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Abstract

With the advancement of multimedia technolo-
gies, news documents and user-generated con-
tent are often represented as multiple modal-
ities, making Multimedia Event Extraction
(MEE) an increasingly important challenge.
However, recent MEE methods employ weak
alignment strategies and data augmentation
with simple classification models, which ignore
the capabilities of natural language-formulated
event templates for the challenging Event Ar-
gument Extraction (EAE) task. In this work,
we focus on EAE and address this issue by in-
troducing a unified template filling model that
connects the textual and visual modalities via
textual prompts. This approach enables the ex-
ploitation of cross-ontology transfer and the in-
corporation of event-specific semantics. Exper-
iments on the M2E2 benchmark demonstrate
the effectiveness of our approach. Our system
surpasses the current SOTA on textual EAE by
+7% F1, and performs generally better than the
second-best systems for multimedia EAE.

1 Introduction

Traditional Event Extraction (EE) consists of two
tasks: Event Detection (ED) and Event Argument
Extraction (EAE), which address event type identi-
fication and argument role extraction, respectively.
Traditional methods focus on individual modalities,
such as text, images, or videos (Huang et al., 2023;
Yatskar et al., 2016; Khan et al., 2022). However,
focusing on single modalities results in incomplete
event understanding, as up to 33% of visual argu-
ments are absent in the accompanying text (Li et al.,
2020) (cf. Figure 1).

As the creation of multimodal EE datasets is
time-consuming and costly, recent advanced MEE
methods focus on (weak) image-text alignment
based on available unimodal task-dependent and
task-independent vision-language datasets (Li et al.,
2020; Liu et al., 2022; Du et al., 2023; Liu et al.,
2024). However, current multimedia EAE models

The International
Organization for Migration
[ORG] estimated that more
than a quarter-of-a million
migrants [PER] crossed the
Libya-Niger border [LOC]
last year. The EU [ORG]
already has five migrant
centers located ...

Movement:Transport (crossed)
Visual Artifact Person
Arguments Vehicle Boat
Textual Artifact Migrants
Arguments Destination Border

Figure 1: Example of Multimedia Event Extraction from
the M2E2 benchmark, where event argument roles are
extracted from both the textual and visual modality.

are still based on simple classification techniques
while ignoring cross-ontology transfer capabilities
and event template semantics.

To address this gap, we reformulate existing
query-based (template filling) methods (Wang et al.,
2022; Zhang et al., 2022; Ma et al., 2022; Zheng
et al., 2023) into a unified template filling frame-
work, which enables us to utilize event templates
as natural language prompts for different input
modalities. First, our Multimodal Multimedia
Event Argument Extraction with Unified Template
Filling (MMUTF) model exploits candidate struc-
tures, such as textual entities and visual objects,
and connects them via query representations (i.e.,
argument roles) in a unified latent space. Finally,
these representations are used to match event argu-
ment roles with the corresponding candidates via
queries extracted from event templates.

Contributions We summarize our main contri-
butions as follows: 1) We introduce MMUTF, a
unified template filling framework that addresses
the EAE task for multiple input modalities. 2) We
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validate our approach on the widely used M2E2
benchmark and demonstrate superior performance
compared to the majority of baselines. 3) We anal-
yse the transfer learning capabilities for multimedia
EAE by employing FrameNet as a resource-rich
data source.

2 Method

For event argument roles, the extraction task can
be framed as a candidate-query matching problem,
where argument roles serve as the queries. We
can utilize the matching between candidates and
queries to address the multimedia EAE task with
a unified template filling model. Specifically, we
aim to create candidate representations for either
textual entities or image objects and compute a
matching score for each query (i.e., argument role)
in a given event template.'

2.1 Multimodal Unified Template Filling

Our unified template filling model is depicted in
Figure 2. We use both the sentences and images
from a multimedia document as input contexts,
with the written descriptions of event templates
and argument roles acting as placeholders. We ap-
proach the EAE task in multiple steps: 1) Given a
predicted event trigger, we select the corresponding
event template. 2) We encode the input sentences
and images with modality-specific encoder models
and compute candidate representations. 3) We feed
the event template into the query model and obtain
query representations for each role. 4) Lastly, we
compute the matching scores and treat the EAE
task as a binary classification problem.

Candidate Representations In order to obtain
modality-specific candidates, we recognize entities
and objects with off-the-shelf systems and extract
contextualized representations using a Transformer
model for each modality (Vaswani et al., 2017;
Raffel et al., 2020; Radford et al., 2021). The
encoding process yields a sequence of N token
embeddings ¢ = {t;}3¥ € RY*H and M patch
embeddings p = {p;}} € RM*H with dimen-
sionality H for each input sentence S and image
1, respectively. For entities tokenized into multiple
subwords, we use mean pooling and concatenate
the feature vector with the representation of the

'We can also consider text spans, image segments, etc., as
candidates. However, entities and objects follow the present
annotation schemes and suit the EAE task best.

event trigger word. Similarly, for images, we ob-
tain object feature vectors using the max pooling”
operation over all patches containing the detected
object, and concatenate these with the image CLS
embeddings for further processing. Here, the CLS
embeddings serve as event triggers represented as
image scenes. The concatenated vectors are then
transformed via their corresponding mapping net-
works, which will be described in more detail later.

Query Representations For event template pro-
cessing, we employ the decoder of a Transformer
Encoder-Decoder model (Raffel et al., 2020) as
shown in Figure 2. This approach has shown
promising results without compromising on the
length of the input context, as seen in encoder ar-
chitectures (Ma et al., 2022). This configuration
enables the prompt to interact with the input con-
texts at the cross-attention layers of every decoder
block, resulting in context-dependent query repre-
sentations. Similar to the generation of candidate
representations, we use the mean pooling operation
for argument roles that span multiple subwords
and feed the features into a subsequent mapping
network. We denote the query representations as
q = {q;}f* € RE*H where H is the dimensional-
ity, and R is the number of argument roles.

Mapping Network We aim to align the modality-
specific candidate and query representations into
a unified latent space, based on the candidate and
query feature vectors. However, during training,
we face the challenge of unifying the rich and di-
verse representations of the different modalities
and Transformer models. The mapping networks
are designed to bridge the gap between the latent
spaces and transform all candidate and query fea-
tures into H-sized representations. Each mapping
network shares the same architecture and consists
of a two-layer feedforward network with 4 x H
hidden units, ReLU (Agarap, 2018) activation, and
is trained with a dropout probability of 40%.

2.2 Training and Inference

For each event, we evaluate whether a candidate
c represents an argument role by computing a
matching score ¢(c,r) = o(hlq,) € R. Here, h,
denotes the representation vector of the candidate
¢, q, indicates the query vector of argument role 7,
and o represents the sigmoid activation. The model
parameters and representations are optimized to

“Max pooling achieved the best results among other tech-
niques such as mean and Rol pooling.
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Figure 2: The overall architecture of MMUTF. Given a text or image event, our model encodes the corresponding
event template and argument roles as a textual prompt. The textual or image context interacts with the prompt via
the cross-attention mechanism, resulting into candidate and query representation vectors. Here, the candidates
correspond to entities or objects, depending on the modality. A matching score then assigns the candidates to the

argument roles based on a predefined threshold.

enhance the matching scores for positive and to
reduce it for negative candidate-query pairs:
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where Lpcg denotes the binary cross-entropy loss,
y;; the ground truth label, C' the collection of
candidates and A the set of possible argument
roles. At inference time, we use a threshold 7
with ¢(c,r) > 7 to decide whether candidate ¢
corresponds to argument role r. For each event
and candidate, we assign the role with the highest
score that exceeds the threshold 7. Otherwise, the
candidate is assigned to the None class.

3 Experiments

Datasets We conduct our experiments on the
widely used M2E2 multmedia event extraction
benchmark (Li et al., 2020) with 8 event types and
15 argument roles. The dataset contains 245 multi-
media documents with 6,167 sentences and 1,014
images. It encompasses 1,297 textual events and
391 visual events, with 192 textual events and 203
visual events aligning to 309 multimedia events
(cf. Figure 1). Since the M2E2 dataset does not
provide a training split, we follow previous work
(Li et al., 2020; Liu et al., 2022; Du et al., 2023)
and employ ACE2005 and SWiG for the training
phase. ACE2005 (Walker, Christopher et al., 2006)
consists of 33 textual event types and 36 argument
roles. SWiG (Pratt et al., 2020) annotates visual
events with 504 activity verbs and 1,788 semantic

roles. Following Li et al. (2020), we align both
datasets with the M2E2 event ontology.

Metrics For evaluation, we follow previous stud-
ies on EAE (Huang et al., 2023) and use Precision
(P), Recall (R), and F1-Score (F1) as our evalua-
tion metrics. In this work, we focus on the more
challenging EAE task but also report event classifi-
cation results for completeness.

Baselines We compare our proposed approach
with a wide range of state-of-the-art models. These
models include FLAT (Li et al., 2020), WASE
(Li et al., 2020), CLIPgyvenr (Li et al., 2022),
UNICL (Liu et al., 2022), CAMEL (Du et al.,
2023), MGIM (Liu et al., 2024), and UMIE (Sun
et al., 2024). The majority of baselines set the
focus on weak image-text alignment but neglect
more sophisticated classification approaches w.r.t.
EAE. We provide a more comprehensive overview
in A.l.

Experimental Setup To ensure a fair compari-
son with the baselines, we utilize the CLIP-base
model (Radford et al., 2021) as visual encoder
with a 16 x 16 patch size, and the T5-base (Raffel
et al., 2020) model as textual encoder-decoder. We
generate object candidates with YOLOvV8 (Jocher
et al., 2023) trained on the COCO (Lin et al., 2014)
dataset and use entities as textual span candidates.

Our system is trained jointly for 5 epochs on the
visual task and 25 epochs on the textual task with a
batch size of 16 and 32, respectively. The varying
number of epochs reduces the imbalance of modal-
ities in the training datasets. For optimization, we
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Textual Events
Event Mention Argument Role

Visual Events
Event Mention

Multimedia Events

Argument Role Event Mention Argument Role

Modd P R F| P R F1I| P R FI| P R FI| P R FlL| P R Fl
FLATArr 342 632 444201 27.1 231|271 573 367| 43 89 58 339 59.8 422|129 176 149
FLATos 383 579 46.1 |21.8 266 240|264 558 358 | 9.1 65 7.6 |341 564 425|163 159 16.1
WASEarr 37.6 66.8 48.1 275 332 30.1|323 634 428| 97 11.1 103|382 67.1 49.1 |18.6 21.6 199
WASEog, 428 619 506|235 30.3 264|431 592 499|145 10.1 119|430 62.1 508|195 189 192
CLIPEyent - - - - - - | 413 728 527|211 131 171 - - - - - -
UNICL 49.1 592 537|278 343 307|546 609 576|169 138 152|441 677 534|243 226 234
MGIM 50.1 66.5 558|282 347 312|557 644 585|241 141 178|463 69.6 556|252 217 246
UMIE" - - - - - - - - - - - - - - 621 - - 245
CAMEL 451 71.8 554|248 41.8 31.1|521 66.8 585|214 284 244|556 59.5 575|314 351 332
CAMEL! 485 650 555|303 33.6 319|551 591 570|217 221 219|479 634 54.6|259 304 279
MMUTF 485 650 555|336 442 382|551 59.1 57.0|23.6 188 209|479 634 546|399 208 274

Table 1: Comparison with SOTA methods on the M2E2 benchmark for textual, visual, and multimedia events. Bold
numbers indicate the best EAE model whereas underlined metrics denote the second best. | denotes our reproduced
results and * is not directly comparable due to lack of evaluation details.

Strategy Textual F1 Visual F1 MM F1
TEXT + IMAGE 38.2 20.9 27.4
TEXT — IMAGE 38.2 19.0 26.9
IMAGE — TEXT 36.6 20.4 26.5
IMAGE LOCKED 38.7 20.1 27.7

Table 2: Comparison of multimodal training strategies.

use AdamW (Loshchilov and Hutter, 2019) with an
initial learning rate of 3 x 107>, weight decay of
1 x 1073, and a linear scheduler. We select the best
model checkpoint based on F1 of the ACE2005 test
dataset and set the default threshold 7 = 0.5 for
inference. We report threshold tuning and imple-
mentation details in A.2 and A.3.

Since MMUTTF focuses on EAE and requires
event predictions for a realistic comparison, we ran
the CAMEL event detection model to obtain event
predictions. We achieve comparable results with a
F1 of 55.5%, 57.0%, and 54.6% for textual, visual,
and multimedia event detection, respectively. How-
ever, we observe an absolute performance drop of
1.5% and 2.9% for the visual and multimedia event
detection tasks.

3.1 Results

The results of our main experiments can be found
in Table 1. We find that our model surpasses the
SOTA in terms of textual EAE by +7% F1. For
visual and multimedia EAE, we generally perform
better than the second-best systems, achieving im-
provements of +3.1% and +2.8% F1, respectively.
These results demonstrate the efficacy of our ap-
proach by utilizing cross-ontology transfer capa-
bilities and event semantics via natural language
prompts. However, we observe a gap of -5.8%

F1 in multimedia EAE compared to CAMEL, pri-
marily due to the visual modality. With the same
set of predicted event mentions, the gap narrows
to -0.5% F1 in multimedia EAE. We hypothesize
that CAMEL’s better visual performance is related
to its additional data augmentation pipeline and
the integration of textual clues. Note that we do
not utilize any additional image-language paired
datasets or cross-modal data augmentation in this
work. Incorporating cross-modal information from
the document’s context and external datasets, as
well as enhanced event detection, might further
improve our model’s performance.

3.2 Analysis

Multimodal Training Strategy Table 2 presents
results for different multimodal training strategies,
focusing on cross-modality alignment for EAE.
TEXT + IMAGE denotes the training strategy that
jointly trains the textual and visual input modal-
ities. TEXT — IMAGE represents the sequential
procedure. Here, we first train our model on the
text input modality, then freeze the text and query
model parameters before training the visual input
modality. With IMAGE — TEXT, we follow the
same procedure as before, but in reverse. Lastly, we
follow recommendations in vision-language align-
ment (Zhai et al., 2022) and freeze the visual en-
coder during joint training (IMAGE LOCKED). The
results suggest that joint training achieves superior
performance, while the sequential procedure expe-
riences performance drops of up to -1.9% F1 for the
aligned modality. The IMAGE LOCKED approach
yields the best textual and multimodal F1 scores,
while also representing the most memory-efficient
alternative during training.
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Model Textual F1 Visual F1 MM F1
MMUTF 38.2 20.9 274
1 w/o Cross-Attention 38.5 17.8 26.5
2 w/o Joint-Prompts 37.0 17.5 24.4
3 w/o Prompts 379 15.9 23.3

Table 3: Ablations for the different components. (1)
without cross-attention between candidate and query
representations. (2) Replacement of joint query model
with modality-specific models. (3) Replacement of tex-
tual query representations with trainable prototypes.

Ablation Study To better illustrate the effective-
ness of different components, we conduct ablation
studies and present the results in Table 3. In line 1,
we remove the cross-attention mechanism between
the candidate and query representations. This re-
sults in a performance reduction for visual and mul-
timedia EAE, while we observe a slight increase
for textual EAE. In line 2, we replace the joint
model for query representations with two modality-
specific models. The performance of all EAE cases
significantly declines by up to +3.4% in terms of
F1 scores. These observations suggest the effec-
tiveness of unified template filling, particularly for
the visual and multimedia EAE tasks. Lastly, to
assess the influence of natural language-formulated
event templates, we replace the textual query repre-
sentations with trainable argument role prototypes
in line 3. The performance declines mostly for
visual and multimedia EAE, indicating that event
template semantics provide beneficial information
to enhance cross-ontology transfer capabilities. We
provide backbone and prompt template ablations
in A.5 and A.6, respectively.

Transfer Learning from SRL Previous work
has shown that semantic role labeling (SRL) can
serve as a valuable resource for EAE (Zhang
et al., 2022). Analogous task similarities are also
present in image activity recognition, which uti-
lizes FrameNet verbs and frame elements as se-
mantic roles (Yatskar et al., 2016). However, no
work has yet explored the transfer learning capa-
bilities for multimedia EAE. We use FrameNet 1.7
(Baker et al., 1998) and SWiG (Pratt et al., 2020)
as our training datasets and merge their ontologies
to 155 frames. Due to the large number of frames,
the event templates are constructed with a semi-
automatic approach (Zhang et al., 2022) (cf. A.4).
Table 4 shows the results for zero-shot prediction
on the M2E2 benchmark with gold and predicted
event triggers. We observe remarkable transfer

Model Textual F1 Visual F1 MM F1
Gold Triggers

FN17+SWIG 36.9 34.7 24.5
ACE+SWIGM2E2 55.1 36.9 31.7
Pred Triggers

FN17+SWIG 25.8 17.4 20.7
ACE+SWIGwM2E2 38.2 20.9 27.4

Table 4: Evaluaton of FrameNet transfer learning. Gold
Triggers represent EAE based on annotated event men-
tions. Pred Triggers represent EAE based on predicted
event mentions.

learning capabilities without any training on the
M2E2 ontology. In fact, this simplistic approach
outperforms even the supervised baselines FLAT
and WASE by up to +11.6% and +5.8% F1 for
visual and multimedia EAE, respectively.

4 Conclusion

In this work, we investigate the multimedia EAE
task and propose MMUTF, a simple yet effective
unified template filling approach that assigns candi-
dates to corresponding argument roles. We encode
entity candidates and object candidates from tex-
tual and visual inputs, respectively. Then, we feed
a natural language event template into the query de-
coder, which facilitates interactions with document
contexts via cross-attention mechanisms. Finally,
candidate and query representations serve as the ba-
sis for computing candidate-query matching scores.
Our results demonstrate the effectiveness of the
model and highlight the benefits of cross-ontology
transfer and event semantic incorporation. This
assumption is supported by SRL transfer learning
experiments, which we adapt to the multimedia
EAE task. Future work will focus on incorporating
additional textual and visual cues from input docu-
ments, integrating event detection, and exploring
bi-encoder architectures to reduce inference time.

Limitations

In this work, we propose a unified template-filling
approach for solving multimodal multimedia event
argument extraction. Our method relies on manu-
ally crafted prompts that represent the event tem-
plates for each event type. The time required to con-
struct such prompts was reasonable for the M2E2
benchmark, which covers only 8 event types and 15
argument roles for solving this task. Other event ex-
traction ontologies cover over 100 event types and
complex argument relations (Huang et al., 2023).
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Although we used a semi-automatic approach for
the more comprehensive FrameNet, we still identi-
fied erroneous event templates, indicating that this
method is not fully reliable. The manual prompt
construction for such large event ontologies also
poses challenges in terms of required time and com-
plexity. In addition, our system relies on event
predictions, textual entities, and visual objects gen-
erated by preceding systems. This approach is
prone to error propagation (cf. A.7) and requires a
holistic assessment of all system components with
appropriate evaluation data.
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A Appendix

A.1 Baselines

We compare our proposed approach with a wide
range of SOTA models. 1) WASE (Li et al.,
2020) uses graph neural networks (GNN) together
with abstract meaning representations and situation
graphs for text and image, respectively. These mod-
els additionally include the VOA image-caption
dataset for weak cross-modality alignment, while
the 2) FLAT (Li et al., 2020) baseline removes
the GNN components. 3) CLIPgygyr (Li et al.,
2022) combines the previous approaches with pre-
trained CLIP model weights and introduces a Op-
timal Transport strategy for event structure repre-
sentation and modality alignment. 4) UniCL (Liu
et al., 2022) proposes a unified contrastive learning
framework, uses a multimodal contrastive learn-
ing mechanism and incorporates textual and vi-
sual clues. 5) CAMEL (Du et al., 2023) is based
on cross-modal data augmentation, integrates an
adapter module and applies a specialized training
strategy. 6) MGIM (Liu et al., 2024) is a multi-
grained gradual inference model with fine-grained
alignment between texts and images by multiple
rounds of gradual inference. 7) UMIE (Sun et al.,
2024) utilizes instruction tuning for unified multi-
modal information extraction based on text gener-
ation and Flan-T5 (Chung et al., 2024) in various
model sizes.

A.2 Threshold Tuning

We investigate the influence of an automatic or
manually chosen threshold for both the textual and
visual matching scores. In our work, we select the
default threshold 7 = 0.5 and obtain reasonable
results. Figure 3 shows the metrics for different
thresholds and modalities. Additionally, we ana-
lyze threshold tuning based on the best F1-scores
for the ACE and SWiG test datasets. This proce-
dure yields 77" = 0.2 and 7 = 0.3 for text and
vision, respectively. For automatic threshold tun-
ing, we obtain a multimedia F1-score of 28.3%,
improving our default 7 by +0.9%. In addition,
we find the most performance degradation above
a threshold of 0.6 while achieving the best results
between 0.3 and 0.5. This suggests a weak dis-
criminative power between positive and negative
candidate-query pairs. Contrastive learning and
hard negative mining may address this issue, but is
not within the scope of this work.
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Figure 3: EAE F1 results for our MMUTF model with
varying thresholds for each modality.

A.3 Implementation Details

In our experiments, we use the implementation of
the Transformers (Wolf et al., 2020) (v4.41.0) li-
brary in conjunction with PyTorch (v2.3.0). For
all runs, we evaluated the performance at each
epoch on the ACE2005 test set and selected the
best-performing checkpoint. Unless otherwise
mentioned, we use T5-base (Raffel et al., 2020)
with 222M parameters as text encoder-decoder and
CLIP-base (Radford et al., 2021) with 85M pa-
rameters as vision encoder model. All models
are trained with mixed precision and executed on
A100 GPUs with 40GB HBM using the same com-
pute node running CUDA 12.3 and NVIDIA device
driver version 545. The average training time for
each run did not exceed 3h.

A.4 Event Templates

All manually crafted event templates for the M2E2
benchmark are shown in Table 5. The words in
brackets correspond to the argument roles we aim
to extract. These event templates are selected based
on the predicted event type, then tokenized and
fed into the query model to obtain the final query
representations. For FrameNet, it is infeasible
to manually construct templates for each frame
and corresponding frame element. Therefore, we
follow (Zhang et al., 2022) and adopt their semi-
automatic method to generate templates for our
transfer learning experiments. We merge the on-
tologies of FrameNet 1.7 (Baker et al., 1998) and
SWiG (Pratt et al., 2020) and use the FrameNet tem-
plates for both datasets. We show some excerpts in
Table 5.

A.5 Backbone Models

We compare different text and vision model config-
urations in Table 6. For the pre-trained text models,
we compare the following encoder and encoder-
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Event Type Event Template

M2E2

Movement:Transport [Agent] transported [Artifact] in [Vehicle] from [Origin] to [Destination].
Conflict: Attack [Attacker] attacked [Target] using [Instrument] as [Place].

Conflict:Demonstrate
Justice: Arrest-Jail
Contact:Phone-Write
Contact:Meet

Life:Die

Transaction: Transfer-Money

[Entity] protested besides [Police] using [Instrument] at [Place].

[Person] was sent to jail or arrested by [Agent] using [Instrument] at [Place].
[Entity] called or texted messages using [Instrument] at [Place].

[Entity] met at [Place].

[Agent] killed [Victim] with [Instrument] at [Place].

[Giver] paid [Recipient] with [Money] for the benefit of [Beneficiary] at [Place].

FrameNet
Abandonment
Motion

Losing track of theme
Adjusting

Killing

Appointing
Arranging

Fining

[Agent] abandon [Theme] in [Place].

[Theme] move in [Area] [Direction] from [from] to/into [Goal] in [Place].
[Perceiver] lose [Theme] in [Place].

[Agent] adjust [Part] [Feature] in [Place] with [Instrument].

[Cause] [Killer] kill [Victim] with [Instrument] [Means] in [Place].
[Selector] appoint to [Body] [Official] as [Role] [Function] in [Place].
[Agent] arrange [Theme] in [Configuration] with [Instrument].

[Speaker] fine [Payer] [Fine] [Reason] with [Instrument] in [Place].

Table 5: M2E2 and FrameNet event templates for each event type serve as natural language prompts for EAE.

Model Textual F1 Visual F1 MM F1
BERT VIT 37.9 19.2 26.6
CLIP 37.6 19.7 26.6
DATA2VEC 384 18.3 26.1
BART VIT 38.1 19.2 24.9
CLIP 38.5 20.4 27.9
DATA2VEC 39.0 18.4 27.0
T5 VIT 38.3 19.5 27.6
CLIP 38.2 20.9 274
DATA2VEC 38.5 18.5 27.0

Table 6: Results for text and vision models.

decoder variants: BERT? (Devlin et al., 2019),
BART* (Lewis et al., 2020), and T5° (Raffel et al.,
2020). Regarding BERT, we use two distinct mod-
els for candidate and query representations and
add cross-attention to the query encoder. For the
pre-trained vision models, we rely on VIT® (Doso-
vitskiy et al., 2021), CLIP’ (Radford et al., 2021),
and DATA2VEC?® (Baevski et al., 2022). All mod-
els represent their corresponding base variants, as
we did not observe substantial improvements with
larger model sizes.

Overall, the results demonstrate robust perfor-
mance across different model configurations. How-

3https://huggingface.co/google-bert/bert-base-uncased
*https://huggingface.co/facebook/bart-base
>https://huggingface.co/google-t5/t5-base
Shttps://huggingface.co/google/vit-base-patch16-224
"https://huggingface.co/openai/clip-vit-base-patch 16
8https://huggingface.co/facebook/data2vec-vision-base

Template Textual F1 Visual F1 MM F1
w/ event type

Concatenation 38.0 18.9 27.9
Standard 38.3 17.9 25.3
Enriched 38.5 16.8 25.2
w/o event type

Concatenation 38.7 19.0 28.0
Standard 38.2 20.9 27.4
Enriched 38.0 19.7 28.1

Table 7: Results for different prompt templates.

ever, we observe that CLIP generally outperforms
the other vision models in terms of visual and multi-
media F1 scores. We hypothesize that pre-training
on large image-caption datasets is beneficial for the
M2E2 task.

A.6 Prompt Analysis

In Table 7, we investigate prompt template varia-
tions and conduct experiments with and without
event type prefixes. For event type prefixes, we
prepend the event type name to the event template
(e.g., "Conflict Attack: <Event Template>"). We
compare three different prompt variations: Con-
catenation simply concatenates the argument role
names from the event templates. Standard repre-
sents the manually crafted event templates used in
this work (cf. Table 5). Enriched adds argument
role definitions after each argument role name.
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The results show that event templates without
event type prefixes generally outperform their coun-
terparts across all variations. We conjecture this
is because similar arguments appear in multiple
events, and event type prefixes may impede the
transfer of knowledge between roles. All variations
perform similarly for textual EAE, while event type
prefixes slightly impair model performance for vi-
sual and multimedia EAE.

A.7 Error Analysis

While our method achieves significant improve-
ments across all SOTA models for the textual EAE
task, we still recognize shortcomings for the vi-
sual modality. Therefore, we analyse the impact
of visual event mentions and visual candidates pre-
dicted by YOLOVS8 (Jocher et al., 2023). With gold
triggers (i.e., annotated visual event mentions), we
achieve an absolute improvement of 16% in visual
F1 which highlights the importance of reliable ED.
However, the inclusion of gold candidates (i.e., an-
notated bounding boxes) demonstrates an absolute
improvement of 35.5% visual F1 which further en-
hances the gold triggers by 19.5%. These results
suggests that the correct selection of candidates is
crucial and the joint modeling of candidate genera-
tion and EAE poses a promising direction.
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