RipPLECOT: Amplifying Ripple Effect of Knowledge Editing in Language
Models via Chain-of-Thought In-Context Learning

Zihao Zhao', Yuchen Yang', Yijiang Li?, Yinzhi Cao'
!Johns Hopkins University
2University of California San Diego
{zzhao71, yc.yang, yinzhi.cao}@jhu.edu, yijiangli@ucsd.edu

Abstract

The ripple effect poses a significant challenge
in knowledge editing for large language mod-
els. Namely, when a single fact is edited, the
model struggles to accurately update the re-
lated facts in a sequence, which is evaluated
by multi-hop questions linked to a chain of
related facts. Recent strategies have moved
away from traditional parameter updates to
more flexible, less computation-intensive meth-
ods, proven to be more effective in the ripple
effect. In-context learning (ICL) editing uses
a simple demonstration Imagine that + new
fact to guide LLMs, but struggles with com-
plex multi-hop questions as the new fact alone
fails to specify the chain of facts involved in
such scenarios. Besides, memory-based editing
maintains additional storage for all edits and
related facts, requiring continuous updates to
stay effective. As a result of the design limita-
tions, the challenge remains, with the highest
accuracy being only 33.8% on the MQUAKE-
CF benchmarks for Vicuna-7B. To address this,
we propose RIPPLECOT, a novel ICL editing
approach integrating Chain-of-Thought (COT)
reasoning. RIPPLECOT structures demonstra-
tions as {new fact, question, thought, answer},
incorporating a thought component to iden-
tify and decompose the multi-hop logic within
questions. This approach effectively guides
the model through complex multi-hop ques-
tions with chains of related facts. Compre-
hensive experiments demonstrate that RIPPLE-
COT significantly outperforms the state-of-the-
art on the ripple effect, achieving accuracy
gains ranging from 7.8% to 87.1%. RIPPLE-
COT is open-source and available at https:
//github.com/zzhao71/RippleCOT

1 Introduction

As large language models (LLMs) become more
prevalent in various sectors, their limitations, such
as storing inaccurate or sensitive knowledge, pose
growing concerns (Dhingra et al., 2022; Carlini

New Fact: The author of Misery is StephenKing Richard Dawkins.

Question 1: Who is the author of Misery?

Question 2: What is the citizenship of the author of Misery?

Question 3: Which writer's country of citizenship is the same as the author of Misery?

Parameter-based Editing Updated Model Answer 1 Answer2 Answer 3

o Richard . Mark
Training_Data: Update Dawkins American Tyain
The author of Misery is Richard Dawkins. —> >
Parameter-free Editing Unchanged Model
Richard X Mark
Memory: Retrieve Dawkins AMmerican Tygin
[The author of Misery is Richard Dawkins. —> > (X X
Demonstration of ICL Editing: Richard Mark
Imagine that the author of Misery is Richard |Context Dawkins British Twain
Dawkins, —>
|Demonstration of RippleCOT (Ours):
New Fact: Ellie Kemper is the citizenship
of Croatia
IQuestion: Who is the head of the state where] .
Ellie Kemper holds citizenship? Richard] (PR IR
Thought: Ellie Kemper is a citizen of Croatia [Context Al Dawkins ~ Brifish Rolling
-> Croatia's head of state is Zoran >
Milanovic « / (

Answer: Zoran Milanovic

.l;iew Fact: The author of Misery is Richard
Dawkins

Figure 1: An illustration of RIPPLECOT and existing
parameter-based and parameter-free knowledge editing
methods addressing the ripple effect via multi-hop ques-
tions.

et al., 2021; Wolf et al., 2019). This has led to
the development of knowledge editing methods
aimed at updating the facts. The ripple effect rep-
resents a significant challenge in knowledge edit-
ing for LLMs that was not explored until very re-
cently (Cohen et al., 2023). When one fact is edited
in a model, the ripple effect refers to the chain of
related facts that should be updated following the
edited one, which is evaluated by the multi-hop
questions (Zhong et al., 2023) linked to a chain of
facts. Figure 1 illustrates an example of the multi-
hop question: if we modify the author of Misery to
Richard Dawkins, the related multi-hop facts, such
as the citizenship of the author of Misery, should
also be updated.

Conventional parameter-based editing methods,

6337

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6337-6347
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/zzhao71/RippleCOT
https://github.com/zzhao71/RippleCOT

such as fine-tuning (Zhu et al., 2020) or matrix com-
putation (Meng et al., 2022b), update the model’s
parameters to recall specific edited facts effectively
but risk catastrophic forgetting (Zheng et al., 2023)
and were proven failure on the ripple effect (Co-
hen et al., 2023). The edits are limited to the facts
within the training data and struggle with related
but untrained facts. Recent parameter-free editing
approaches, like memory-based editing (Mitchell
et al., 2022), also face challenges when related
facts fall outside the maintained memory’s scope.
In-context learning (ICL) editing uses the simple
prompt Imagine that + new fact to help the
model recall the new fact. However, it struggles
with complex, multi-hop questions because the new
fact alone does not specify the chain of facts within
such scenarios. Due to those limitations, the best
result (Zhong et al., 2023) achieves only a 33.8%
accuracy on the MQUAKE-CF benchmarks with
Vicuna-7B model, with other methods performing
around 15%.

To address this, we propose to integrate COT
reasoning into the ICL framework, guiding LL.Ms
to process multi-hop questions sequentially. While
we observe the direct use of a "Think step by step”
COT prompt improving performance, it falls short
in open-source models with limited reasoning ca-
pacities. To arrive at a better solution, we de-
velop RIPPLECOT, by structuring the demonstra-
tion to (new fact, question, thought, answer).
RIPPLECOT operates in two stages: demonstra-
tion generation and refinement. During genera-
tion, RIPPLECOT identifies multiple relationships
and missing items within the defined fact triplets
(s,r,0) (Cohen et al., 2023), i.e., subject, rela-
tion, and object. For example, in Figure 1, the
question involves multiple relations: citizenship
and head. RIPPLECOT decomposes the ques-
tions into (E1lie Kemper, citizenship, 7) and
(7, head, 7*). Given the new fact (E1lie Kemper,
citizenship, Croatia), the 7 is identified as
Croatia. The thought then becomes Ellie Kem-
per is a citizen of Croatia — Croatia’s head of
state is Zoran Milanovic. This effectively triggers
the COT reasoning ability of the LLMs, signifi-
cantly improving the ripple effect for more com-
plex questions. In the refinement stage, RIPPLE-
COT selects the top-k candidates among gener-
ated (new fact, question, thought, answer)
pairs whose questions have the highest cosine simi-
larity with the task question.

Beyond COT reasoning ability, RIPPLECOT of-

fers several advantages. First, RIPPLECOT oper-
ates without altering model parameters, resulting
in lower computational costs and enabling efficient
adaptation to multi-hop questions for a single edit.
It also supports multiple editing scenarios, which
have been less explored by the literature, such as
accurately updating the related facts if changing
the President of the United States from Obama
to Trump and then to Biden. Second, our COT
demonstration generation is automatic and highly
flexible, tailored to task-specific questions. We
have designed and evaluated multiple methods for
generating demonstrations, including human selec-
tion from benchmark datasets along with the exist-
ing approaches, few-shot generation using GPT-40
(Achiam et al., 2023) based on selected references,
and zero-shot generation with GPT-40, identifying
the optimal approach for enhancing ripple effects.
Additionally, RIPPLECOT can be integrated with
existing knowledge editing methods to further im-
prove ripple effect performance.

In summary, this paper has three main contribu-
tions:

e We propose a novel ICL knowledge editing
framework with automatic COT demonstration
generation and refinement, namely RIPPLECOT.

o We explore different ways for generating COT
demonstration, namely full-shot selection, few-
shot generation, and zero-shot generation

e RIPPLECOT significantly improves accuracy,
ranging from 7.8% to 87.1%, in addressing ripple
effects on multi-hop questions, as demonstrated
on the RIPPLEEDIT (Cohen et al., 2023) and
MQUAKE (Zhong et al., 2023) datasets.

2 Related Work
2.1 Knowledge Editing

Knowledge editing methods include parameter-
based methods (Mitchell et al., 2021; Meng et al.,
2022a; Dong et al., 2022) and parameter-free meth-
ods (Zheng et al., 2023; Zhong et al., 2023; Wang
et al., 2024; Chen et al., 2024). In parameter-based
editing methods, Fintuning (Zhu et al., 2020) uses
gradient descent to update model parameters based
on the edit; MEND (Mitchell et al., 2021) intro-
duces hyper-networks that convert the gradients
to model parameter changes; ROME (Meng et al.,
2022a) introduces causal tracing that locates and
updates the parameters responsible for factual as-
sociations. However, these methods can result
in catastrophic forgetting of previously learned

6338

knowledge, perform poorly at generalizing edits
to related facts, and are computationally expensive.
Parameter-free knowledge editing methods, mainly
ICL editing (Zheng et al., 2023), utilize demon-
stration to prompt the model to generate outputs
aligned with the injected knowledge. Later in (Co-
hen et al., 2023), simply prompting the model with
the edited fact without demonstration can achieve
better performance than parameter-based methods.
Combined with retrieval-augmented methods, re-
cent parameter-free methods such as EREN (Chen
et al., 2024) and MeLLo (Zhong et al., 2023)
achieve SOTA in multiple metrics(Chen et al.,
2024; Zhong et al., 2023).

2.2 Ripple Effect

A common under-addressed problem of all knowl-
edge editing methods is the propagation of knowl-
edge updates to other logically connected facts,
which is referred to as the ripple effect. Cohen
et al. (Cohen et al., 2023) first define and catego-
rize the ripple effects into logical generalization,
compositionality I & II, subject aliasing, preser-
vation, and relation specificity, each denoting a
different logical pattern. Compositionality I & II
involves two-hop questions, in which the models
perform the worst. This observation is recapitu-
lated by Zhong et al. (Zhong et al., 2023), where
the performance of the edited model is evaluated
by 2,3,4-hop questions. Overall, the knowledge
editing performance decreases as the intermediate
logical steps increase.

3 Problem Formulation

Knowledge editing aims to update the fact triplet
from (s,r,0) to (s,r,0*), where s is the subject, r
the relation, o the original object and o* the new
object. These triplets are formulated (Petroni et al.,
2018) as prompt templates p(s, r,))—for exam-
ple, with s = Stephen King, r = Citizenship
and () is a place holder for the object, the prompt
is: The citizenship of Stephen King is _. Using
a language model f : X —), which processes
input prompt x € X to generate output y €),
we probe the model with p(s,r,0). The output
f(p(s,r,0)) should match the original object o,
such as American. After editing, the model f*
should return f*(p(s,r,)), matching the updated
object 0*, such as British.

3.1 In-Context Knowledge Editing

Given a new fact triplet (s, r, 0*), In-context knowl-
edge editing injects it via an input prompt start-
ing with the prefix “Imagine that" (Cohen et al.,
2023), following the template p(s,r,0*) We de-
noted this new fact injection as e(s,r,0*) =
“Imagine that” + p(s,r,0*). The edited model
is then defined as fx = f o (e(s,7,0%)). To
verify the edit, we query the edited model with
f*(p(s,r,0)) and check if it successfully recalls
O*

3.2 Ripple Effect with Multi-hop Questions

The ripple effect is assessed through multi-hop
questions (Zhong et al., 2023). Imagine a chain of
facts @ = {(s1,71,01),.--,(Sn,Tn,0n)}, where
each object o; serves as the subject s;41 in the
subsequent fact. We refer to the set of rela-
tions as R = {ry,...,r,} and the set of sub-
jects as S = {s1,...,5p}. The multi-hop ques-
tions are formulated using Q that begins with
the head entity s; till the r,, and the answer
is the tail entity o,. For instance, consider
the question What is the citizenship of the au-
thor of Misery? composed of the fact chains
{Misery, Author, Stephen King} and {Stephen
King, Citizen, American}. If we update the
first fact to {Misery, Author,E11lie Kemper}, the
edited model f* is validated by checking if the
response for the above question is British in-
stead of American, reflecting the related fact
{Ellie Kemper,Citizen,British}.

4 RrIrPLECOT

As discussed above, knowledge editing faces the
challenge of ripple effects where a sequence of re-
lated facts should also be updated to arrive to the
correct answer to some particular question. This
chain of related facts for knowledge editing resem-
bles a chain of thoughts in reasoning which moti-
vates us to integrate CoT reasoning into the ICL
pipeline and propose RIPPLECOT as a unified so-
lution.

4.1 RIPPLECOT Formulation

For each knowledge editing, we construct k demon-
strations D = {dy,...,dy}, which d; € D con-
sist of four main components: new fact, question,
thought, and answer.

New facts. (si,71,0}), which are examples of
information designated for edits.

6339

Questions. Multi-hop questions p(S, R,) with
s € Sand r € R, which are formulated to probe
the related facts following the new facts, thereby
assessing the ripple effects of edits.

Thoughts. Break down the questions according
to each relation rq, ..., r, € R as follows:

{317r170T}
{33 ::OT7T270§}

{S;—l ::02—1aTn71702}

Answers. o}, which provides the exact answer to

the question, derived from the logical reasoning in
the thoughts section.

The goal of the demonstration is to allow the
model to generate the correct answer through its
COT reasoning ability, establishing clear connec-
tions between the new facts and their related facts
to the final answers.

4.2 Demonstration Generation

To generate k demonstrations D = {dy,...,d}
with the COT formulation, we explore three ap-

proaches:
Full-shot Selection. Vd; € D, the {new fact,
question, thought, answer} set is randomly

selected from the MQUAKE benchmark. This
ensures high-quality, logically coherent contexts
that serve as reliable examples for the model.

Few-shot Generation. To generalize the demon-
stration beyond the scope of MQUAKE, RIPPLE-
COT first creates a reference set Dygrer CONtain-
ing a few demonstrations using the human selec-
tion. This reference set is then used to guide
LLMs, which have shown remarkable reasoning
and instruction-following ability, in generating
demonstrations with a similar format. We evaluate
both GPT-40 and GPT-J generated demonstrations,
the prompt is as follows:

Please generate {k} knowledge editing examples.
Please respond only the generated examples in
the above format without any markdown or
additional text.

Your task is to genereate knowledge editing examples

for in context learning.

You need to first generate the knowledge being
edited (fact being changed) and then ask a
question that requires multi-hop (multi-step)
reasoning. Finally you need to provide a
answer with step-by-step reasoning in concise
format.

Example: Drefer

Please respond in the following format without any
markdown .

New Fact: <knowledge being editted>

Question: <question that requires multi-step
reasoning>

Thought: <step-by-step reasoning in concise format>

Answer: <answer with step-by-step reasoning in
concise format>

Zero-shot Generation RIPPLECOT explore the
Zero-shot Generation ability (Ramesh et al., 2021)
of LLMs to directly generate examples following
specific formats. Specifically, we remove the refer-
ence set Dyeser, using only the COT format in-
troduced in Section 4.1. We use both GPT-4o0
and GPT-J to generate the demonstrations using
the above prompt, omitting the line “Example:

n

I)refer .

4.3 Demonstration Refinement

After demonstration generation, we refine the
demonstration by ordering it by the similarity (Lu
et al., 2021) between the question components
in the D, denoted as {qdemo}le, and the ques-
tion that we want the model to answer, denoted by
{qrarget }_1. We follow Liu et al. (Liu et al., 2021)
to use the all-MiniLM-L6-v2 (Wang et al., 2020)
to get embeddings (Reimers and Gurevych, 2019)
denoted as {E(Qdemo)}le and {S(Qtarget)}le re-
spectively. The similarity {m}¥ is calculated by
the cosine similarity (Huang et al., 2008) with each
m;.

_ S(qdemo)i . s(qtarget)i
m;

= ()]
V1€ Gseno)ill2 + (1€ (Garger)i l2

Then, RIPPLECOT select the top-t demon-
strations from {qdemo}f:1 with with the highest
{m}¥. This approach ensures that the most relevant
demonstrations are selected, thereby improving the
overall performance of the model.

5 Experiments

5.1 Experiment Setup

We primarily assess our method using the
MQUAKE (Zhong et al., 2023) and RIP-
PLEEDIT (Cohen et al., 2023) dataset with the
models GPT-J (6B) (Wang and Komatsuzaki,
2021), Vicuna-7B (Zheng et al., 2024), and GPT-3
(Brown et al., 2020; Ouyang et al., 2022). We adopt
the accuracy metric from previous work (Zhong
et al., 2023; Cohen et al., 2023), where an answer
is deemed correct if the model’s output contains
the expected answer. We set our default setting as
the full-shot selection with k = 5 demonstrations.

5.1.1 Dataset

RIPPLEEDIT. This dataset contains counterfactual

6340

knowledge editing examples (Meng et al., 2022a).
It is divided into three different subsets. The popu-
lar subset contains edits on popular entities in wiki
data (Vrandeci¢ and Krétzsch, 2014); the random
subset contains random entities; the recent subset
contains recently added entities. We primarily fo-
cus on the popular subset.

MQUAKE. This dataset is used to test the
edited model’s multi-hop question-answering abil-
ity, which contains 2,3,4-hop questions.

5.1.2 Baseline

We conduct a comparative analysis of RIPPLE-
COT against several established techniques: Fine-
tuning (FT) (Zhu et al., 2020), MEND (Mitchell
et al.,, 2021), ROME (Meng et al., 2022b),
DeepEdit (Wang et al., 2024), IKE (Cohen et al.,
2023) and MEMIT (Meng et al., 2022a), as well
as our proposed BaseCOT, which adds a “Think
step by step" prompt (Kojima et al., 2022) after
the question, as the baseline method for the Ri1p-
PLECOT approach.

FT: FT employs gradient descent to update model
parameters based on the edits, directly modifying
the weights to reflect the new information.

MEND: MEND trains a hypernetwork to transform
raw fine-tuning gradients based on an edited fact,
creating targeted weight updates to integrate new
factual content.

ROME: ROME identifies and localizes factual
knowledge within specific Transformer layers, then
updates the feedforward networks in those layers
to incorporate new facts.

MeLLo: MeLLo stores edited facts externally.
During runtime, related facts are retrieved, and
conflict detection ensures appropriate edited out-
puts.

MEMIT: MEMIT extends ROME by enabling si-
multaneous editing of a large set of facts. It up-
dates feedforward networks across multiple layers,
effectively encoding a broader range of factual in-
formation.

DeepEdit: This method views knowledge edit-
ing as a constrained decoding problem, ensuring
outputs meet the proposed semantic constraints.
DeepEdit uses a depth-first search-based progres-
sive decoding technique for efficient updates with-
out retraining.

IKE: The ICL editing approach with a demonstra-
tion as “Imagine that" + new fact.

5.2 Comparison with Baselines

To mimic the human-written chain-of-thought con-
text, we extract new facts, questions, thoughts, and
answers from multi-hop questions in the MQuAKE
dataset. Each question in this dataset is a 2-hop,
3-hop, or 4-hop question. We combine each sub-
question and its corresponding answer into a single
sentence to form the thought process. Following
the approach of Zhong et al. (Zhong et al., 2023),
we post three similar questions. If one of these
questions yields an accurate answer, we consider
the model to have successfully edited the new facts.
The default number of contexts used is five. The
results are presented in Table 1.

Our model shows much better performance com-
pared to previously proposed models in all three
datasets. Furthermore, compared to BaseCOT, our
method still shows better performance, which rein-
forces that our method helps improve the model’s
reasoning ability and amplifies the ripple effects.

5.3 Performance on One-time Edit

The number of edited instances. Following the
methodology of (Zhong et al., 2023), we split the
dataset into groups of g instances, where g values
are 1, 100, 1000, and 3000. For a higher number
of edited facts, RIPPLECOT introduces a dynamic
retrieval method based on similarity measures be-
tween the thought and the stored new facts. The
evaluation prompt becomes:

[5-shot demonstrations]

[New facts: m facts line by line
retrieved from the given 3000 facts]
[Question]

The m new facts are selected based on their simi-
larity to the generated thoughts.

The details of the dynamic retrieval process are
as follows. Note that m is not fixed, because a
single question may relate to multiple edited facts.
For example, for the question, “What is the capital
of the country to which Lou Pearlman belonged?”,
the relevant facts might be “Lou Pearlman is a
citizen of India” and “The capital of India is Ta-
loga.” To address this, RIPPLECOT retrieves up
to m rounds with one fact per round and employs
an early stopping criterion if no contradiction is
detected during a self-check. The setting of self-
check follows (Zhong et al., 2023) and (Wang et al.,
2024) for identifying contradictions between the
retrieved facts and the answer. For each retrieval

6341

Parameter-based Methods Parameter-free Methods
Model Data
MEND FT ROME MENIT MELLO IKE BaseCOT RipPLECOT
MQUAKE-CF 11.5 1.9 18.1 12.3 412 67.2 59.3 81.7
GPT-J MQUAKE-T 38.2 0.2 11.3 4.8 46.8 71.8 66.9 83.2
RIPPLEEDIT - - 48.4 50.2 - 26.1 30.2 47.5
MQUAKE-CF 8.4 0.2 12.2 9.0 33.8 20.6 20.0 87.3
Vicuna-7B MQUAKE-T 339 8.2 9.3 5.8 51.3 30.7 39.7 78.9
RIPPLEEDIT - - 68.7 59.3 - 82.0 432 89.8

Table 1: Comparison between existing knowledge editing methods with RIPPLECOT and in MQUAKE and
RIPPLEEDIT dataset. The number represents the accuracy (%) in answering the questions after the model is edited.

Edit Instances
Model Method
1 100 1000 3000

MEMIT 123 98 8.1 1.8

MEND 115 91 43 35
GPT-J

MeLLo 203 125 104 9.8

RIPPLECOT | 80.1 793 781 799
. MeLLo 203 119 110 10.2
Vicuna-7B

RIPPLECOT | 87.3 828 808 857

MeLLo 687 505 436 412
GPT-3

RIPPLECOT | 897 886 827 809

Table 2: Performance of RIPPLECOT and base-

lines with GPT-J, Vicuna-7B. We evaluate the num-
ber of edited instances once as 1,100, 1000, 3000 on
MQUAKE-CF. We include the best results reported by
the baselines for comparison.

round, RIPPLECOT selects one fact from the re-
maining stored new facts that are most similar to
the generated thought, and append it to the [New
facts] prompt. This novel dynamic retrieval mech-
anism is also a key contribution of RTIPPLECOT
in enhancing the retrieval process. The results are
presented in Table 2.

Parameter-based methods face a large decline
when the edit instances increase because it is very
hard to update parameters for editing numerous
instances. Additionally, retrieval accuracy becomes
low when the number of edited instances increases,
causing the accuracy of related edited questions to
drop. However, our method focuses on teaching
the model to think with the provided logic, so our
method does not decline when the number of edited
instances increases, demonstrating its potential for
handling a large number of edits.

The number of hops. The dataset contains exam-
ples for 2-hop, 3-hop, and 4-hop questions. For
multi-hop questions, we adhere to the previous
prompt standard and concatenate these sentences

Method 2-hop 3-hop 4-hop All
FT 3.7 14 0.5 1.9
MEND 13.9 11.3 9.5 11.5
ROME 33.8 9.1 114 18.1
MEMIT 225 6.0 8.4 12.3
MeLLo 47.5 27.2 453 42.1
RIPPLECOT 80.2 78.8 79.2 80.1

Table 3: Performance of RIPPLECOT and baselines
with GPT-J. We evaluate the number of hop-in questions
from MQUAKE-CF as 2, 3,4, and all are referred to
as "All". We include the best results reported by the
baselines for comparison.

to form the thoughts. This method assesses the
model’s ability to apply learned facts. As the num-
ber of hops increases, the model must utilize all
learned new facts and apply logical reasoning to
generalize the question. Table 3 demonstrates that
typically, as the number of hops increases from 2 to
4, accuracy decreases. However, in RIPPLECOT,
this decline is minimized compared to other meth-
ods, indicating our method’s superior capability in
enabling the model to apply new facts effectively.

5.4 Performance in medical applications

We conducted experiments on the MedCF
dataset (Xu et al., 2024), a benchmark for medical
question-answer tasks. We follow Xu et al. (Xu
et al., 2024) to evaluate the Meditron-7B model.
The Table 4 shows the applicability of RIPPLECOT
to knowledge editing in the medical domain. Un-
like BaseCOT which relies heavily on the model’s
reasoning ability, RIPPLECOT tailors the thought
process for knowledge editing, effectively decom-
posing multi-hop logic in questions.

5.5 Performance on Multi-time Edit

Previously, to our knowledge, all methods have
evaluated knowledge editing using multi-hop ques-

6342

‘ BaseCOT RIPPLECOT

Meditron (7B) \ 65.3 99.9

Table 4: We compare RIPPLECOT with BaseCOT on
the MedCF dataset using the Meditron-7B model.

‘ Mello Mello after M.E. RIPPLECOT RIPPLECOT after M.E.

GPT-J‘ 412 8.9 817 79.9

Table 5: We compare the performance across different
numbers of demonstrations using the GPT-J and Vicuna
models, evaluated on the MQUAKE-CF dataset. M.E.
stands for Multiple Editing.

tions or simple question-answering (Wang, 2022)
under one-time editing. However, in real life, it is
common to update knowledge multiple times. For
instance, in the context of presidential elections,
the president of the United States changes every 4
or 8 years, necessitating repeated updates to this
knowledge. Due to the lack of datasets evaluat-
ing this aspect, we decided to modify the answers
twice. For example, as shown in Figure 1, we
change the author of Misery from Stephen King to
Richard Dawkins, and then to a new author, Ernest
Hemingway. We applied similar changes to a total
of randomly selected 200 datasets by altering the
answers to multi-hop questions to mimic multiple
edits in real life.

Table 5 shows the number of edits significantly
impacts retrieval-based methods, which struggle
with these kinds of problems. When conflicting
knowledge is injected into the knowledge base, re-
trieval accuracy decreases, leading to lower accu-
racy for multi-hop questions. However, our method,
RIPPLECOT, is less affected by multiple edits. The
performance of RIPPLECOT remains relatively sta-
ble even with multiple edits, provided the demon-
strations do not change.

5.6 Combination with Baselines

In this study, we integrate our proposed method
into existing approaches and baselines to evaluate
its effectiveness in improving performance. The
performance enhancements observed, as illustrated
in Figure 2 , demonstrate the significant impact of
our method in amplifying ripple effects.

5.7 Ablation Study

In this section, we ablate on different components
of RIPPLECOT, which are generation strategy,

Accuracy Comparison of Editing Methods
81.7%

59.3%

Accuracy (%)
&
N
2

20.0%

4 o
o o 8

Editing Methods

Figure 2: Comparative analysis of the performance en-
hancements achieved by our proposed method when
applied to two baseline models, Mello and BaseCOT, in
both the GPT-J and Vicuna-7B architectures.

number of referenced demonstrations used for the
few-shot generation, and number of demonstrations
selected for the full-shot selection.

5.7.1 Demonstration Generation

Generation Strategy. Table 6 indicates that
few-shot generation may significantly amplify rip-
ple effects. The comparable performance between
few-shot generation and human selection, partic-
ularly with GPT-40’s few-shot performance sur-
passing that of human selection (human-written
chain-of-thought content), suggests a viable alter-
native for automatic context generation. We uti-
lize GPT-40 and GPT-J (6B) models to generate
demonstrations using both few-shot and zero-shot
generation (Levy et al., 2017). For zero-shot learn-
ing, we input the prompt directly, allowing the
model to autonomously generate the result. For
few-shot learning, we extract several contexts from
the MQUAKE dataset, which includes new facts,
questions, thoughts, and answers, and prompt the
model to generate the context in a similar format.
The generated content is then used as context for
RIPPLECOT. We impose several criteria on the
generated context: it must comprehensively include
all four sections (facts, questions, thoughts, and an-
swers), and the answer should be concise, ideally
a term or a few words. The similarity between
GPT-J and GPT-40 generation suggests that per-
formance is optimal when provided with several
high-quality examples. However, in the zero-shot
scenario, GPT-40 may still outperform due to its
superior capability in generating reasonable chain-
of-thought prompts.

How many referenced demonstrations are
needed for the few-shot generation? We try to

6343

Zero-shot Generation Few-shot Generation Full-shot Selection

Demonstrations ‘ 1 2 5 10 20

GPT-J 69.5 80.8
ChatGPT-3.5 74.2 81.2
81.7
ChatGPT-4 80.8 81.9
GPT-40 72.7 82.3

Table 6: Comparison between different demonstration
generation. We use the demonstration generated by
GPT-J and GPT-4o0 for zero-shot and few-shot genera-
tion. The result is on MQUAKE-CF dataset.

answer this question in Table 7. By alternating the
different number of references given to the LLMs
to few-shot generate demonstrations, we observe
that with more references, performance steadily
grows to the best. We also want to emphasize that
a competitive performance can be achieved using
as little as 1 reference, which illustrates that RIP-
PLECOT can work well even with little reference
selected from MQUAKE and thus can be general-
ized to other datasets.

References ‘ 1 2 3 4 5

ChatGPT-3.5 638.9 80.2 78.6 79.3 81.2
ChatGPT-4 78.7 81.0 81.0 78.0 81.9
GPT4-0 80.8 67.9 70.5 71.0 823

Table 7: We compare the performance of the few-shot
demonstration given different numbers of human refer-
ence examples. The result is on MQUAKE-CF dataset.

How many demonstrations are needed to tackle
the ripple effect in knowledge editing? We an-
swer this question in Table 8. We experimented
with using 1, 2, 5, 10, and 20 demonstrations
to evaluate the performance. As the number of
contexts increases, computational complexity also
rises. Our goal is to identify an optimal number of
demonstrations that elicit high-quality model out-
puts. As shown in Table 8, using 5 demonstrations
appears to be an effective choice. While using 20
demonstrations offers a slight improvement in ac-
curacy, considering the trade-off between accuracy
gains and the cost of time and computational re-
sources, 5 demonstrations represent a practical and
efficient choice.

5.7.2 Demonstration Refinement

As discussed in our methodology, we employ co-
sine similarity to select demonstrations. During the
generation process, we initially generate 20 candi-
date contexts and then select 5 of these based on

GPT-J 69.5 75.8 81.7 80.9 82.0
Vicuna-7B 519 62.8 87.3 85.8 88.4

Table 8: compare the performance across different num-
bers of demonstrations using the GPT-J and Vicuna-7B
models, evaluated on the MQUAKE-CF dataset.

cosine similarity. This approach results in approx-
imately a 5% performance increase compared to
random selection, underscoring the importance of
incorporating cosine similarity into our method.

6 Conclusion

RIPPLECOT has demonstrated superior perfor-
mance relative to existing approaches. Through
our experiments, we have highlighted the impor-
tance of our method in amplifying the ripple effect,
as well as its flexibility in integration with other ex-
isting methods. Additionally, our analysis of chain-
of-thought generation provides valuable insights
for automatic generation. By combining the inher-
ent flexibility and improved efficacy of in-context
editing, our method can significantly streamline the
process of knowledge updating, facilitating more
accurate and contextually relevant model responses
across various domains.

Limitations

Our study, while promising, has several notable
limitations that should be addressed in future work:

e Limited Dataset Scope. There are limited bench-
marks for analyzing ripple effects, especially for
multiple edits. We conducted experiments on
only two datasets. We hope that, in the future,
a larger dataset will be developed, encompass-
ing various scenarios such as questions related to
several parallel facts, to enable a more compre-
hensive evaluation.

o Assumption of LLM Capabilities. Our ap-
proach assumes that the employed LLMs pos-
sess sufficient capabilities to handle knowledge
editing and chain-of-thought (CoT) reasoning.
However, if sub-optimal LLMs are used, the ef-
fectiveness of the proposed methods may be com-
promised, leading to diminished overall perfor-
mance.

e Bias in Edits. The creation of multiple edits to
simulate real-life scenarios may inadvertently in-
troduce biases. These biases might not accurately
reflect the complexity and variability of natural

6344

knowledge updates. It is crucial to develop more
objective and systematic methods for generating
edits to ensure the authenticity and relevance of
the scenarios used in experiments.

Addressing these limitations will be vital for
advancing the field of knowledge editing and im-
proving the effectiveness and reliability of methods
like RIPPLECOT in real-world applications.

Potential Negative Social Impact

Our commitment to ethical research practices
guided our methodology and implementation
throughout the study, however, RIPPLECOT may
raise the following negative impacts:

Firstly, we acknowledge the importance of en-
suring the accuracy and integrity of information in
language models. The ability to edit knowledge
within these models must be approached with cau-
tion to prevent the propagation of misinformation.
This means that our approach may be maliciously
employed to distort, manipulate, or propagate mis-
information. We raise this potential negative so-
cial impact here to highlight the need for strin-
gent safeguards and monitoring mechanisms. Re-
searchers and practitioners utilizing RIPPLECOT
must implement robust verification processes to
ensure that only accurate and verified information
is introduced into language models.

Secondly, we are aware of the potential biases
that may be introduced through manual edits and
the limitations of the datasets used. This means
that using LLMs or the limited current datasets
on knowledge editing might inherit the biases in
LLMs or the current datasets.

By addressing these potential negative social
impacts, we aim to contribute to the responsible
advancement of knowledge editing technologies,
ensuring they are used to enhance the reliability
and effectiveness of language models in various
applications.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments and feedback. This
work was supported in part by Johns Hopkins Uni-
versity Institute for Assured Autonomy (IAA) with
grants 80052272 and 80052273, National Science
Foundation (NSF) under grants CNS-21-31859,
CNS-21-12562, CNS-19-37786, CNS-19-37787,
and CNS-18-54000, as well as Army Research Of-
fice (ARO) under grant No. W911NF2110182. The

views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies or en-
dorsements, either expressed or implied, of NSF,
ARO, or JHU-TAA.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633-2650.

Yingfa Chen, Zhengyan Zhang, Xu Han, Chaojun Xiao,
Zhiyuan Liu, Chen Chen, Kuai Li, Tao Yang, and
Maosong Sun. 2024. Robust and scalable model
editing for large language models. arXiv preprint
arXiv:2403.17431.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. arXiv
preprint arXiv:2307.12976.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. 2022. Time-aware language
models as temporal knowledge bases. Transactions
of the Association for Computational Linguistics,
10:257-273.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. arXiv
preprint arXiv:2210.03329.

Anna Huang et al. 2008. Similarity measures for text
document clustering. In Proceedings of the sixth new
zealand computer science research student confer-
ence (NZCSRSC2008), Christchurch, New Zealand,
volume 4, pages 9-56.

Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai
Li, and Danqi Chen. 2023. Catastrophic jailbreak of
open-source llms via exploiting generation. arXiv
preprint arXiv:2310.06987.

6345

https://doi.org/10.1162/tacl_a_00459
https://doi.org/10.1162/tacl_a_00459

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199—

22213.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extrac-
tion via reading comprehension. arXiv preprint
arXiv:1706.04115.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359—-17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2018. Language models as knowl-
edge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-1JCNLP).

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation. In International conference on machine learn-
ing, pages 8821-8831. Pmlr.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Denny Vrandeci¢ and Markus Krétzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Jinyuan Wang, Junlong Li, and Hai Zhao. 2023. Self-
prompted chain-of-thought on large language models
for open-domain multi-hop reasoning. arXiv preprint
arXiv:2310.13552.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776-5788.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai wei
Chang. 2024. Deepedit: Knowledge editing as de-
coding with constraints. ArXiv, abs/2401.10471.

Zhen Wang. 2022. Modern question answering
datasets and benchmarks: A survey. arXiv preprint
arXiv:2206.15030.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Derong Xu, Ziheng Zhang, Zhihong Zhu, Zhenxi Lin,
Qidong Liu, Xian Wu, Tong Xu, Xiangyu Zhao,
Yefeng Zheng, and Enhong Chen. 2024. Edit-
ing factual knowledge and explanatory ability of
medical large language models. arXiv preprint
arXiv:2402.18099.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqgi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

6346

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://api.semanticscholar.org/CorpusID:267060897
https://api.semanticscholar.org/CorpusID:267060897

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

A Appendix

A.1 Example Prompts and Generation
Results

{Demonstrations}

New Fact: Lou Pearlman is a citizen of India, The
capital of India is Taloga

Question: What is the capital of the country to
which Lou Pearlman belonged?

New fact: the author of Misery is Richard Dawkins.

Question: What is the nationality of the author of
Misery.

Thought: The author of Misery is Richard Dawkins.
Richard Dawkins is a citizen of United Kingdom
. Therefore, the nationality of the author of
Misery is British.

Answer: British

New fact: The capital of United States of America is
E1 Campu.

Question: What is the capital city of the country
that Michael Feinstein is a citizen of ?

Thought: Michael Feinstein is a citizen of United
States of America. The capital of United
States of America is El Campu. Thus, the
capital city of the country that Michael
Feinstein is a citizen of is El Campu.

Answer: E1 Campu

Thought: Lou Pearlman is a citizen of India. The
capital of the country of which Lou Pearlman
is a citizen is Taloga.

Answer: Taloga

A.2 Comparison of Different CoT Methods

Our evaluation in Table 9 also shows that RIP-
PLECOT outperforms the standard CoT approach,
Base-COT with "think step by step," as well as
other advanced CoT methods, i.e., Self-generated-
COT (Wang et al., 2023) that prompts the model to
split a complex question into several sub-questions,
while Least-to-most-COT (Zhou et al., 2022) let
the model generate and arrange the sub-questions
from easy to hard. We also compare more advanced
prompting such as Self-consistency (Wang et al.,
2022) by generating several candidates and per-
forming majority voting. RippleCOT also outper-
forms plain Self-consistency, demonstrating the
significance of CoT in knowledge editing. Self-
consistency essentially is self-ensembling which
be combined with RippleCOT. We demonstrate
that RippleCOT can be further boosted by self-
consistency, as shown in the Table 9.

Method‘SG-COT LtM-COT SC RipPLECOT RIPPLECOT +SC

GPT—J‘ 541 749 342 873 90.1

Table 9: Comparison of different Chain-of-Thought
(CoT) methods. SG-COT: Self-Generated CoT, LtM-
COT: Least-to-Most CoT, SC: Self-Consistency, RIP-
PLECOT: Your system.

Method ‘ GPT-3 (175B) Claude-3.5 sonnet GPT-40 GPT-4-0125
BaseCoT 72.3 75.8 79.1 79.1
RippleCoT 89.7 85.2 87.9 88.6

Table 10: Performance comparison between BaseCoT
and RippleCoT across different models.

The results indicate that RippleCOT is well-
customized for knowledge editing. This is because
RippleCOT creates thoughts that break down ques-
tions based on relationships, i.e., key components
in knowledge editing, helping the model learn how
to solve multi-hop questions in knowledge editing.
In contrast, other methods let the model determine
how to divide the questions. If the model makes an
error during the early stages of problem decompo-
sition, it can affect the following steps and lead to
an incorrect final answer.

A.3 Safety Evaluation

We conducted a jailbreak attack (Huang et al.,
2023) before and after applying RippleCOT, and
found that the attack success rate is unchanged
(92%) for the MaliciousInstruct dataset with the
Vicuna-7B model under their setting w/o sys.
prompt. This is because RippleCOT does not alter
any model parameters during editing, thus it does
not affect the model’s safety level.

A4

We added three large models, GPT-4-0125 (1.87T),
GPT-40 and Claude-3.5 sonnet (while the exact
parameter size isn’t specified, it is the latest high-
performing large model), to the table below, in ad-
dition to GPT-3 (175B), which have already been
included in our paper. We observe that Ripple-
COT performs well on both smaller and larger
models, whereas BaseCOT, which relies solely on
the model’s reasoning ability, is effective only for
larger models with enhanced reasoning capabilities.
The results is shown in Table 10.

More baseline with large models

6347

