kim Sang, 2002) and
CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003) are two manually-annotated multilingual
NER dataset released as a part of CoNLL shared
tasks. Mentions of persons, locations, organiza-
tions and miscellaneous entities are annotated. We
use the Spanish data of the 2002 version, which is
a collection of news wire articles made available
by the Spanish EFE News Agency, released in May
2000. We use the English data of the 2003 version,
which consists of Reuters news stories between
1996 and 1997.

Quaero French Press (Grouin et al., 2011) is
a manually annotated corpus of about 100 hours
of speech transcribed from French speaking ra-
dio broadcast. This corpus was used in the 2011
Quaero named entity evaluation campaign. It com-
prises annotations for 5 entity types further divided
into 32 subtypes. Our experiments relied on the
five entity types: persons, locations, organizations,
functions, and facilities.

3.1.2 Clinical evaluation datasets

E3C (Magnini et al., 2021) is a European mul-
tilingual corpus (Italian, English, French, Span-
ish, and Basque) of semantically annotated clini-
cal narratives. The texts are collected from mul-
tiple publicly-available sources such as abstracts
extracted from CC-licensed journals. We use the
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gold standard material available from the English,
French and Spanish versions of this dataset. The
clinical narratives are annotated with 6 entity types
: actors, body parts, events, RMLs (measurements
and test results) and clinical entities.

The n2¢2-2019 (Luo et al., 2020) shared task fo-
cuses on medical concept normalization. It uses the
MCN corpus developed by (Luo et al., 2019), often
referred to as the n2c2-2019 dataset. It includes de-
identified discharge summaries from the Partners
HealthCare and Beth Israel Deaconess Medical
Center. In order to convert the medical concept
normalization task into an NER task, we use the an-
notated Concept Unique Identifiers (CUIs) to map
each mention to the corresponding UMLS semantic
group (Lindberg et al., 1993; McCray et al., 2001).

The NCBI-Disease (Dogan et al., 2014) corpus
gathers 793 PubMed abstracts where mentions of
diseases are annotated in four types depending on
their syntax : Specific Diseases (e.g. diastrophic
dysplasia), Disease Classes (e.g. an autosomal
recessive disease), Composite Mentions (e.g. col-
orectal, endometrial, and ovarian cancers), and
Modifiers (e.g. C7-deficient) .

QuaeroFrenchMed (Névéol et al., 2014) con-
sists of two text sources that we treat separately.
The first part, EMEA is a collection of 13 patient
information leaflets on marketed drugs from the
European Medicines Agency (EMEA). The second
part, MEDLINE, consist of 2,500 titles of research
articles indexed in the MEDLINE database'. The
two parts are annotated with 10 entity types corre-
sponding to UMLS semantic groups.

The Chilean Waiting List (Bdez et al., 2020)
corpus consists of 900 de-identified referrals for
several specialty consultations in Spanish from the
waiting list in Chilean public hospitals, manually
annotated with 10 entity types : abbreviations, body
parts, clinical findings, diagnostic procedure, dis-
eases, family members, laboratory or test results,
laboratory procedures, medications, procedures,
signs or symptoms and therapeutic procedures. It
can be noted that these types can be redundant (e.g.
all diagnostic procedures are also annotated as pro-
cedures).

3.1.3 Few-shot learning set-up

We simulate the few-shot context by only provid-
ing the models with a few annotated examples that
can be used in training, prompting and validation.

lhttp://pubmed.ncbi.nlm.nih.gov/

No additional examples are made available. In this
study, we choose to mainly focus on £ = 100 sen-
tences, which corresponds to one to two hours of
annotation in the clinical domain (Névéol et al.,
2014; Campillos et al., 2018). We use a fixed ran-
dom seed p to choose k examples among all those
available in the corpus. In Section A.1.1, we dis-
cuss the effect of the choice of k£ and of p.

Additionally, we train the best-performing lan-
guage models with the entire training dataset to
provide a skyline comparison, i.e. performance of
the models outside the few-shot setting.

3.2 Language Models

Table 5 (appendix A.2) presents an overview of
the language models used in our study. English
is covered in all causal language models, which is
not the case for Spanish and French. Except for
mBERT and XLLM-RoBERTa, masked language
models cover only one of our study languages.

3.3 NER with MLMs

Although MLMs have been adapted to few-shot
learning in architectures suited for low-resource
contexts (see section 2), we compare LLM prompt-
ing to the simple and standard MLM usage without
any further adaptation for few-shot learning, as an
accessible and easily-reproducible baseline.

We use NLStruct (Wajsbiirt, 2021), an open-
source Python library ? that implements the stan-
dard fine-tuning approach. NLStruct uses the rep-
resentations provided by the language model to en-
code the input, then employs a bidirectional LSTM
decoder and a CREF to iteratively predict the enti-
ties present in the encoded input, as described by
Gérardin et al. (2022). This approach allows NL-
Struct to effectively handle nested entities, which
are prevalent in some of the study corpora.

We train the model for 20 epochs on 80% of the
data and use the remaining held-out 20% for early

stopping.
3.4 NER with generative LLM prompting

Our experiments prompt models to tag entities in
the input sentence, instead of listing them. This
choice is supported by further experiments reported
in Section A.1.2. The upper part of Figure 1 shows
a sample tagging prompt, highlighting sections in
the prompt that guided the design of features for
prompt phrasing.

2https://github.com/percevalw/nlstruct
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Prompt features We describe below the nine
optional features that control the phrasing of the
prompt, as well as the criteria for selecting the few-
shot examples featured in the prompt.

1. Prompt language: By default, we prompt all
language models in English, as it is the most
ubiquitous language in all of their training
corpora. This feature allows the model to be
prompted in French or Spanish, to align the
prompt language with that of the test sentence.

2. Additional sentences: By default, we present
5 annotated sentences in the prompts. This
feature presents 5 additional sentences (i.e.,
10 sentences in total). Section A.1.3 discusses
adding more demonstations to the prompt.

3. Self verification: By default, we select the 5
closest sentences to the test sentence in terms
of TF-IDF distance, among the training set.
The mentions tagged by the model are then
considered to be the model’s final predictions.
This feature selects instead the 5 sentences
featuring the most entities of the target type
and features them in an initial prompt. Intu-
itively, this prompt results in higher recall and
lower precision. A second "self-verification"
prompt is then used over the model’s initial
predictions in order to filter out the false pos-
itives. A sample self-verification prompt is
shown in the bottom part of Figure 1.

The number of demonstrations follows that of
the main prompt.

4. Taggers: By default, we follow (Wang et al.,
2023b) prompting the model to surround men-
tions with @ @ and ##. This feature prompts
it to surround mentions with quotes « and »
instead.

5. Address a specialist in the prompt: By de-
fault, the first sentence is the task descrip-
tion shown in Figure 1. This feature starts
the prompt with You are an excellent <spe-
cialist>. You can identify all the mentions of
<entity-type> in a sentence, by putting them
in a specific format. Here are some examples
you can handle: instead. The <specialist>
is a linguist or a clinician, following the task
domain.

6. Include label definitions in the prompt:
This feature adds a one-sentence description

for each entity type. Full entity descriptions
used can be found in appendix A.3.

7. Introductory sentence for the test instance:
By default, the demonstrations are immedi-
ately followed by the test instance. This fea-
ture separates them with Identify all the men-
tions of <entity-type> in the following sen-
tence, by putting <begin-tag> in front and a
<end-tag> behind each of them.

8. Require a long answer for the self-
verification: By default, the self-verification
prompt demonstrates Yes (respectively No) as
answers. This feature demonstrates <men-
tion> is a(n) <entity-type>, yes. (respectively
<mention> is not a(n) <entity-type>, no.) in-
stead.

9. Dialogue template: This feature replaces the
Input: and Output: in the prompt by dashes to
imitate a dialog template.

Identification of optimal prompt configuration
In-context learning performance is shown to vary
greatly depending on the exact phrasing of prompts
(Lu et al., 2022; Min et al., 2022). In addition,
the optimal choice for each of these features can
vary depending on the model used. For instance,
intuitively, models that are heavily pretrained on
the English language tend to perform better with
an English template than one in the language of the
corpus.

While our system aims to search for the best
combination of parameters for each model, a grid
search over them would require 2° = 512 experi-
ments for each model, for each dataset. In order to
build a lighter system, we opt for a greedy search.
We iterate over the features and select options that
perform better than the default. In Section A.1.4,
we illustrate how the optimal parameter combina-
tion can be obtained with a greedy search using 5%
of the computation required for grid search. Many
efforts towards "few-shot learning" with LLMs de-
sign prompts on large held-out validation datasets
(Brown et al., 2020; Tam et al., 2021; Radford
et al., 2021; Qin and Eisner, 2021). This leads
to results that are shown (Perez et al., 2021) to
be over-optimistic. A true few-shot evaluation in-
volves optimization with access to a small num-
ber of annotated instances, which corresponds to
our £k = 100. In this no-training context, we fol-
low (Perez et al., 2021) optimizing these features
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Main prompt
The task is to label all mentions of disorders in a sentence, by putting them in a specific format. Here are
some examples:
Input: The patient at that time noted slight shortness of breath but was sent home anyway .
[0utput: The patient at that time noted slight @@shortness of breath## but was sent home anyway .
(Input: Derm : Several days prior to discharge , the patient developed some erythematous rash under her Lleft)
breast and left side that was thought to be due to yeast .
Output: Derm : Several days prior to discharge , the patient developed some @@erythematous rash## under her
\left breast and left side that was thought to be due to yeast . )
Input: The patient also had a gastric ulcer repaired at the same time .
|Output: The patient also had @@a gastric ulcer## repaired at the same time .
(Input: The patient was subsequently taken to the operating room where he underwent a reoperative coronary)

artery bypass graft times three with a subaortic proximal graft from the aorta to the OM1 and then OM2 and

First
demonstration

Second
demonstration

Third
demonstration

Fourth

aorta to the LAD with a wide graft per Dr.

\gorta to the LAD with a wide graft per Dr.

Output: The patient was subsequently taken to the operating room where he underwent a reoperative coronary
artery bypass graft times three with a subaortic proximal graft from the aorta to the OM1 and then OM2 and

demonstration

J

Input: He presented with gross hematuria at that time .
Output:

Test instance

Self-verification prompt

The task is to verify whether a given word is a mention of a disorder.

Here are some examples:

(In the sentence "Hydrocodone 5 mg with Tylenol , one to two tablets every four hours p.r.n. pain .

foot" a disorder?
No

First
17.", is "Hydrocodone" a disorder? deriohstiating
No »
(In the sentence "He has had no recent weight loss , no light-headedness or dizziness .", is "recent weight | Second
loss" a disorder? demonstration
Yes
In the sentence "Unremarkable with normal electrolytes except for glucose of 328 .", is "glucose" a disorder? Third
No demonstration
(In the sentence "Patient 's gait was noted to have a right foot drag as well as right foot drop .", is "right Fourth

demonstration

[In the sentence "Superficial varicose veins .

, i1s "varicose veins" a disorder?

Test instance

Figure 1: Example of a tagging prompt, used in the main experiment (top) and a self-verification prompt (bottom)

for detecting DISO mentions in n2¢2-2019

through a leave-one-out cross-validation (LOOCYV)
over the validation set.

3.5 Performance metrics

Micro-F1 For simplicity, we evaluate models
over one global information extraction perfor-
mance score. It is computed as the micro-average
of F1-measures for each entity type.

Carbon footprint We use GreenAlgorithms v2.2
(Lannelongue et al., 2021) ? to estimate the car-
bon footprint of each experiment, based on factors
such as runtime, computing hardware and location
where electricity used by our computer facility was
produced.

4 Results

4.1 Environmental Impact

Figure 2 compares carbon emission incurred by re-
solving ConL.L-2003 using LLM prompting (using

3http://calculator.green-algorithms.org/

m fine-tuning (2400 examples) prompt optimization (3000 prompts)
m test inference (3450 examples)
200

150

100

Llama-2-70B Mistral-7B BERT-large

Figure 2: Carbon emission (g) incurred by resolving
ConLL-2003 using three models

Llama-2-70B and Mistral-7B) as well as with fine-
tuning BERT-large. For comparison, the impact of
using Llama-2-70B is comparable to that of driving
a thermal car of average size for 1 kilometer.

Appendix A.4 details the carbon emission esti-
mations for all of our experiments. In total, the
experiments described in this paper are estimated
to have generated around 31kg of CO2 equivalent
(29kg for main experiments, and 2kg for ablation).
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English

French

Spanish

#  Model ‘ WikiNER CoNLL2003 E3C n2c2 NCBI ‘ WikiNER QFP E3C EMEA MEDLINE ‘ WikiNER CoNLL2002 E3C CWL
Few-shot approaches
1 Llama-2-70B 0.728 0.721 0312 0.309 0.400 0.740 0.400 0.483 0.201 0.312 0.805 0.616 0.021 0.339
2 Llama-3-8B-Instruct 0.756 0.727 0.478 0.252  0.390 0.796 0.508 0.652 0.443 0.433 0.784 0.764 0.226 0.437
3 Mistral-7B 0.754 0.646 0.488 0.291 0.395 0.727 0.428 0.590 0.229 0.333 0.720 0.707 0.083 0.374
4 Phi-3-medium-instruct 0.464 0.302 0.234 0.112 0.178 0.394 0322 0.317 0.139 0.161 0.612 0.461 0.045  0.280
5 BLOOM-7B1 0.524 0.557 0.279 0.113  0.151 0.148 0.206 0320 0.197 0.120 0.470 0.419 0.051 0.117
= 6  Falcon-40B 0.686 0.708 0.280 0.279 0.305 0.662 0456 0378 0.279 0.283 0.720 0.543 0.072  0.267
é 7  GPT-J-6B 0.521 0.493 0.167 0.179 0.238 0.423 0.244 0.334 0.080 0.177 0.005 0.142 0.021 0.162
O 8 OPT-66B 0.608 0.495 0.227 0.157 0.234 0.624 0.406 0.019 0.206 0.283 0.166 0.273 0.043  0.204
9  Vicuna-13B 0.657 0.708 0.355 0.236  0.300 0.677 0350 0.399 0.207 0.326 0.744 0.250 0.040 0.213
10 Vicuna-7B 0.594 0.489 0.259 0.147 0.172 0.591 0.277 0439 0.152 0.296 0.659 0.569 0.042  0.151
11 BioMistral-7B 0.414 0.354 0.175 0.086 0.257 0.547 0299 0.350 0.236 0.186 0.578 0.540 0.014 0.226
12 Medalpaca-7B 0.537 0.586 0272 0.138 0.132 0.529 0.142 0.259 0.162 0.252 0.581 0.490 0.088 0.220
13 Vigogne-13B 0.593 0.655 0252 0.176  0.309 0.515 0250 0.464 0.099 0.142 0.580 0.561 0.010 0.198
14 mBERT 0.768 0.804 0.624 0.378 0.401 0.801 0.728 0.741  0.588 0.428 0.812 0.760 0324 0432
15 XLM-R-large 0.786 0.826 0.637 0.462 0471 0.811 0.781 0.762  0.629 0.531 0.797 0.781 0325 0.528
16 BERT-large 0.776 0.814 0.626 0.435 0.422 - - - - - - - - -
17 RoBERTa-large 0.790 0.829 0.626 0.462 0.552 - -
18  Bio_ClinicalBERT 0.528 0.542 0.621 0.469 0.420 - -
19  ClinicalBERT 0.462 0.597 0.622 0.480 0.397 - -
- 20 MedBERT 0.613 0.673 0.607 0.478 0.504 - - - - - -
£ 21 CamemBERT-large - - - - - 0.829 0.793 0.768  0.661 0.564 -
é 22 FlauBERT-large - - - 0.826 0.778 0.760  0.635 0.540 -
23 DrBERT-4GB - - - 0.587 0.599 0.730  0.602 0.497 -
24 CamemBERT-bio - - - - 0.782 0.761 0.779  0.636 0.557 - - - -
25 BETO - - - - - - - - - 0.794 0.732 0352 0.522
26 PatanaBERT - - - - - 0.802 0.769 0343 0.487
27 TulioBERT - - - - - 0.804 0.798 0340 0.482
28 BSC-BioEHR - - - - 0.804 0.758 0354 0.578
29 BSC-Bio - - - - - 0.804 0.775 0.358 0.552
Masked fully-supervised (skyline)
RoBERTa-large 0.919 0.939 0.718 0.712 0.815 - - - - - -
CamemBERT-large - - - - - 0.928 0.834 0.828 0.748 0.713 - - - -
BETO - - - - - - - - 0918 0.881 0411 0.736

Table 1: This table presents the micro-F1 obtained from few-shot experiments. Skyline results are obtained using all

training data available instead of the few-shot setting.

4.2 Comparison of model performance

Table 1 presents the micro-F1 performance of the
models on the test set of each dataset. Figures 3
to 5 present the results for each language with
a vizualization of model type (circles for causal
models vs. squares for masked models), model
size in terms of parameters and domain (clinical
in green vs. general in blue). Overall, results
show that, despite being smaller and theoretically
requiring a larger amount of training data, masked,
"BERT-like" models consistently outperform gen-
erative LLM prompting in the context of few-shot
NER commonly found in biomedical applications.
Specifically, on English and Spanish, Figures 3
and 5, show that, while some generative LLMs are
competitive in the general domain, they suffer a
sharper performance drop in clinical NER, com-
pared to fine-tuned MLMs. On French, Figure 4
suggests that generative LLM prompting does not
seem competitive on either domain.

Moreover, this performance comes at a much
lower environmental impact (CO2 emissions are
10-50 times lower for MLMs vs. prompted LLMs).
Another important finding is that, in addition to
high performance scores, MLMs achieve results

that are relatively close to each other. For example,
on the WikiNER generalist task in English, the 4
general-domain models tested achieved F1-scores
of between 0.768 and 0.79.

Besides, we show that domain-adapted MLMs
(e.g., Clinical BERT, CamemBERT-bio) exhibit a
sharp performance drop in general domain tasks,
illustrating the classical issue of "catastrophic for-
getting". In addition, they do not contribute perfor-
mance improvements in specialized tasks, with the
exception of Spanish tasks. However, there is a no-
table difference in model size: specialized models
only have 110 million parameters (vs. 340 million
for other models).

Named entity recognition based on BERT-type
representations has received a great deal of atten-
tion in recent years, and is undoubtedly more ma-
ture than the use of LLM prompting for this task.
We have implemented the prompt-based NER tech-
niques recently published in the literature, to the
best of our knowledge. It is, of course, possible
that new approaches will make it possible to in-
crease performance in the future. However, this is
arguably a difficult task for a generative model, as it
is highly constrained in its syntax and its evaluation.
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Figure 3: Performance of models on English. The gen-
eral performance is the average of micro-F1 obtained
on WikiNER-en and CoNLL-2003. The clinical per-
formance is the average on E3C-en, n2c2 and NCBI-
Disease. The red lines represent the skyline performance
obtained with the entirety of each training dataset.
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Figure 4: Performance of models on French. The gen-
eral performance is the average of micro-F1 obtained
on WikiNER-fr and QuaeroFrenchPress. The clinical
performance is the average on E3C-fr, EMEA and MED-
LINE. The red lines represent the skyline performance
obtained with the entirety of each training dataset.

These results are no indication of performance on
other tasks such as classification.
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Figure 5: Performance of models on Spanish. The gen-
eral performance is the average of micro-F1 obtained
on WikiNER-es and CoNLL-2002. The clinical per-
formance is the average on E3C-es and CWL. The red
lines represent the skyline performance obtained with
the entirety of each training dataset.

4.3 Practical use of language models for
low-resource NER

Overall, our experiments suggest that the perfor-
mance of language models for clinical named entity
recognition is currently sub-optimal. In particular,
even MLM-based models, simply fine-tuned on
the limited data available, fail to approach the per-
formance of fully supervised models. The three
large models trained with the entirety of each train-
ing dataset (skylines Table 1) systematically out-
perform the best few-shot results, by 5% to 16%
for the general domain, and 8% to 48% for the
biomedical domain. However, performance can be
judged satisfactory enough for pre-annotation use,
to complement or accelerate manual annotation, for
example in an online or active learning context.

5 Conclusion

This study assessed the performance of two types
of large languages models, for few-shot entity
recognition in three languages. Our experiments
show that few-shot learning performance is sig-
nificantly lower in the clinical vs. general domain.
While masked language models perform better than
causal language models (higher F1, lower CO2
emissions), LLM prompting is not yet suited for
effective information extraction.
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Limitations of our study

Random Noise and Significance In MLM exper-
iments, the parameters of the NER tagging layer
added on top of the pretrained language model are
initialized randomly. Likewise, in LLM prompting
experiments, the demonstrations in the prompts are
shuffled randomly, and the negative examples in
the self verification prompts are selected randomly.
These random decisions can introduce noise in our
performance measurements. Replicating all the ex-
periments would allow us to draw more solid con-
clusions (Reimers and Gurevych, 2017), but would
also come at a considerable cost (29kg of CO2
equivalent, and around 64 hours of computation
for each replication). The large number of models
tested and tasks addressed can however support the
main observations of this article. For instance, we
use Almost Stochastic Order (ASO) # (Dror et al.,
2019) with a confidence level @ = 0.05 to measure
the significance of the superiority of fine-tuned
MLMs over prompted LLMs for each dataset sepa-
rately. We do not always observe satisfying values
of €,in, as to whether MLMs perform better than
prompted LLMs on general-domain NER (0.426,
0.081 and 0.028 respectively on WikiNER-English,
CoNLL2003 and WikiNER-French). Regarding
clinical NER, MLMSs perform significantly better
than prompted LLMs : MLMs are stochastically
dominant over prompted LLMs (¢€,,;,=0) for all
clinical datasets.

Data contamination The size of the training cor-
pora used for creating LLMs makes it increasingly
difficult to control for data contamination, i.e. the
presence of test corpora. Moreover, (Balloccu et al.,
2024) describe the problem of "indirect contami-
nation", encountered when models are iteratively
improved by using data coming from users, includ-
ing test dataset.

The community is calling for efforts towards
better documentation of training datasets (Bender
and Friedman, 2018). While some datasets are by
construction incompatible with some models (e.g.,
there is no Spanish training corpus in GPT-J or
Llama-2) we are unable to affirm full exclusion of

*Given the performance scores of two algorithms A and B,
each of which run several times with different settings, ASO
computes a test-specific value (€,,:») that indicates how far
algorithm A is from being significantly better than algorithm
B. If distance €, = 0.0, one can claim that A stochastically
dominant over B with the predefined significance level. The
literature commonly interprets €,,;» < 0.5 as an indicator of a
significant superiority of A over B.

all datasets from all models studied.

Fine-tuning generative models Our study fo-
cuses on low-data scenarios prevalent in real-world
biomedical applications, where computational re-
sources, notably GPU availability, are constrained.
Additionally, the use of models via API calls is
challenging due to privacy and security concerns.
Consequently, we selected methods requiring lim-
ited computing power : either fine-tuning "small",
BERT-like models, or prompting larger, frozen,
models. This pragmatic choice stems from the need
to balance performance with computational effi-
ciency, ensuring that the proposed methods remain
feasible for implementation in resource-limited set-
tings.

However, more computationally expensive solu-
tions may exist and may be effectively deployed
in other environments. Typically, one could use
the limited available data to partially fine-tune a
generative LLM for NER (Liao et al., 2023).

Error analysis To facilitate comparison between
models, we evaluated models over one global infor-
mation extraction performance score: the micro-F1
measure. Overall, precision and recall scores (not
shown) are balanced across entity types. In clini-
cal datasets, some entity types, such as chemicals
and anatomy, yield higher performance than others
such as devices and procedures. This disparity can-
not be explained by the distribution in the training
corpus, since prompts provide the same number of
examples across entity types. We hypothesize that
the regularity and prevalence in LLM pretaining
corpora of some entities may explain the higher per-
formance. In future work, we plan more in-depth
analysis, to better understand the performance of
the LLM prompting approach.

Ethical considerations

All the datasets analyzed in our experiments are
publicly available corpora, used consistently with
the relevant data use agreements.

The use of LLMs can incur significant environ-
mental impact. We have measured carbon emis-
sions using GreenAlgorithms. Our experiments
support the conclusion that MLMs yield higher
information extraction performance with lower car-
bon emission, compared to LLM prompting for
NER.
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A Appendix

A.1 Ablation

To better understand the contribution of each step
of our approach, we carried out a series of comple-
mentary experiments.

A.1.1 Sample and sample size

We tested our approach with different samples
and different sample sizes for one MLM : XLM-
RoBERTa-large, and one prompted LLM : Mistral-
7B. The results are reported in table 2. It can be
noted that, whereas the standard deviation with re-
spect to p is rather high, a significant difference can
still be consistently observed between the two mod-
els across samples of the same size. We also ob-
serve that, as the number of annotated instances de-
creases, the performance of the MLM drops faster
than that of the prompted LLM.

|  CoNLL2003 | n2c2
100 annotated instances
‘ p=1 p=2 p=3 ‘ p=1 p=2 p=3
Mistral-7B 0.646 0.626 0.714 ‘ 0291 0.178 0.215
XLM-R-large | 0.826 0.814 0.786 | 0.462 0.478 0.526
50 annotated instances
‘ p=1 p=2 p=3 ‘ p=1 p=2 p=3
Mistral-7B 0.615 0.648 0.637 ‘ 0.278 0.176  0.106
XLM-R-large | 0.697 0.77 0.714 | 0.431 0476 0.35
25 annotated instances
| p=1  p=2 p=3| p=I p=2 p=3
Mistral-7B 0.509 0599 0.52 ‘ 0.152 0252 0.116
XLM-R-large | 0.487 0.588 0.637 | 0.393 0.361 0.283

Table 2: F1 scores obtained over experiments with dif-
ferent training samples and different training sample
sizes.

A.1.2 Listing prompts

In this section, we compare the adopted tagging
prompts to listing prompts. In listing prompts,
demonstrations simply list the tagged mentions.
The list separator is optimized (in the same way
as the taggers) between a comma and a newline
character. Eventually, the introductory sentences
asks to list entities. The results shown in table 3
further corroborate our choice of only focusing on
tagging prompts.

A.1.3 Number of demonstrations

The decision to limit the number of annotated exam-
ples presented to generative models in the prompt
to a maximum of 10 is dictated by two constraints.

Firstly, models impose a limit on the number
of input tokens over which attention is calculated.
Most models used have a limit of 2048 tokens, but
more permissive models, such as Mistral-7B, al-
low up to 8096 tokens. This constraint translates
into a limit on the number of sentences that can be
presented in the prompt, ranging from 40 to 50 for
Mistral-7B and from 10 to 15 for less permissive
models, depending on the corpora and tokenizers.
For instance, consider the task of detecting body
parts in the French section of E3C. Using Mistral-
7B (and its tokenizer), the practical limit is around
40 examples, resulting in an average prompt of
7779.5 tokens. Using Vicuna-13B (and its tok-
enizer), the limit is around 11 examples, resulting
in an average of 1851.5 tokens in the prompt.

Secondly, the improvement brought by adding
more examples does not appear to be significant,
as observed in Table 4, which shows the results
obtained with Mistral-7B when the number of an-
notated examples is tripled. It is noteworthy that
the marginal improvements achieved by tripling the
number of examples come at a considerable cost,
especially given the quadratic complexity with re-
spect to the length of the prompt.

Therefore, we choose to limit the prompt to 5-
10 examples, selected based on the chosen criteria
(TF-IDF proximity to the reference sentence or the
number of entities present). Instead of selecting
examples independently, Gupta et al. (2023) pro-
pose selecting them interdependently to improve
the representativeness of the prompt. This approach
would be interesting to implement in our system in
future work.

A.1.4 Hyperparameter grid search

In order to assess the quality of our adopted search
method used to find the best feature combination to
incorporate in the prompt, we compare this method
to a naive grid search over these features. We test
all 512 combinations of our identified 9 features,
for Mistral-7B over ConLLL2003. The scores found
through LOOCYV vary between 0.0 and 0.656 with
a mean value of 0.387 and a median of 0.46. The
best-preforming combination is : Additional sen-
tences, Self-verification, Introductory sentence for
the test instance and Require a long answer for the
self-verification, which is exactly the same com-
bination we found initially through a greedy, tree
search, that is around 20 times faster and less con-
suming.
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‘ English ‘ French ‘ Spanish
Model ‘ WikiNER CoNLL2003 E3C n2c2 NCBI ‘ WikiNER QFP E3C EMEA MEDLINE ‘ WikiNER CoNLL2002 E3C CWL
Listing prompts
Mistral-7B ‘ 0.659 0.533 0.417 0281 0.340 ‘ 0.676 0.083 0.451 0.169 0.403 ‘ 0.697 0.620 0211 0.273
Tagging prompts
Mistral-7B ‘ 0.754 0.646 0.488 0.291 0.395 ‘ 0.727 0.428 0590 0.229 0.333 ‘ 0.720 0.707 0.083 0.374

Table 3: F1 scores obtained with the listing and tagging prompts.

‘ English ‘ French ‘ Spanish
Model ‘ WikiNER  CoNLL2003 E3C n2c2 NCBI ‘ WikiNER  QFP E3C EMEA MEDLINE ‘ WikiNER  CoNLL2002 E3C CWL
5/10 demonstrations
Mistral-7B ‘ 0.754 0.646 0.488 0.291 0.395 ‘ 0.727 0.428 0590 0.229 0.333 ‘ 0.720 0.707 0.083 0374
15/30 demonstrations
Mistral-7B ‘ 0.763 0.692 0.453 0263 0.377 ‘ 0.782 0.355 0.587 0.237 0.396 ‘ 0.785 0.751 0.163  0.413

Table 4: F1 scores obtained with 5/10 demonstations vs. with 15/30 demonstations

A.2 Evaluated models

Table 5 specifies relevant information about the
tested models. In the training corpus column, we
point out the data contaminations we know of.
For instance, MedBERT’s documentation explic-
itly mentions N2C2 as part of its training data.
This might lead to artificially high evaluation met-
rics, as the model is not generalizing to unseen
data, but instead leveraging pre-learned informa-
tion, which compromises the validity of the results

in real-world applications.

A.3 NER labels descriptions

Tables 6 to 10 definitions of all the labels present in
the studied datasets. These definitions were drawn
from available annotation schemes and further cu-
rated by the authors and native speakers. These
definitions were included in the prompt when the
"Include label definitions in the prompt" feature

was activated.

A.4 Carbon footprint

Tables 11 and 12 detail the carbon emission estima-
tions for all of our experiments. These estimations
were computed with GreenAlgorithms v2.2 (Lan-
nelongue et al., 2021) 3, based on factors such as
runtime, computing hardware and location where
electricity used by our computer facility was pro-
duced. In total, the experiments described in this
paper are estimated to have generated around 31kg
of CO2 equivalent (29kg for the main experiments,

and 2kg for ablation).

Shttp://calculator.green-algorithms.org/
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Number of

#  Model Training data size ~ Training corpus
parameters
1 Llama-2-70Bt" (Touvron et al., 2023) 70B 2 trillion tokens A mix of publicly available online data, mainly in English
2 Llama-3-8B-Instructt®" 8B over 15 trillion to- "A new mix" of publicly available online data, mainly in
kens English
Mistral-7B* (Jiang et al., 2023) 7B Undisclosed Undisclosed
5 4 Phi-3-medium-instruct®") (Abdin et al., 14B 4.8 trillion tokens A combination of publicly available corpora, synthetic data
El 2024) and chat format supervised data, mainly in English
O
5  BLOOM-7B]tenlfritesl  (Workshop 7B 1.6TB ROOTS (Laurencon et al., 2022), a mix of datasets and
etal., 2022) pseudo-crawled data 59 languages
6  Falcon-40Blen1tfriles] 40B 1 trillion tokens RefinedWeb (Penedo et al., 2023), a dataset of filtered and
deduplicated web data
7  GPT-J-6BeM (Wang and Komatsuzaki, 6B 825 GiB The Pile (Gao et al., 2020), a mixture of public datasets and
2021) web data in English
8  OPT-66BL*" (Zhang et al., 2022) 66B 180 billion tokens  Crawled data from the web, mainly in English
9  Vicuna-13B[en)s (Zheng et al., 2023) 13B 125K conversations Llama 2, fine-tuned on conversations collected from
ShareGPT.com, mainly in English
10  Vicuna-7Blenls (Zheng et al., 2023) 7B 125K conversations Llama 2, fine-tuned on conversations collected from
ShareGPT.com, mainly in English
11 BioMistral-7Ble"* (Labrak et al., 7B 3 billion tokens Mistral, fine-tuned on the PMC Open Access Subset
2024)
12 Medalpaca-7BL"* (Han et al., 2023) 7B 400K Q.A. pairs Llama 2, fine-tuned on semi-generated medical question-
answer pairs in English
13 Vigogne-13BLfrilenl: 13B 52K instructions Llama 2, fine-tuned on English instructions automatically
translated to French
14 mBERTeMfriles]  (Devlin et al., 110M  Undisclosed A corpus featuring 104 languages built from undisclosed
2019) sources
15 XLM-R-largete"1tfriles]  (Conneau 355M 2.5TB Filtered CommonCrawl data containing 100 languages
et al., 2020)
16 BERT—laIge[e"] (Devlin et al., 2019) 345M 3,3 billion words BookCorpus (Zhu et al., 2015), a dataset consisting of un-
published books and English Wikipedia.
k]
&; 17 RoBERTa—large[e”] (Liu et al., 2019) 355M 160 GiB BooksCorpus (Zhu et al., 2015), English Wikipedia, and
g crawled web data
18 Bio_ClinicalBERT™"! (Alsentzer et al., 110M 2 million clinical MIMIC-III (Johnson et al., 2016), a database containing
2019) notes electronic health records from hospitalized ICU patients
19  ClinicalBERTI®" (Wang et al., 2023a) 110M 1.2 billion words A large multi-center dataset with a corpus built from undis-
closed sources
20 MedBERT!eM (Vasantharajan et al., 110M 57 million words Community datasets (including N2C2 (Luo et al., 2020))
2022) and Crawled medical-related articles from Wikipedia
21 CamemBERT-large!] (Martin et al., 335M 64 billion tokens ~ OSCAR (Sudrez et al., 2020), a corpus of web data in
2020) French
22 FlauBERT-largel? (Le et al., 2020) 335M 13 billion tokens A mix of French Wikipedia, French books, and French web
data
23  DrBERT-4GB!f1 (Labrak et al., 2023) 110M 1 billion words A mix of publicly available biomedical corpora in French
(including QuaeroFrenchMed (Névéol et al., 2014)).
24  CamemBERT-biolf™} (Touchent and 110M 413 million words A mix of publicly available biomedical corpora in French
de la Clergerie, 2024) (including E3C (Magnini et al., 2021)).
25 BETO!®s! (Cafiete et al., 2020) 110M 3 billion words Spanish Wikipedia and Spanish data from OPUS (Tiede-
mann, 2012)
26 PatanaBERT!®s! 110M  Undisclosed Spanish
27 TulioBERTCes! 110M  Undisclosed Spanish
28 BSC-BioEHR(®$! (Carrino et al., 2022) 110M 1.1 billion tokens A mixture of biomedical community datasets including
EHR documents and crawled data in Spanish
29 BSC-Biot®s] (Carrino et al., 2022) 110M 963 million tokens A mixture of biomedical community datasets and crawled
data in Spanish
Table 5: Characterization of the language models used in our experiments in terms of parameters and training corpus.

Models marked with " (respectively 11, [es]) are heavily trained on English (respectively French, Spanish).
CLMs marked with * are fine-tuned versions of other CLMs.
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Tag Tag name (in singular) Description

PER person names (a person’s These are names of persons such as real people or fictional characters.

name)

FAC facilities (a facility) These are names of man-made structures such as infrastructure, buildings and
monuments.

LOC locations (a location) These are names of geographical locations such as landmarks, cities, countries
and regions.

ORG organizations (an organi- These are names of organizations such as companies, agencies and political

zation) parties.

FUNC functions and jobs (a func- These are words that refer to a profession or a job.

tion or a job)
ACTI activities and behaviors These are words that refer to human activities, behaviors or events as well as
(an activity or behavior) governmental or regulatory activities.

ANAT anatomy (an anatomy) These are words that refer to the structure of the human body, its organs and their
position, such as body parts or organs, systems, tissues, cells, body substances
and embryonic structures.

CHEM chemicals and drugs (a These are words that refer to a substance or composition that has a chemical

chemical or a drug) characteristic, especially a curative or preventive property with regard to human
or animal diseases, such as drugs, antibiotics, proteins, hormones, enzymes and
hazardous or poisonous substances.

CONC concepts and ideas (a con- These are words that refer to a concept or an idea, such as a classification, an

cept or an idea) intellectual product, a language, a law or a regulation.

DEVI medical devices (a device) These are words that refer to a medical device used to administer care or perform
medical research.

DISO disorders (a disorder) These are words that refer to an alteration of morphology, function or health of a
living organism, animal or plant, such as congenital abnormalities, dysfunction,
injuries, signs or symptoms or observations.

GENE genes and molecular se- These are words that refer to a gene, a genome or a molecular sequence.

quences (a gene or a
molecular sequence)
GEOG geographical areas (a geo- These are words that refer to a country, a region or a city.
graphical area)
LIVB living beings (a living be- These are words that refer to a living being or a group of living beings, such as
ing) a person or a group of persons, a plant or a category of plants, an animal or a
category of animals.

OBIJC objects (an object) These are words that refer to anything animate or inanimate that affects the
senses, such as physical manufactured objects.

OCCU occupations (an occupa- These are words that refer to a professional occupation or discipline.

tion)

ORGA organizations (an organi- These are words that refer to an organization such as healthcare related organi-

zation) zations.

PHEN phenomema (a  phe- These are words that refer to a phenomenon that occurs naturally or as a result

nomemon) of an activity, such as a biologic function.

PHYS physiology (a physiology) These are words that refer to any element that contributes to the mechanical,
physical and biochemical functioning or organization of living organisms and
their components.

PROC procedures (a procedure)  These are words that refer to an activity or a procedure that contributes to the
diagnosis or treatment of patients, the information of patients, the training of
medical personnel or biomedical research.

EVENT events (an event) These are words that refer to actions, states, and circumstances that are relevant

to the clinical history of a patient such as pathologies and symptoms, or more

generally words like "enters", "reports" or "continue".

Table 6: Description of the NER tags used in our experiments for English.
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Tag Tag name (in singular) Description

TIMEX3 time expressions (a time These are time expressions such as dates, times, durations, frequencies, or
expression) intervals.

RML results and measurements These are test results, results of laboratory analyses, formulaic measurements,
(a result or a measure- and measure values.
ment)

ACTOR actors (an actor) These are words that refer patients, healthcare professionals, or other actors

relevant to the clinical history of a patient.

Abbreviation abbreviations (an abbrevi- These are words that refer to abbreviations.
ation)

Body_Part body parts (a body part) These are words that refer to organs and anatomical parts of persons.

Clinical_Finding

clinical findings (a clinical
finding)

These are words that refer to observations, judgments or evaluations made about
patients.

Diagnostic_Procedure diagnostic procedures (a

diagnostic procedure)

These are words that refer to tests that allow determining the condition of the
individual.

Disease

diseases (a disease)

These are words that describe an alteration of the physiological state in one or
several parts of the body, due to generally known causes, manifested by charac-
teristic symptoms and signs, and whose evolution is more or less predictable.

Family_Member

family members (a family
member)

These are words that refer to family members.

Laboratory_or
_Test_Result

laboratory or test results (a
laboratory or test result)

These are words that refer to any measurement or evaluation obtained from a
diagnostic support examination.

Laboratory_Procedurelaboratory procedures (a

laboratory procedure)

These are words that refer to tests that are performed on various patient samples
that allow diagnosing diseases by detecting biomarkers and other parameters.
Blood, urine, and other fluids and tissues that use biochemical, microbiological
and/or cytological methods are considered.

Medication

medications (a medica-
tion)

These are words that refer to medications or drugs used in the treatment and/or
prevention of diseases, including brand names and generics, as well as names
for groups of medications.

Procedure

procedures (a procedure)

These are words that refer to activities derived from the care and care of patients.

Sign_or_Symptom

signs or symptoms (a sign
or symptom)

These are words that refer to manifestations of a disease, determined by medical
examination or perceived and expressed by the patient.

Therapeutic_Procedurd¢herapeutic procedures (a

therapeutic procedure)

These are words that refer to activities or treatments that are used to prevent,
repair, eliminate or cure the individual’s disease.

CompositeMention composite mentions of dis- These are words that refer to mentions of multiple diseases, such as "colorectal,
eases (a composite men- endometrial, and ovarian cancers".
tion of diseases)

DiseaseClass disease classes (a disease These are words that refer to classes of diseases, such as "an autosomal recessive
class) disease".

Modifier modifiers (a modifier of These are words that refer to modifiers of diseases, such as "primary" or "C7-
diseases) deficient".

SpecificDisease diseases (a disease) These are words that refer to specific diseases, such as "diastrophic dysplasia".

Table 7: Description of the NER tags used in our experiments for English, continued.
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Tag Tag name (in singular) Description

PER de noms de personnes (un Il s’agit des noms de personnes, qu’elles soient réelles ou fictives.
nom de personne)

FAC de productions humaines Il s’agit des noms de structures faites par les humains comme des infrastructures,
(une production humaine) des batiments ou des monuments.

LOC de lieux (un lieu) Il s’agit des noms de lieux comme des endroits, villes, pays ou régions.

ORG d’organisations (une or- Il s’agit des noms d’organisations comme des entreprises, des agences ou des
ganisation) partis politiques.

FUNC de fonctions et métiers Il s’agit de mots qui se rapportent a une activité professionnelle.

(une fonction ou un
métier)

ANAT d’anatomie (une partie du 1l s’agit d’une entité se rapportant a la structure du corps humain, ses organes
corps) et leur position. Il s’agit principalement des parties du corpus ou organes, des

appareils, des tissus, des cellules, des substances corporelles et des organismes
embryonaires.

CHEM de médicaments et sub- Il s’agit d’une substance ou composition présentant des propriétés chimiques
stances chimiques (un caractéristiques, en particulier des propriétés curatives ou préventives a I’égard
médicament ou une des maladies humaines ou animales. Il s’agit principalement des médicaments
substance chimique) disponibles en pharmacie, des antibiotiques, des proteines, des hormones, des

substances dangereuses, des enzymes.

DEVI de matériel (un matériel) Il s’agit d’un matériel utilisé pour administrer des soins ou effectuer des

recherches médicales.

DISO de problemes médicaux Il s’agit d’une altération de la morphologie, des fonctions, ou de la santé
(un probléeme médical) d’un organisme vivant, animal ou végétal. Il peut s’agir de malformations, de

maladies, de blessure, de signe ou symptome ou d’une observation.

GEOG de zones géographiques Il s’agit d’un pays, une région, ou une ville.

(une zone géographique)

LIVB d’étres vivants (un étre vi- Il s’agit d’un étre vivant ou groupe d’étres vivants. Il peut s’agir d’une personne
vant) ou d’un groupe de personnes, d’une plante ou d’une catégorie de végétaux,

d’un animal ou d’une catégorie d’animaux.

OBIJC d’objets (un objet) Il s’agit de tout ce qui, animé ou inanimé, affecte les sens. Ici, il s’agit princi-

palement d’objets physiques manufacturés.

PHEN de  phénomenes (un Il s’agit d’un phénomene qui se produit naturellement ou a la suite d’une activité.
phénomene) 11 s’agit principalement de fonctions biologiques.

PHYS de physiologie (une physi- Il s’agit de tout élément contribuant au fonctionnement ou a 1’organisation
ologie) mécanique, physique et biochimique des organismes vivants et de leurs com-

posants.

PROC de procédures (une procé- 1l s’agit d’une activité ou procédure contribuant au diagnostic ou au traitement
dure) des patients, a I’information des patients, la formation du personnel médical ou

a la recherche biomédicale.

EVENT d’événements (un événe- Il s’agit d’une action, d’un état ou d’une circonstance qui est pertinent pour
ment) I’histoire clinique d’un patient. Il peut s’agir de pathologies et symptdmes, ou

plus généralement de mots comme "entre", "rapporte” ou "continue".

TIMEX3 d’expressions temporelles 1l s’agit d’expressions temporelles comme des dates, heures, durées, fréquences,
(une expression tem- ou intervalles.
porelle)

RML de résultats et mesures (un 1l s’agit de résultats d’analyses de laboratoire, de mesures formelles, et de
résultat ou une mesure) valeurs de mesure.

ACTOR d’acteurs (un acteur) Il s’agit de patients, de professionnels de santé, ou d’autres acteurs pertinents

pour I’histoire clinique d’un patient.

Table 8: Description of the NER tags used in our experiments for French.
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Tag

Tag name (in singular)

Description

PER nombres de personas (un Estos son nombres de personas, ya sean reales o personajes ficticios.
nombre de persona)

FAC instalaciones (una insta- Estos son nombres de estructuras hechas por el hombre como infraestructura,
lacién) edificios y monumentos.

LOC lugares (un lugar) Estos son nombres de ubicaciones geograficas como hitos, ciudades, paises y

regiones.

ORG organizaciones (una orga- Estos son nombres de organizaciones como empresas, agencias y partidos
nizacién) politicos.

ACTI actividades y compor- Estas son palabras que se refieren a actividades humanas, comportamientos o
tamientos (una actividad o eventos, asi como actividades gubernamentales o regulatorias.
comportamiento)

ANAT anatomia (una anatomia)  Estas son palabras que se refieren a la estructura del cuerpo humano, sus
drganos y su posicién, como partes del cuerpo u érganos, sistemas, tejidos,
células, sustancias corporales y estructuras embrionarias.

CHEM productos quimicos Estas son palabras que se refieren a una sustancia o composicion que tiene
y medicamentos (un una caracteristica quimica, especialmente una propiedad curativa o preventiva
producto quimico o un con respecto a las enfermedades humanas o animales, como medicamentos,
medicamento) antibidticos, proteinas, hormonas, enzimas y sustancias peligrosas o venenosas.

CONC conceptos e ideas (un con- Estas son palabras que se refieren a un concepto o una idea, como una clasifi-
cepto o una idea) cacion, un producto intelectual, un idioma, una ley o un reglamento.

DEVI dispositivos médicos (un Estas son palabras que se refieren a un dispositivo médico utilizado para admin-
dispositivo) istrar atencion o realizar investigaciones médicas.

DISO trastornos (un trastorno) Estas son palabras que se refieren a una alteracion de la morfologia, la funcién
o la salud de un organismo vivo, animal o vegetal, como anomalias congénitas,
disfuncidn, lesiones, signos o sintomas u observaciones.

GENE genes y secuencias molec- Estas son palabras que se refieren a un gen, un genoma o una secuencia molec-

ulares (un gen o una se- ular.
cuencia molecular)

GEOG dreas geograficas (un drea  Estas son palabras que se refieren a un pafs, una region o una ciudad.
geografica)

LIVB seres vivos (un ser vivo) Estas son palabras que se refieren a un ser vivo o un grupo de seres vivos, como
una persona o un grupo de personas, una planta o una categoria de plantas, un
animal o una categoria de animales.

OBJC objetos (un objeto) Estas son palabras que se refieren a cualquier cosa animada o inanimada que
afecte los sentidos, como objetos fisicos fabricados.

OCCU ocupaciones (una ocu- Estas son palabras que se refieren a una ocupacion o disciplina profesional.

pacioén)

ORGA organizaciones (una orga- Estas son palabras que se refieren a una organizacion, por ejemplo organiza-
nizacion) ciones relacionadas con la salud.

PHEN fenémenos (un fenémeno) Estas son palabras que se refieren a un fenémeno que ocurre naturalmente o

como resultado de una actividad, por ejemplo una funcién bioldgica.

Table 9: Description of the NER tags used in our experiments for Spanish.
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Tag

Tag name (in singular)

Description

PHYS fisiologfa (una fisiologia)  Estas son palabras que se refieren a cualquier elemento que contribuya al fun-
cionamiento mecdnico, fisico y bioquimico o la organizacién de los organismos
vivos y sus componentes.

PROC procedimientos (un pro- Estas son palabras que se refieren a una actividad o un procedimiento que con-

cedimiento) tribuye al diagndstico o tratamiento de pacientes, la informacién de pacientes,
la capacitacion del personal médico o la investigacion biomédica.
EVENT eventos (un evento) Estas son palabras que se refieren a acciones, estados y circunstancias que son
relevantes para la historia clinica de un paciente, como patologias y sintomas, o
mas generalmente palabras como "entra", "reporta” o "contintda".
TIMEX3 expresiones de tiempo Estas son expresiones de tiempo como fechas, horas, duraciones, frecuencias o
(una expresion de tiempo) intervalos.

RML resultados y mediciones Estos son resultados de andlisis de laboratorio, mediciones formales y valores
(un resultado o una me- de medicién.
dida)

ACTOR actores (un actor) Estas son palabras que se refieren a pacientes, profesionales de la salud u otros
actores relevantes para la historia clinica de un paciente.

Abbreviation abreviaciones (una abre- Estas son los casos de siglas y acrénimos.

viacién)
Body_Part partes del cuerpo (una Estas son palabras que se refieren a 0rganos y partes anatomicas de personas.

parte del cuerpo)

Clinical_Finding

hallazgos clinicos (un hal-
lazgo clinico)

Estas son palabras que se refieren a observaciones, juicios o evaluaciones que
se hacen sobre los pacientes.

Diagnostic_Procedure procedimientos diagndsti-

cos (un procedimiento di-
agnostico)

Estas son palabras que se refieren a exdmenes que permiten determinar la
condicidn del individuo.

Disease

enfermedades (una enfer-
medad)

Estas son palabras que describen una alteracién del estado fisiolégico en una
o varias partes del cuerpo, por causas en general conocidas, manifestada por
sintomas y signos caracteristicos, y cuya evolucién es mas o menos previsible.

Family_Member

miembros de la familia (un
miembro de la familia)

Estas son palabras que se refieren a miembros de la familia.

Laboratory_or
_Test_Result

resultados de exdmenes de
laboratorio u otras pruebas
(un resultado de un exa-
men de laboratorio u otra
prueba)

Estas son palabras que se refieren a cualquier medicién o evaluacién obtenida a
partir de un exdmen de apoyo diagndstico.

Laboratory_Procedureprocedimientos de labora-

torio (un procedimiento de
laboratorio)

Estas son palabras que se refieren a exdmenes que se realizan en diversas
muestras de pacientes que permiten diagnosticar enfermedades mediante la
deteccién de biomarcadores y otros pardmetros. Se consideran los andlisis
de sangre, orina, y otros fluidos y tejidos que emplean métodos bioquimicos,
microbiolégicos y/o citoldgicos.

Medication

medicamentos o drogas
(un medicamento o una
droga)

Estas son palabras que se refieren a medicamentos o drogas empleados en el
tratamiento y/o prevencion de enfermedades, incluyendo marcas comerciales y
genéricos, asi como también nombres para grupos de medicamentos.

Procedure

procedimientos (un pro-
cedimiento)

Estas son palabras que se refieren a actividades derivadas de la atencién y el
cuidado de los pacientes.

Sign_or_Symptom

signos o sintomas (un
signo o un sintoma)

Estas son palabras que se refieren a manifestaciones de una enfermedad, de-
terminadas mediante la exploraciéon médica o percibidas y expresadas por el
paciente.

Therapeutic_Procedurgrocedimientos terapéuti-

cos (un procedimiento ter-
apéutico)

Estas son palabras que se refieren a actividades o tratamientos que es empleado
para prevenir, reparar, eliminar o curar la enfrmedad del individuo.

Table 10: Description of the NER tags used in our experiments for Spanish, continued.
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‘ English ‘ French ‘ Spanish

#  Model ‘ WikiNER  CoNLL2003 E3C n2c¢2 NCBI ‘ WikiNER QFP E3C EMEA MEDLINE ‘ WikiNER CoNLL2002 E3C CWL
Few-shot approaches
1 LLAMA-2-70B 46 44 126 233 54 85 131 129 273 284 41 76 114 344
2 LLAMA-3-8B-Instruct 3 5 12 19 12 5 7 7 11 23 4 7 12 36
3 Mistral-7B 4 6 12 24 8 5 8 14 13 25 7 5 11 27
4 Phi-3-medium-instruct 5 8 14 24 6 12 9 14 17 25 9 15 19 28
5 BLOOM-7BI 4 6 10 26 9 8 13 9 26 20 4 8 8 18
F 6  Falcon-40B 49 45 56 176 45 31 58 75 162 129 33 25 82 99
5 7  GPT-J-6B 7 6 8 23 7 5 8 13 21 17 6 6 13 28
8  OPT-66B 73 50 120 253 96 38 64 138 273 240 57 52 106 247
9  Vicuna-13B 10 11 20 52 11 11 12 18 33 40 10 11 22 51
10 Vicuna-7B 6 8 14 17 6 5 10 10 24 14 8 6 13 27
11 BioMistral-7B 7 8 11 17 5 7 12 10 28 14 8 8 11 23
12 Medalpaca-7B 8 4 17 24 7 14 11 19 13 7 8 15 26
13 Vigogne-13B 14 14 29 37 11 13 20 26 36 39 11 14 32 44
11 mBERT 2 1 2 2 2 2 2 2 1 1 1 2 1 2
12 XLM-R-large 2 2 2 1 2 2 2 2 2 2 1 1 1 2
13 BERT-large 2 1 2 2 2 - - - - - - -
14 RoBERTa-large 1 2 2 2 2 - - - - - - - -
15 Bio_ClinicalBERT 2 2 1 2 1 - - - - - - -
16 ClinicalBERT 1 1 2 2 1 - - - - - - -
- 17 MedBERT 2 2 1 1 1 - - - - - - - - -
2 18 CamemBERT-large - - - - - 1 1 1 2 2 - - - -
é 19  FlauBERT-large - - - - - 2 2 2 2 2 - - - -
20 DrBERT-4GB - - - - - 2 2 2 2 2 - - - -
21 CamemBERT-bio - - - - - 1 2 2 2 2 - - - -
23 BETO - - - - - - - - - - 2 1 1 1
23  PatanaBERT - - - - - - - - - 2 2 2 2
24  TulioBERT - - - - - - - - - - 1 2 2 1
25 BSC-BioEHR - - - - - - - - - - 2 2 2 2
26 BSC-Bio - - - - - - - - - - 2 2 2 2
Masked fully-supervised (skyline)
RoBERTa-large 647 68 5 12 24 - - - - -
CamemBERT-large - - - - - 595 15 4 5 8 - - - -
BETO - - - - - - - - - - 579 41 3 21

Table 11: This table presents the carbon emissions (in g) of the optimization on the validation set of each model
over each dataset. For CLMs, this correponds to the tree search over the prompt features through cross-validation.
For MLMs, this corresponds to the supervised fine-tuning and training of the model.

‘ English ‘ French ‘ Spanish
#  Model ‘ WikiNER CoNLL2003 E3C n2c2 NCBI ‘ WikiNER QFP E3C EMEA MEDLINE ‘ WikiNER CoNLL2002 E3C CWL
Few-shot approaches
1 LLAMA-2-70B 812 147 36 196 33 508 11 13 92 47 514 201 11 198
2 LLAMA-3-8B-Instruct 240 39 9 63 22 158 3 4 29 21 279 53 2 34
3 Mistral-7B 234 35 8 59 21 148 3 4 27 20 261 50 2 32
4 Phi-3-medium-instruct 326 48 12 64 25 380 5 9 62 48 529 70 4 76
5 BLOOM-7B1 220 33 8 44 16 255 3 5 38 29 261 47 2 46
g 6 Falcon-40B 600 109 26 144 46 722 9 19 155 70 752 154 9 157
&8 7 GPT--6B 146 17 4 53 20 245 2 6 14 26 154 40 3 53
8 OPT-66B 765 139 33 185 63 971 12 27 179 93 993 196 12 217
9  Vicuna-13B 314 47 11 63 24 363 5 8 61 46 502 67 4 74
10 Vicuna-7B 146 17 4 53 20 246 2 6 14 26 155 65 3 53
11 BioMistral-7B 235 35 9 49 17 269 3 5 43 32 272 49 2 48
12 Medalpaca-7B 192 24 5 39 14 98 2 2 17 13 172 53 1 21
13 Vigogne-13B 322 49 11 65 24 245 5 6 44 33 361 68 3 66
11 mBERT 14 4 <1 2 <1 15 1 <1 1 1 13 2 <1 2
12 XLM-R-large 14 4 <1 2 <1 15 1 <1 1 1 13 2 <1 2
13 BERT-large 14 4 <1 2 <1 - - - - - - - -
14 RoBERTa-large 14 4 <1 2 <1 - - - - - - - - -
15 Bio_ClinicalBERT 14 4 <1 2 <l - - - - - - - - -
16  Clinical BERT 14 4 <l 2 <1 - - - - - - - - -
< 17 MedBERT 14 4 <1 2 <1 - - - - - - - - -
£ 18 CamemBERT-large - - - - - 15 1 <1 1 1 - - - -
é 19 FlauBERT-large - - - - - 15 1 <1 1 1 - - - -
20 DrBERT-4GB - - - - - 17 1 <1 1 1 - - - -
21 CamemBERT-bio - - - - - 15 1 <1 1 1 - - - -
22 BETO - - - - - - - - - - 13 2 <1 2
23 PatanaBERT - - - - - - - - - - 13 2 <1 2
24  TulioBERT - - - - - - - - - - 13 2 <1 2
25 BSC-BioEHR - - - - - - - - - - 13 2 <1 2
26 BSC-Bio - - - - - - - - - - 13 2 <1 2
Masked fully-supervised (skyline)
RoBERTa-large 14 4 <1 2 <1 - - - - - - - - -
CamemBERT-large - - - - - 15 1 <1 1 1 - - - -
BETO - - - - - - - - - - 13 2 <1 2

Table 12: This table presents the carbon emissions (in g) of the inference on the test set of each model over each
dataset.
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