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Abstract

Language models (LMs) exhibit impressive per-
formance and generalization capabilities. How-
ever, LMs struggle with the persistent chal-
lenge of catastrophic forgetting, which under-
mines their long-term sustainability in contin-
ual learning (CL). Existing approaches usually
address the issue by incorporating old task data
or task-wise inductive bias into LMs. However,
old data and accurate task information are of-
ten unavailable or costly to collect, hindering
the availability of current CL approaches for
LMs. To address this limitation, we introduce
“MIGU” (MagnItude-based Gradient Updating
for continual learning), a rehearsal-free and
task-label-free method that only updates the
model parameters with large magnitudes of out-
put in LMs’ linear layers. MIGU is based on
our observation that the L1-normalized mag-
nitude distribution of the output in LMs’ lin-
ear layers is different when the LM models
deal with different task data. By imposing
this simple constraint on the gradient update
process, we can leverage the inherent behav-
iors of LMs, thereby unlocking their innate CL
abilities. Our experiments demonstrate that
MIGU is universally applicable to all three LM
architectures (TS5, RoBERTa, and Llama2), de-
livering state-of-the-art or on-par performance
across continual finetuning and continual pre-
training settings on four CL benchmarks. For
example, MIGU brings a 15.2% average accu-
racy improvement over conventional parameter-
efficient finetuning baselines in a 15-task CL
benchmark. MIGU can also seamlessly inte-
grate with all three existing CL types to further
enhance performance.

1 Introduction

Neural networks suffer from catastrophic forget-
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Figure 1: The different output values and the vary-
ing magnitude distributions are observed across the
BoolQA, COPA, and Yelp datasets. The output values
and L1-normalized magnitude distributions are from the
real sample of the first linear layer in FFN of the last
Transformer block of TS. The detailed magnitude distri-
butions are illustrated in Figure 17 of Appendix D.4.

ing new knowledge and tasks at the cost of for-
getting previously acquired ones. Recently, lan-
guage models (LMs) have demonstrated impres-
sive performance and generalization capabilities
across the spectrum of NLP research (Liu et al.,
2019; Brown et al., 2020; Touvron et al., 2023)
and beyond (Zhang et al., 2023a). Nevertheless,
they still suffer from catastrophic forgetting (Shi
et al., 2024; Wu et al., 2024), undermining the ca-
pacity for continual learning (CL) (Wang et al.,
2024a). In light of the large scale and high cost of
training LMs (Achiam et al., 2023), models with
strong continual learning capabilities would enable
more economical reuse of these resource-intensive
models, a vital trajectory for driving both scientific
development and societal benefits.

To make LMs better continual learners, the
research community pursues three main direc-

ting (McCloskey and Cohen, 1989), i.e. learn- tions (Shi et al., 2024): (1) rehearsal-based ap-
A . proaches that mix new task data with a small buffer
Equal Contributions. .
" Work done during interning at NVIDIA. of past task examples (Scialom et al., 2022; Wang
* Corresponding Authors. et al., 2024d), (2) architecture-based methods that
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introduce new components like adapters to incorpo-
rate new tasks (Gururangan et al., 2021; Qin et al.,
2022; Zhao et al., 2024; Wang et al., 2024b), and
(3) parameter-based approaches that either apply
regularization to penalize changes in important pa-
rameters for old tasks (Zheng et al., 2023; Zhu et al.,
2024) or update parameter gradients for each task
into orthogonal subspaces (Wang et al., 2023b).

However, rehearsal-based methods require data
from previously learned tasks, which is not always
available (Touvron et al., 2023). The architecture
and parameter-based approaches typically rely on
task labels to design techniques to mitigate gradient
conflicts between tasks by updating the parameters
task-wise. However, obtaining accurate task labels
can be challenging or infeasible in LMs’ scenarios.
This paper explores an alternative approach, exam-
ining whether the model’s inherent features or be-
haviors can be utilized instead of task labels to mit-
igate gradient conflicts between tasks. Concretely,
we examine the distribution of the L1-normalized
output magnitude of the linear layers in LMs. The
output is computed as the dot product between the
input x € R% and the weight W € R%n*douw of
the layer, and then the output is normalized us-
ing the L1-norm, resulting in a vector n € R%u,
Our analysis reveals an intriguing finding: the L1-
normalized output n exhibits distinct magnitude
distributions for different tasks'. The process and
observation described above are illustrated in Fig-
ure 1, which presents real output data for the first
linear layer of the Feedforward Network (FFN) in
the last Transformer block of T5. We can observe
that the magnitude distributions differ significantly
for three example tasks - BoolQA, COPA, and Yelp.
Motivated by this observation, we argue that the
differences in magnitude distributions within LMs
could serve as a natural, label-free alternative to re-
place the need for external task labels in mitigating
gradient conflicts to update the model’s parameters
task-wise. However, this potential is locked during
conventional continual learning settings.

To this end, we introduce “MIGU” (MagnItude-
based Gradient Updating for continual learning),
leveraging the inherent differences in magnitude
distributions of the L1-normalized output in LMs’
linear layers to enable continual learning without
relying on task labels. Specifically, during the for-
ward propagation phase, we cache and normalize

'The term “(L1-)normalized output magnitude distribution’
will be referred to interchangeably as ‘magnitude distribution’
for brevity throughout the paper.

the output of the linear layers using the L.1-norm.
Then, in the backward propagation phase, we only
update the parameters with the 7" largest values in
L1-normalized magnitude, where 7" is a predefined
threshold ratio. Since different tasks exhibit dis-
tinct magnitude distribution patterns, MIGU can
effectively harness the LMs’ inherent features to
update the parameters with large magnitudes per
task, alleviating gradient conflicts and unlocking
their innate continual learning potential.

We evaluate MIGU across three main LM archi-
tectures: the encoder-only RoBERTa (Liu et al.,
2019), the encoder-decoder T5 model (Raffel et al.,
2023), and the decoder-only Llama2 (Touvron
et al., 2023). Furthermore, we consider two con-
tinual pre-training settings for LMs: continual pre-
training and continual finetuning, using four CL
datasets. Notably, our approach can seamlessly in-
tegrate three mainstream CL approaches - rehearsal-
based, architecture-based, and parameter-based -
to further enhance the CL abilities of LMs. When
evaluated on the four datasets, our experimental re-
sults achieve comparable or superior performance
to the current state-of-the-art methods. For exam-
ple, in a 15-task long sequence CL dataset, the
MIGU leads to a 15.2% accuracy improvement
over the conventional parameter-efficient finetun-
ing baseline. Furthermore, combining MIGU with
three types of CL methodologies substantially im-
proves these individual CL approaches. We also
provide detailed ablation studies and visualizations
on MIGU, revealing that CL with MIGU pushes
the magnitude distribution similarity between tasks
farther apart and better avoids conflicts. We believe
the work presents a novel perspective on explor-
ing CL in LMs. Our code is publicly available at
https://github.com/wenyudu/MIGU.

2 Related Work

Continual Learning for Language Models.
Continual learning is a long-standing challenge
through the history of machine learning and deep
learning (McCloskey and Cohen, 1989; Wu et al.,
2024). Recent studies for CL in LMs can be
roughly categorized into three categories. 1.
Rehearsal-based approach that mixes new task data
with a small buffer of past task examples (Scialom
et al., 2022; Wang et al., 2024d). 2. Architecture-
based approach that expands new modules like
adapters to incorporate new tasks (Gururangan
et al., 2021; Qin et al., 2022; Zhao et al., 2024,
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Wang et al., 2024b). 3. Parameter-based method
that updates parameters in a task-aware manner.
Some literature (Wang et al., 2023a) splits the
parameter-based into either regularization-based
approaches that add a regularization term to pe-
nalize changes in important weights of the earlier
learned tasks (Zheng et al., 2023; Zhu et al., 2024),
or optimization-based approaches that updates pa-
rameters gradients for each task into orthogonal
subspaces to avoid conflicts (Wang et al., 2023b).
These methods rely on either old task data or ac-
curate task labels, which are hard or expensive to
collect for LMs’ continual training. In contrast,
MIGU only leverages LMs’ innate features for CL.

Partially Updating Parameters in Continual
Learning. Among existing CL methods for LMs,
our approach and regularization-based (Zheng
et al., 2023; Zhu et al., 2024) approach both par-
tially update parameters, but ours fundamentally
diverges from the regularization-based methods in
motivation and design. While they rely on back-
ward gradients to identify and protect important
weights for old tasks, we leverage the differences in
magnitude distribution across tasks during the feed-
forward phase. Additionally, our method’s ability
to freely mask at the sample level sets us apart from
their fixed gradient mask approach. Furthermore,
our method does not require task labels, enabling
it to work in broader scenarios where task labels
are unavailable. Lastly, the layer output distribu-
tions are naturally obtained during the feed-forward
phase training, whereas they normally require an
additional subset to derive the gradient mask before
training on a task.

Finding Important Weights. One may classify
our method as a broader research cluster centered
on finding important weights, a topic that has been
extensively explored in continual learning (Zhu
et al., 2023), model pruning and compression (Fran-
kle and Carbin, 2019), efficient training and infer-
ence (Ansell et al., 2024), as well as investigations
into activation sparsity (Zhang et al., 2023b; Song
et al., 2024), and other related areas. However,
these works mostly use weight or gradient magni-
tude to define a fixed size of the important weights.
A few works on activation sparsity use the sparsity
patterns after the activation function for either effi-
cient inference (Zhang et al., 2022) or performance
improvements (Qiu et al., 2024). None of the above
explore the general dot product of weights and layer
input. The closest work to ours is an unstructured

RF TIFT CIT CPT

LFPTS5 (Qin and Joty, 2021)
EPI (Wang et al., 2023d)
O-LoRA(Wang et al., 2023b)
MoCL (Wang et al., 2024c)
SAPT (Zhao et al., 2024)
DAS (Ke et al., 2023)

MIGU

ANENENENEN

v
v v v

ANIENENENENEN

Table 1: The comparison between MIGU and other CL
methods. Specifically, RF indicates whether the method
is rehearsal-free. TIFT indicates whether the method is
task-id-free during training. CIT indicates whether the
method supports instruction finetuning.CPT indicates
whether the method supports continual pre-training.

pruning work (Sun et al., 2024) using the dot prod-
uct of weight and input, demonstrating a superior
method to pure weight-based pruning. However,
this prior work fails to consider the varying pat-
terns of important weights across different tasks.
In contrast, our method utilizes the L1-normalized
dot product of weight and input as an inherent indi-
cator of importance in CL settings.

3 Method

In Table 1, we compare MIGU with common CL
methods. Our approach is only one rehearsal-free,
task-id-free method that supports both continual
pre-training and continual finetuning.

3.1 Preliminary - Continual Learning Setup

Continual learning (Ke and Liu, 2022; Wang et al.,
2023c; Zhao et al., 2024) aims to tackle the chal-
lenges that arise within the ongoing sequence. For-
mally, tasks {71,...,7r} arrive in sequentially.
Each task 7; = { (9:@, yé) }?;1 contains a separate
target dataset with the size of n;. For any time step
t, the model is expected to not only adapt itself to
the ¢-th task, but also retain its capabilities across
all the previous tasks it has been trained on. This
study explores two distinct CL settings. In the first
setting, where only the MIGU method is employed,
the task label is unavailable during the training and
testing phases. Secondly, when combined with the
three existing types of CL techniques, the model
can be exposed to old task data or task information
during the training phase.

3.2 MIGU - Magnltude-based Gradient
Updating for Continual Learning.

Our approach employs a two-step process to lever-
age the inherent differences in magnitude distribu-
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Figure 2: Proposed method: MIGU. During 1) the for-
ward phase, our method 2) caches the output magnitude
of the linear layers, and 3) after backpropagation, 4)
MIGU masks the gradients by cached magnitudes to
update parameters accordingly.

7

tions across various tasks for continual learning.:
1) Caching output magnitudes and 2) Updating gra-
dient via a magnitude-based mask. We show the
process in Figure 2. To illustrate our method, we
first consider the fundamental component in LMs,
a single linear layer® with weight W and only feed
an input token x into LMs.

Feedforward: Caching Output Magnitudes.
Given the weight matrix W € R%n*dow we in-
terpret the columns of W as a set of d,y; vectors,
each with dimension djy:
W = [wy,...,Wi,...Wq,,,], where w; € R%n
(1)
Given the input vector of the layer x € R%, the
operation of the layer can be viewed as the dot
product between x and each weight vector wyj:

hi:X'Wi (2)

We then compute the normalized product magni-
tude n; using the L1-norm by : n; = ||h;||1, where
Il - |1 denotes the L1-norm. Thus, we have the L1-
normalized magnitude product distribution vector
n for W.

Backward Propagation: Updating gradient via
a magnitude-based mask. After calculating the
gradient in the backward phase, we obtain the gradi-
ent matrix VW for the weight W, which presents

2For simplicity, we omit the bias term b here.

the optimization direction given the input x. We
then define a mask matrix M to partially mask
VW using the L1-normalized product magnitudes
cached during the forward phase. Formally, we sort
the product magnitudes in the descending order and
mask the corresponding gradients as follows:

t = LT X doutJ (3)
M = BinaryTopT(n, t) 4)

BinaryTopT(nj, t)
1 if n;isin the top 1 — ¢ elements of n.

0 otherwise,

)
where 7' is the threshold ratio to mask gradient,
t is the actual number t to mask, |.] is the floor
rounding. The model update rule is then given by:

WnewFW_n'MQVW (6)

where 7 is the learning rate. This formulation en-
sures that only those weights with L1-normalized
magnitudes exceeding the threshold 7" are updated.

3.3 MIGU in Practice

In practice, to apply MIGU, we average the product
magnitudes of all tokens on a batch to generate the
mask for simple implementation.

MIGU in Transformer Block. For a Trans-
former block, we apply our method from Sec-
tion 3.2 to the Query, Key, Value, and Output linear
layer of the multi-head attention (MHA) compo-
nent, and two (for TS and RoBERTa) or three (for
Llama) linear layers in the FFN component.

MIGU in LoRA Implementation. We also im-
plement MIGU for parameter-efficient finetuning
(PEFT) of LMs, particularly we employ Low-Rank
Adaptation (LoRA) (Hu et al., 2022). The standard
LoRA is mathematically represented as follows:

XA =X-A @)
xB =xA - B 3)
X0:X-W—|—%'XB, ©))

where x denotes the input representation of the
layer, A € R%»*" and B € R"*%u are the low-
rank matrices, « is a scaling constant, W is the
original weight matrix of the standard linear, and
X0 is the output after applying the LoRA transfor-
mation.
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Methods | Standard ~ Long
LFPT5* 72.7 69.2
EPI* 65.3 -
MoCL* 75.9 -
SAPT-LoRA* - 82.0
MTL* 80.0 80.0
IncLoRA 68.8 64,7

+ MIGU 76.4(7.61)  68.7(4.07)
OlIncLoRA 75.8 69.6

+ MIGU 76.6(0.8%)  70.00.41)
LoRAReplay 74.5 75.2

+ MIGU 762171  76.5(1.31)
MoELora 54.1 27.6
FT 75.7 68.3

+ MIGU 78.83.11)  73.8(5.51)
LoRA 67.9 46.0

+ MIGU 733541 61.2(15.21)

Table 2: Average accuracy on standard CL benchmark
(Order 1,2,3) and long CL benchmark (Order 4,5,6) with
T5-large model. The top block contains CL methods
with extra old task data or task labels, while the bottom
does not. Methods denoted with * are copied from
previous papers (Wang et al., 2023b, 2024¢; Zhao et al.,
2024).

To implement MIGU, we apply the same method
in Section 3.2 for the matrix A. But for the matrix
B, we use the output of xp in Equation 8 rather
than the output of xg in Equation 9 to compute the
magnitude distribution vector.

4 [Experiments

We use three language models adopted by the
previous lines of works in CL for NLP: encoder-
only RoBERTa (Liu et al., 2019), encoder-decoder
TS5 model (Raffel et al., 2023) and decoder-only
Llama2 (Touvron et al., 2023). We start with con-
tinual finetuning T5-large (Raffel et al., 2020) on
two CL datasets following the settings from (Qin
and Joty, 2021; Wang et al., 2023b).We imple-
ment MIGU upon vanilla finetuning and PEFT with
LoRA (Hu et al., 2022). We also combine our
method with three main types of CL approaches
to examine the seamless integration of our method
with the existing CL methodologies. Next, we use
encoder-only RoBERTa to continual pre-traning do-
main adaptive data, following the setting (Ke et al.,
2023). We further scale our experiment to decoder-

only Llama2-7B (Touvron et al., 2023) and test the
trade-off between base model ability and new task
ability. All experimental results are reported as the
average of 3 runs. Please refer to the Appendix A.1
for more detailed settings.

4.1 Continual Finetuning on T5-large

Two Benchmarks. We evaluate our approach to
continual finetuning on T5-large using the standard
CL benchmark and long sequence benchmark. We
follow the setup from (Qin and Joty, 2021; Wang
et al., 2023b) to shuffle the four text classification
tasks from the LM dataset (Zhang et al., 2015) into
three different orders to form Order 1, 2, 3 for stan-
dard CL benchmark. Similarly, we shuffle a mix of
15 tasks (five classification tasks, nine GLUE and
SuperGLUE tasks, and the IMDB dataset) to form
Orders 4, 5, and 6 for the long sequence benchmark.
For the details on benchmark and sequence, please
refer to the appendix C.1.

Baselines. We separate the baselines into two
categories: without old data or task information
and with old data or task information during train-
ing. For the first category, we include vanilla
FT, which trains all model parameters on a se-
quence of tasks, and vanilla LoRA, in which
fixed-size LoRA parameters are trained on a se-
quence of tasks. For the second category, we
have rehearsal-based approaches: LoRAReplay
that trains new tasks on LoRA with mixing a 2%
past task, LFPTS (Qin and Joty, 2021) contin-
uously trains a soft prompt that simultaneously
learns to solve the tasks and generate training sam-
ples for experience replay; architecture-based ap-
proaches: IncL.oRA that incremental learning of
new LoRA parameters on a sequential series of
tasks, MoELora (Luo et al., 2024), a vanilla MoE
with LoRA number equals to the task number,
SAPT-LoRA (Zhao et al., 2024) extends IncLoRA
by aligning learning process and selection process
of LoRA, and MoCL (Wang et al., 2024c) continu-
ally adds new modules and composes them with ex-
isting modules; parameter-based approaches OlIn-
cLoRA (Wang et al., 2023b)3 extends IncLoRA to
learn different LoRAs into orthogonal subspaces.
Moreover, we have one multi-task learning baseline
MTL from (Wang et al., 2023b) as the referenced
“upper bound” for the benchmark.

30-LoRA is original name, we rename it to OIncLoRA
to emphasize it is build upon IncLoRA and align with our
notation.
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Metrics. ACC (Accuracy (Chaudhry et al,
2018)). The average performance of all tasks after
training on the last task, i.e., A7 = % ZtT:1 aT .

Results on TS. Table 2 shows that our proposed
approach (+MIGU) improves the performance of
all five CL approaches. Notably, when our method
is applied, the vanilla FT and LoRA baselines see
substantial improvements. Some results obtained
using our approach are comparable to the SOTA
CL methods that leverage task labels or old task
data. Notably, the LORA+MIGU approach sur-
passes the vanilla LoORA method by a substantial
15.2% on the long sequence benchmark, signifi-
cantly mitigating the drawbacks of LoRA in the CL
setting with long sequences. We choose to com-
bine our method with three LoRA-based techniques
to integrate with three CL approaches that lever-
age old data or additional labels. The parameter-
based IncLoRA+MIGU exhibits the most signifi-
cant improvement over the original IncLoRA, im-
plying that our magnitude-based approach can
effectively mitigate the conflicts among the se-
quentially learned LoRA parameters in IncLoRA.
The relatively marginal improvement of parameter-
based OIncLoRA+MIGU indicates a similar func-
tion between our approach and projecting LoRAs
into orthogonal subspaces, but our method does not
require task labels during the continual training pro-
cess. SAPT-LoRA achieves the SoTA performance
in long sequence benchmark, but it requires both
task labels and past data, which are often infeasi-
ble or costly in LMs settings. We also report an
efficiency study in Appendix D.2 Table 10 to show
our approach only leads to a minor overhead over
the vanilla methods, which is assumed to be more
efficient than other CL methods. We provide a full
experiment in Appendix D.1 Table 8. We also draw
the Violin Plot to show the statistical significance
of our approach over baselines in Appendix D.1.

4.2 Continual Pre-training on ROBERTa

Benchmark. In contrast to the previous continual
finetuning setting, Ke et al. (2023) introduces DAS,
a new benchmark for continual pre-training (CPT)
of LMs. DAS is composed of six unlabeled domain
corpora, which contain three review domains and
three academic paper domains. It is then evalu-
ated using six corresponding classification datasets.
Unlike continual finetuning, CPT is carried out in
two stages: 1) continual sequential pre-training on
each domain, and 2) separately continual finetun-

Methods MF1 ACC
DEMIX* 74.70 79.66
DER++* 75.78 80.46
HAT-Adapter* 74.63 79.78
DAS* 77.90 81.90
DAS 76.59 81.07
Adapter 74.05 79.48
FT 76.36 80.77
+ MIGU 76.73(0.371) 81.19(0.421)

Table 3: Average MF1, ACC on the DAS benchmark
after continual pre-training on all domains and finetun-
ing on their corresponding end-task datasets. The top
block contains CL methods with extra old task data or
task labels, while the bottom does not. Methods denoted
with * are copied from original papers.

Avg. Domain 1-2 Avg. Domain 5-6

FT 79.69 82.07
DAS 80.30(0.611) 81.16(0.91))
MIGU 80.14(0.451) 82.41(0.341)

Table 4: The average ACC of the first and last two
learned domains in the DAS benchmark.

ing for end tasks in each domain.* Please refer to
the Appendix B.1 for the details.

Metrics. For continual pre-training, we utilize
MF1 (Macro-F1) and ACC (Accuracy) following
(Ke et al., 2023) to evaluate the performance after
pre-training on the last domain. For the details,
please refer to (Ke et al., 2023).

Baselines. We choose top baselines ranging
from vanilla methods that pre-train RoBERTa
on domains sequentially with full parameters
FT and with PEFT Adapter to rehearsal-based
(DER++ (Buzzega et al., 2020)), architecture-
based (DEMIX (Gururangan et al., 2021)), and
parameter-based HAT-Adapter (Serra et al., 2018)
and DAS (Ke et al., 2023).

Results on RoBERTa. We evaluate MIGU in an-
other setting in which, we continually pre-train
a RoBERTa model to six domains sequentially
(domain-adaptive pre-training). Our experimen-

“Let’s take DAS as an example. Stage 1: sequentially
continual pre-train Roberta on domains 1-6; stage 2: duplicate
Roberta after stage 1 into six copies and continual finetune

each copy on separate domain-relevant task from 1 to 6 re-
spectively.
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tal results in Table 3 also show promising results
of our approach over or on par with the sophisti-
cated CL methods with task labels or old data. For
instance, FT+MIGU achieves 0.37% improvement
in MF1 and 0.42% in ACC. We also explore the
performance of the domains in different orders. We
report the average ACC of the first and last two
learned domains in Table 4. The results indicate
that while the DAS model exhibits less forgetting
in the earlier learned domains, but it also learns
less in the last domains, possibly due to the strong
regularization used to constrain its parameter up-
dates during the CL process over a long sequence.
In contrast, MIGU demonstrates a more sustain-
able method, exhibiting robust performance on the
earlier and recently learned domains.

4.3 Forgetting Less and Learning the Same:

Scaling to Llama2

25 T\ — FT FT+MIGU
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(a) Learn the same. Instruction tuning results on Human eval.
MIGU with LoRA learns the same as the valinna LoRA.
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(b) Forget less. Average accuracy on HellaSwag, Winogrande,
ARC-Challenge for Llama-2-7B. The results indicate that
MIGU with LoRA forgets less than valinna LoRA.

Figure 3: Performance comparison of LoRA with
MIGU and the baseline vanilla LoRA on Llama2-7B in-
struction tuning, evaluated using the Humaneval (Chen
et al., 2021), as well as on LM benchmarks: Hel-
laSwag (Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2019), and ARC-Challenge (Clark et al., 2018).

Results on Llama2. We further assess our ap-
proach on a more demanding LLM continual
instruction tuning setting. We finetune a base
Llama2-7B on Magicoder-Evol-Instruct-110K for

32 epochs. This dataset (Wei et al., 2024) contains
72.97M tokens of programming questions and an-
swers. However, due to computation constraints,
we sample 20% of data and conduct experiments on
LoRA. We follow (Biderman et al., 2024) to assess
LoRA+MIGU’s capabilities on both the base ability
(forgetting domain) and the code ability (learning
domain). To evaluate code learning performance,
we utilize the Humaneval benchmark (Chen et al.,
2021), which contains 164 problems that generate
a Python program with a docstring and a function
signature. A generation is considered correct if
it passes all supplied unit tests. To quantify how
much they have forgotten previous knowledge, we
follow (Biderman et al., 2024) that utilizes average
scores of three benchmarks, HellaSwag (Zellers
et al., 2019), WinoGrade (Sakaguchi et al., 2019)
and ARC-challenge (Clark et al., 2018). The experi-
ments are shown in Figure 3. Compared to baseline
FT, our method learns a similar level of new code
knowledge but exhibits significantly less forgetting
of previous knowledge. This suggests our approach
achieves a better trade-off point on the Pareto fron-
tier between learning plasticity and memory stabil-
ity (Huang, 2003; Wang et al., 2024a). For exam-
ple, after 32 training epochs, the average accuracy
across the three benchmarks for our method is 59.4,
while the baseline model only achieves 58.4.

5 Discussions

We then provide ablations on gradient mask thresh-
old and components as well as a visualization. We
also ablate the various methods for finding impor-
tant weights in Table 11 of Appendix.

5.1 Ablation on Gradient Mask Threshold

Because the current instruction finetuning datasets
like standard CL benchmarks, typically lack a sepa-
rate development set, we perform an ablation study
to manually create a development set of 1,000 sam-
ples for each task from the training data in the
standard CL benchmark. We use this new split
dataset to evaluate the mask threshold selections
for the FT, FT+MIGU, LoRA, and LoORA+MIGU
methods. Our findings are presented in Table 4, in-
dicating that a threshold of 0.7 is optimal for both
FT+MIGU and LoRA+MIGU. Additional experi-
ments on mask thresholds for various methods can
be found in Appendix F.
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Figure 4: Ablation study on the gradient mask threshold.
The curves illustrate that the optimal value is concen-
trated around 0.7 for FT+MIGU and LoRA+MIGU.

Orderl Order2 Order3 Avg
FT + MIGU 79.6 80.3 79.2 79.7
FT 75.3 76.1 78.0 76.5
+ FFN 14-L 76.9 75.9 75.8 76.2
+ FFN all 77.2 77.2 76.7 717.0
+ Attention Q 77.2 76.4 78.3 773
+ Attention K 76.9 734 75.6 75.3
+ Attention V 754 76.3 78.0 76.6
+ Attention O 76.2 75.9 76.0 76.0
+ Attention all 80.2 78.8 79.0 79.3

Table 5: The ablation results from applying MIGU to
different LM components.“+ FFN all” means only ap-
plying MIGU to all the linear operators in FFN layers.
The results demonstrate implementing MIGU across all
linear layers leads to the most benefits.

5.2 Ablation on Gradient Mask Components

We further investigate which components within a
transformer block should utilize MIGU. Typically,
a transformer block consists of six linear layers:
the query, key, and value (QKV) linear layers and
the output linear layer (O) in the MHA module, as
well as the two linear layers in the FFN. Our analy-
sis in Table 5 shows that employing MIGU across
all these linear layers achieves the best overall per-
formance, suggesting that the magnitude-based ap-
proach is effective for linear layers in different parts
of the transformer architecture.

5.3 Visualization

We evaluate task similarity by counting the overlap-
ping ratio of updated parameters (large magnitudes)
positions by using 100 samples per task. In Fig-
ure 5, we visualize the task similarity for the first

BoolQA COPA Yelp
FT 67.3 45.0 39.1
FT + MIGU 78.3(11.01) 55.0(10.01) 47.6(8.51)

Table 6: The improvement on BoolQA, COPA and Yelp
in Order 6.

layer of FFEN in the last Transformer block of T5-
large, comparing FT and FT+MIGU in the Order
6 setting. The results clearly show that MIGU in-
creases the degree of parameter isolation across
tasks, achieving a similar effect by using task in-
formation but without relying on such explicit task
labels. We further highlight the similarity between
the BoolQA, COPA, and Yelp tasks and the notable
decrease in similarity among these three tasks. An-
alyzing the performance results shown in Table 6,
we find that the significant reduction in overlap-
ping ratio across tasks considerably alleviates the
task conflicts, resulting in much more significant
performance gains. For example, the accuracy im-
provement for the COPA dataset is exactly 10%.
We put the full visualization of all linear layers in
Appendix D.4.
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Figure 5: The visualization of magnitude distribution
similarity across different tasks. FT+MIGU is lower,
indicating that MIGU reduces the possibility of weight
conflicts between tasks. The two sub-figures at the
bottom are three highlighted task samples: BoolQA,
COPA and Yelp.
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6 Conclusion

We propose MIGU, a rehearsal-free and task-label-
free method that only updates the model parameters
with large output magnitudes in LM’s linear layers.
By imposing this simple constraint on the gradient
update process, we can leverage the inherent be-
haviors of LMs, thereby unlocking their innate CL
abilities. Our experiments, applied to all three LM
architectures (TS5, RoBERTa and Llama2), on two
CL scenarios (continual finetuning and continual
pre-training) and four CL benchmarks, consistently
deliver better performance. Our method can also
be seamlessly integrated with existing CL solutions
to further improve their performance.

7 Limitations

We acknowledge two limitations for this work. Due
to computation limitations, although we finetune
Llama2-7B with LoRA, we are unable to scale our
experiments to LM continual pre-training or full
tuning. However, our experimental performance on
continual pre-training ROBERTa indicates the great
potential for the scalability of this general approach.
Another limitation is we only explore an approach
for unlocking the inherent CL potential of LMs
through updating the gradient by the magnitude
of output. There exists more discussions on ex-
ploiting innate features such as activation sparsity
as discussed in the Related Work section. These
limitations can be further addressed in future work.
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A Experimental Details

All experiments are run on an A100 x 8 DGX-
machine.
A.1 Continual finetuning on T5

We adapted the code-base from O-LORA.>

Finetuning (FT) and FT with MIGU.
¢ The batch size is set to 64.

e The optimization is performed using the
AdamW algorithm with hyperparameters
B1 = 0.9, B2 = 0.999, and a weight decay
coefficient of 0.01.

* The initial learning rate is set to 1 x 1074,
alongside a static learning rate scheduler.

¢ The threshold for mask selection is set at 0.7
across orders 1 to 6 in the FT+MIGU configu-
ration.

>https://github.com/cmnfriend/O-LoRA

Low-Rank Adaptation (LoRA) and LoRA with
MIGU.

* LoRA configuration: r = 8, a = 32, dropout
= 0.05.

* The learning rate is set to 1 x 1073, with all
other hyperparameters being consistent with
the FT+MIGU configuration.

Incremental LoRA (IncLoRA) and IncLoRA
with MIGU.

* For each LoORA module: » = 8, a = 32,
dropout = 0.05.

* Hyperparameters are identical to those speci-
fied in the LoRA and LoRA with MIGU set-
tings.

Order-Incremental LoRA (OIncLoRA) and
OlIncLoRA with MIGU.

* The threshold for mask selection is set at 0.05
across orders 1 to 6 in the FT+MIGU configu-
ration.

* All remaining hyperparameters are consistent
with the LoRA and LoRA with MIGU set-
tings.

LoRA Replay and LoRA Replay with MIGU.
e The threshold for mask selection is set at 0.4

across orders 1 to 6 in the FT+MIGU configu-
ration.

* All remaining hyperparameters are consistent
with the LoRA and LoRA with MIGU set-
tings.

A.2 Continual pre-training finetune on
RoBERTa

We adapted the code-base from DAS.®

Pre-training.

* The batch size is set to 248.

* The optimization is performed using the
AdamW algorithm with hyperparameters

B1 = 0.9, B2 = 0.999, and a weight decay
coefficient of 0.

» The initial learning rate is set to 1 x 1074,
alongside a linear learning rate scheduler.

e The threshold for mask selection is set at 0.7
on the sequence of tasks.

®https://github.com/UIC-Liu-Lab/ContinualLM
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Tuning.
¢ The batch size is set to 16.

* The optimization is performed using the
AdamW algorithm with hyperparameters
B1 = 0.9, B2 = 0.999, and a weight decay
coefficient of 0.01.

* The initial learning rate is set to 3 x 1072,
alongside a linear learning rate scheduler.

A3

* The optimization is performed using the
AdamW algorithm with hyperparameters
B1 = 0.9, B2 = 0.95, and a weight decay
coefficient of 0.

Instruct finetuning on LlamaZ2.

* The initial learning rate is set to 5 x 1074,
alongside a cosine learning rate scheduler
with warmup = 0.1 of the total duration.

* LoRA configuration: o = 32, dropout =
0.05.

B Benchmark Instruction

B.1 Dataset Information

Our experimental section encompasses datasets in-
cluding the Standard CL benchmark and Long
sequence benchmark, both of which are utilized
for instruction finetuning on the T5-large model;
the DAS benchmark, which is used for continual
pre-training on RoBERTa; the Magicoder-Evol-
Instruct-110K, which pertains to instruction tun-
ing on Llama-2-7B; and the datasets Hellaswag,
WinoGrande, and ARC-Challenge for evaluating
the finetuned Llama-2-7B.

Standard CL benchmark. For continual finetun-
ing, we use MTL5 dataset introduced by (Zhang
et al., 2015), and follow the setup from LFPTS and
O-LoRA (Qin and Joty, 2021; Wang et al., 2023b)
to pick four text classification datasets (AG News,
Amazon reviews, DBpedia and Yahoo Answers)
and shuffle the tasks into three different orders.

Long sequence benchmark. (Razdaibiedina
et al., 2023) extends the Standard CL benchmark
by introducing a long sequence benchmark for
continual learning benchmark with 15 datasets.
This includes five tasks from CL benchmark,
four from GLUE benchmark (MNLI, QQP, RTE,
SST2) (Wang et al., 2018), five from Super-
GLUE benchmark (WiC, CB, COPA, MultiRC,

BoolQ) (Wang et al., 2018), and the IMDB movie
reviews dataset (Maas et al., 2011). Follow-
ing (Razdaibiedina et al., 2023), we select 1000
random samples for training each task and hold out
500 samples per class for validation.

DAS Benchmark. (Ke et al., 2023) introduce a
new benchmark for continual pre-training of LMs,
which is more challenging as the data required
to pre-train is much larger and LMs are easier to
forget previous knowledge. DAS is composed of
6 unlabeled domain corpora, which contain 3 re-
views: Yelp Restaurant (Xu et al., 2019), Amazon
Phone (Ni et al., 2019), Amazon Camera (Ni et al.,
2019); 3 of them are academic papers: ACL Pa-
pers (Lo et al., 2020), Al Papers (Lo et al., 2020),
and PubMed Papers ’. and evaluated by 6 corre-
sponding classification datasets are: Restaurant %,
Phone(Ding et al., 2008; Hu and Liu, 2004), Cam-
era (Ding et al., 2008; Hu and Liu, 2004), ACL
(ACL-ARC in (Jurgens et al., 2018)), AI (SCIERC
in (Luan et al., 2018)), and PubMed (CHEMPORT
in (Kringelum et al., 2016)).

Magicoder-Evol-Instruct-110K. This
dataset (Wei et al.,, 2024) contains 72.97M
tokens of programming questions and answers.
It reproduces the “Evol-Instruct” dataset of
WizardCoder (Luo et al., 2023): an LLM (GPT-4)
is iteratively prompted to increase the difficulty
of a set of question-answer pairs (from Code
Alpaca (Chaudhary, 2023)). Due to computation
constraints, we pick contain 20% the samples to
instruct tuning the Llama-2-7B model.

HellaSwag, WinoGrade and ARC-challenge.
For how much they forget the old knowledge, we
follow the (Biderman et al., 2024) that averages
three benchmarks, HellaSwag (Zellers et al., 2019),
WinoGrade (Sakaguchi et al., 2019) and ARC-
challenge (Clark et al., 2018). HellaSwag bench-
mark includes 70K problems, each describing an
event with multiple possible continuations. The
task is to pick the most plausible continuation, re-
quiring inferences about nuanced everyday situa-
tions. WinoGrande benchmark also assesses com-
monsense reasoning. It includes 44K problems
with sentences that require ambiguous pronoun res-
olution. ARC-Challenge benchmark consists of
7,787 grade-school level, multiple-choice science

"https://pubmed.ncbi.nlm.nih.gov/
8https://alt.qcri.org/semeval2014/task4/
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Benchmark Order Task Sequence

1 dbpedia — amazon — yahoo — ag
Standard CL 2 dbpedia — amazon — ag — yahoo
3 yahoo — amazon — ag — dbpedia
4 mnli — ¢b — wic — copa — qqp — boolga — rte — imdb —

Long sequence

Yelp — amazon — sst-2 — dbpedia — ag — multirc — yahoo
multirc — boolqa — wic — mnli — cb — copa — qqp — rte

> — imdb — sst-2 — dbpedia — ag — Yelp — amazon — yahoo
6 Yelp — amazon — mnli — cb — copa — qqp — rte — imdb —
sst-2 — dbpedia — ag — yahoo — multirc — boolqa — wic
DAS 7 Restaurant -+ ACL — Al — Phone — PubMed — Camera

Table 7: Task Sequence Orders for Continual Learning Experiments. Orders 1-3 represent the conventional task
sequences employed in standard continual learning benchmarks (Zhang et al., 2015). Orders 4-6 extend to longer
sequences, encompassing 15 tasks each (Razdaibiedina et al., 2023). Order 7 comprises a sequence of 6 tasks
derived from unsupervised pre-training domains, in accordance with (Ke et al., 2023).

questions, testing capabilities in complex reasoning ~ ®
and understanding scientific concepts.

B.2 Training orders

The training orders in 3 benchmarks on T5-large
and RoBERTa models are shown in table 7.

C Baselines for all settings

C.1 Baselines on Standard CL benchmark .
and Long sequence benchmark

We reuse some baseline descriptions from O-
LoRA (Wang et al., 2023b).

* FT (de Masson D’ Autume et al., 2019): train all
model parameters on a sequence of tasks (without
adding any regularization or replaying samples
from the previous tasks).

* LoRA: fixed-size LoRA parameters are trained
on a sequence of tasks (without adding any regu-
larization or replaying samples from the previous
tasks).

* IncLoRA: incremental learning of new LoRA pa-
rameters on a sequential series of tasks (without
adding any regularization or replaying samples ¢
from the previous tasks).

* Replay: finetune the whole model with a mem- ¢
ory buffer, and replay samples from old tasks
when learning new tasks to avoid forgetting.

e LFPTS (Qin and Joty, 2021): continuously train ~ *
a soft prompt that simultaneously learns to solve
the tasks and generate training samples, which
are subsequently used in experience replay.

6516

OlIncLoRA (Wang et al., 2023b): learns tasks in
different LoRA subspaces that are kept orthogo-
nal to each other and sums all LoORA weights up
at testing time.

MoCL (Wang et al., 2024c): MoCL continually
adds new modules to language models and com-
poses them with existing modules.

SAPT (Zhao et al., 2024): In the SAPT method,
a Shared Attentive Learning and Selection Mod-
ule (SALS) is employed to guide training sam-
ples through optimal PET blocks for task-specific
learning, using a unique instance-level attention
mechanism. This process ensures efficient con-
tinual learning for large language models.

MoELORA (Luo et al., 2024): MoELoRA con-
siders LoRA as a Mixture of Experts, leverag-
ing the modeling capabilities of multiple experts
for complex data domains, as well as utilizing
LoRA’s parameter-efficient characteristics.

NCL (Naive CL) continually DAP-trains the
RoBERT3;

NCL-Adapter continually DAP-trains a set of
adapters (Houlsby et al., 2019)

DER++ (Buzzega et al., 2020) is a replay method
based on knowledge distillation. 16.4K tokens
are saved for each domain in the replay memory.

DEMIX (Gururangan et al., 2021) adds a new
adapter for each new domain and initializes it
with a previous adapter nearest to the new do-
main;



Method Standard CL Benchmark (4 tasks) | Longer CL Benchmark (15 tasks)
Order-1 Order-2 Order-3 avg | Order-4 Order-5 Order-6 avg
FT* 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
LoRA* 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
LFPT5* 67.6 72.6 779 72.7 70.4 68.2 69.1 69.2
O-LoRA(OIncLoRA)* 77.1 76.2 76.6 76.6 68.4 68.8 714  69.5
MoCL* 75.6 75.4 76.7 75.9 - - - -
MoELoRA 52.8 49.6 59.8 54.1 36.3 314 15.1 276
ProgPrompt* 75.2 75 75.1 75.1 78.0 77.7 779 779
PerTaskFT* 70.0 70.0 70.0 70.0 78.1 78.1 78.1  78.1
MTL* 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5
FT 74.4 75.0 77.5 75.7 70.6 69.7 65.6 68.3
MIGU + FT 78.3 79.8 78.3 78.8 771 73.6 70.7  73.8
FTReplay 77.4 77.1 779 77.4 - - - -
MIGU + FTReplay 80.8 77.0 78.0  78.6 - - - -
LORA 60.7 70.0 73.1 67.9 53.7 44 .4 39.8  46.0
MIGU + LORA 74.8 71.6 73.5 73.3 66.9 64.8 51.8 612
IncLoRA 67.0 66.7 72.6 68.8 65.5 64.9 639 64.7
MIGU + IncLoRA 77.2 76.7 75.4 76.4 71.3 67.7 673  68.7
OIncLoRA 77.1 76.2 76.6 76.6 68.4 68.8 714  69.5
MIGU + OlncLoRA 77.1 77.0 75.6 76.6 67.3 68.5 74.2  70.0
LORAReplay 77.1 73.4 73.2 74.5 74.5 75.4 757 752
MIGU + LORAReplay | 77.8 75.1 75.9 76.2 75.4 76.8 77.2  76.5

Table 8: Summary of the results on two standard CL benchmarks with T5-large model. Averaged accuracy after
training on the last task is reported. All results in the last block are averaged over 3 runs. (We reuse the table template
and experiment results from O-LoRA (Wang et al., 2023b) to construct the results of the top two blocks, methods
denoted with *). It is noticeable some baselines in some previous literature show significant lower performance
than ours(SeqFT in block 1 v.s. FT in block 3), we assume this may due to different hyperparameter choice
for baseline methods. To this end, we conducted a grid search that ranges in [1e-3, 3e-4, 1e-4, 3e-5] for FT
baseline. We recorded our experiment results and provide in Table 9.

learning rate Orderl Order2 Order3 Avg
(Seq)FT in O-LORA 18.9 24.9 417 285

le-3 23.0 21.7 21.8 222
3e-4 53.1 50.8 319 45.3
le-4 74.4 75.0 71.5 75.7
3e-5 75.0 76.1 712 761

Table 9: The grid search for baseline FT. It is clearly
that learning rates play an important role for CL.

* HAT-Adapter (Serra et al., 2018): HAT is an
effective parameter-isolation method. HAT is
applied to Transformer layers (i.e., self-attention,
intermediate and output layers).

* HAT-Adapter (Ke et al., 2021): HAT-Adapter
uses HAT within adapters.

* DAS (Ke et al., 2023) DAS proposes a soft-

masking method to overcome CF and to encour-
age KT, and a constrative learning-based method
for knowledge integration.

D Experimental Results

D.1 Experiment on TS

We report more detailed results on the Standard
CL benchmark and Long sequence benchmark in
table 8, including each order results and their cor-
responding average results. To more intuitively
display our results compared to the baseline, we
plotted violin graphs showing the performance with
and without our method under the condition of full
finetuning as Figure 6 7 8 9.

D.2 Experiment on RoOBERTa

Detailed experiment results
results is shown as Figure 10.

The violin graphs
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Figure 6: Performance comparison on the standard cl
benchmark under full finetuning setting, with and with-
out the implementation of our method..
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Figure 7: Average performance comparison on the stan-
dard cl benchmark under full finetuning setting, with
and without the implementation of our method..

Efficiency We also conduct an efficiency ablation
by comparing FT, FT+MIGU and DAS because
continual-pre-training is a relatively computational-
intensive setting. DAS is a typical parameter-based
regularization methods. We record the wall time
required for the first three dataset given the same
GPU configuration: A100 x 2. As shown in the
Table 10, FT+MIGU only occur an approximately
10% overhead in wall time, due to the extra mask-
ing step in the backward propagation phase while
DAS achieves a magnitude larger overhead.

Restaurant ACL Al
FT 25.3(+0.0%) 26.7(+0.0%) 15.5(+0.0%)
FT + MIGU 27.3(+7.9%) 29.2(+9.4%) 17.0(+12.9%)

DAS 78.0(+208%) 66.5(+154%) 45.0(+190%)

Table 10: The wall time(min) on three domain pre-
training dataset.
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Figure 8: Performance comparison on the standard cl
benchmark under full finetuning setting, with and with-
out the implementation of our method..
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Figure 9: Average performance comparison on the stan-
dard cl benchmark under full finetuning setting, with
and without the implementation of our method..

D.3 Experiment on Llama2

The detailed violin graphs results about ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al, 2019) and Winogrande (Sakaguchi
et al., 2019) are seperately shown in Fig-
ure 12(a), 12(b), 12(c).

D.4 Visualization

To investigate how our method enhances model
performance, we visualized the variation in prod-
uct magnitudes between an FT model and an FT
model augmented with our MIGU technique in Fig-
ures 15,16. We employed heatmaps to depict the
similarity in product magnitude distributions across
different tasks. Our findings reveal that task simi-
larity in the FT model with MIGU implementation
is markedly reduced. This suggests that the mod-
els trained with our method exhibit more distinc-
tive weight activations for different tasks, thereby
mitigating their conflict. This distinction in acti-
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Figure 10: Performance comparison on the DAS bench-
mark under continual domain pre-training setting, with
and without the implementation of our method.
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Figure 11: Ablation on LoRA MIGU+-cluster design

vation patterns indicates our method’s ability to
foster more task-specific representations within the
model, contributing to its improved performance
across varied learning scenarios.

Magnitude Distribution. We plot the LI-
normalized magnitude distribution of COPA sam-
ple, BoolQA sample, and Yelp sample on the first
linear layer of 23-th FEN layer of T5-large model
in Figure 17.

E Ablation on MIGU+Cluster

Informed by the works on Mixture of Experts
(MoE) (Jiang et al.,, 2024), Emergent MoE
(EMoE) (Qiu et al., 2023), and MoEfication (Zhang
et al., 2022), we investigate explicit clustering of
weight vectors in LMs to construct expert groups.
Technically, we treat the linear layer’s weight ma-
trix W as a set of d,,; vectors, each of dimension
d;n. These vectors are then partitioned into N clus-
ters, analogous to MoE experts.

E.1 Implementation

As detailed in § 3.2, our method encompasses four
core processes in cluster-based implementation.
During the data forward phase, the product mag-
nitudes of the weight vectors are computed and
tracked. Subsequently, in the second phase, MIGU
caches these magnitudes and employs an L1-norm
normalization to derive a gradient mask. This mask
is pivotal for modulating the gradients in the subse-
quent phases. The third phase involves the standard
backpropagation to calculate the gradients of the
parameters. Finally, in the fourth phase, the earlier
computed gradient mask is applied to the obtained
gradients, ensuring a modulated update of the pa-
rameters. This modulation is consistent within each
cluster, thereby maintaining the integrity of the ex-
pert groupings and enhancing the model’s learning
efficacy. We also plot a Figure 14 to illustrate the
differences between Dense, MoE and ours in for-
ward and backward phase.
We explored two distinct clustering strategies:

* Weight Cluster Combination: The weight vec-
tors are clustered into /N groups based on their
proximity in the weight space.

* Co-magnitude Guided Combination: Using a
subset of the dataset, we group weight vectors
into clusters based on the similarity of their
product magnitudes.

E.2 Result & Analysis

The outcomes of two distinct clustering approaches,
alongside our implementation within LoRA, are il-
lustrated in Figure 11. It is evident that, except for
the second order, the “Weight Cluster” method sur-
passes the ’No Cluster’ approach, which does not
employ explicit clustering. However, the "No Clus-
ter’ method demonstrates superior performance
across the remaining orders, highlighting its ro-
bustness and effectiveness. Nonetheless, the other
two explicit clustering techniques still significantly
outperform the baseline vanilla continual learning
LoRA, indicating their potential for further explo-
ration.

F More Ablation on Gradient Mask
Threshold

We also used the original standard CL benchmark
and plot all five curves of our approach (+MIGU)
for gradient mask threshold from 0.0 to 0.9 in
Section 4.1. The optimal threshold value for
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Figure 13: Ablation study on the gradient mask
threshold. The curves illustrate that the optimal

value is concentrated around 0.7 for FT+MIGU,
LoRA+MIGU, and IncLoRA+MIGU, 0.4 and 0.1 for
the LoRAReplay+MIGU and OIncLoRA+MIGU set-
tings respectively.

FT+MIGU, LoRA+MIGU, and IncLoORA+MIGU
settings is 0.7 while LoRAReplay+MIGU is 0.4
as shown in Figure 13°. OIncLoRA+MIGU is
only 0.1, which may due to the parameter up-
dating regularized by the OIncLoRA method it-
self. The optimal value for IncLoORA+MIGU is
0.6, close to FT+MIGU, LoRA+MIGU, and In-
cLoRA+MIGU settings. Surprisingly, with only

°The ablation on threshold search only reports one run, so
it does not align with the results in Section 4.1.

Standard Benchmark Long Benchmark

FT 76.5 69.6
+ gradient-based 78.4 72.3
+ weight-based 77.2 71.3
+MIGU 78.8 74.7

Table 11: Finding Important Weights Comparison

5% (T = 0.95) or 1% (1" = 0.99) parameters up-
dating, LoORA+MIGU still beats LoRA by a wide
margin. This interesting finding may indicate that
only a small proportion of proportional weights
with large magnitudes is crucial for successful CL
settings, which may be worth future investigation.
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Figure 16: The product magnitude distribution similarity of different tasks in the MHA of the last transformer block:
(a,b) query linear layer; (c,d) key linear layer; (e,f) value linear layer; (g,h) output linear layer.
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Figure 17: The Magnitudes distribution of COPA sample, BoolQA sample, and Yelp sample on the first linear layer
of 23-th FFN layer of T5-large model.
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