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Abstract

Recent advancements in large language mod-
els (LLMs) have raised concerns about infer-
ence costs, increasing the need for research
into model compression. While knowledge dis-
tillation (KD) is a prominent method for this,
research on KD for generative language models
like LLMs is relatively sparse, and the approach
of distilling student-friendly knowledge, which
has shown promising performance in KD for
classification models, remains unexplored in
generative language models. To explore this ap-
proach, we propose PromptKD, a simple yet
effective method that utilizes prompt tuning -
for the first time in KD - to enable generative
language models to transfer student-friendly
knowledge. Unlike previous works in classifi-
cation that require fine-tuning the entire teacher
model for extracting student-friendly knowl-
edge, PromptKD achieves similar effects by
adding a small number of prompt tokens and
tuning only the prompt with student guidance.
Extensive experiments on instruction-following
datasets show that PromptKD achieves state-of-
the-art performance while adding only 0.0007%
of the teacher’s parameters as prompts. Further
analysis suggests that distilling student-friendly
knowledge alleviates exposure bias effectively
throughout the entire training process, leading
to performance enhancements.1

1 Introduction

With the massive improvement of generative lan-
guage models, such as the emerging abilities (Wei
et al., 2022) observed in large language models
(LLMs), there is a growing need for model com-
pression research to efficiently deploy models in
various tasks (Touvron et al., 2023b; Taori et al.,
2023). However, among notable compression meth-
ods such as knowledge distillation (KD; Hinton
et al., 2015; Kim and Rush, 2016; Gu et al., 2024),
pruning (Ma et al., 2023), and quantization (Tao

1Project page: https://promptkd.github.io
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Figure 1: Comparison of instruction-following perfor-
mance of KD methods using the GPT-2 model family.
Owing to the student-friendly knowledge, our Promp-
tKD outperforms others with only an additional 11K
parameters. Dashed reference line represents the perfor-
mance of the teacher model.

et al., 2022), KD has not been successfully applied
to generative language models.

Since most KD methods are devised with mod-
els like BERT (Devlin et al., 2019) for classifica-
tion tasks, the challenge arises when attempting
to directly apply these KD methods to generative
language models, which have different architec-
tures and are designed for tasks other than clas-
sification. While there have been some methods
proposed for generative language models, such as
Supervised KD (Sanh et al., 2019) or SeqKD (Kim
and Rush, 2016), they tend to be naive approaches.
Even recently proposed works (Agarwal et al.,
2024; Gu et al., 2024), like previous research,
have focused on distribution discrepancy metrics
or pseudo-targets. Therefore, despite the rapid ad-
vancement of LLMs in recent times, the drawback
is that they are not designed with the extension to
LLMs in mind.

Moreover, attempts to distill student-friendly
knowledge in a generative language model have
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yet to be explored. Recent KD studies (Yang et al.,
2022; Park et al., 2021a; Zhou et al., 2022) for
classification tasks aim to distill such knowledge.
This idea emerges because previous works extract
knowledge from fixed teacher without knowing
the student’s capacity, and the observation (Cho
and Hariharan, 2019) that larger teacher models
do not necessarily improve student performance.
However, there hasn’t been any exploration of ap-
plying these ideas to generative language models.
Since the capacity gap between teacher and student
persists in KD for generative language models, it is
reasonable to expect that distilling student-friendly
knowledge would be beneficial.

To address this issues, we propose PromptKD,
which utilizes prompts in generative language mod-
els to distill student-friendly knowledge. Extract-
ing student-friendly knowledge from the teacher
requires modifying the teacher, as in previous stud-
ies (Ren et al., 2023; Zhou et al., 2022). However,
modifying a large teacher model can incur signifi-
cant computational costs. PromptKD addresses this
concern by exploiting prompt tuning. By append-
ing prompt tokens to the beginning of the input,
we can efficiently fine-tune the teacher model with
notably fewer parameters. While there are other
parameter-efficient fine-tuning methods such as
prefix-tuning (Li and Liang, 2021) and LoRA (Hu
et al., 2022), they suffer from the disadvantage that
the number of parameters to be trained increases
proportionally with the number of layers. More-
over, there is an observation (Lester et al., 2021)
that prompt tuning shows similar performance to
full-parameter fine-tuning as the model size in-
creases, making prompt tuning a more reasonable
choice. PromptKD learns prompts that stimulate
the teacher to distill student-friendly knowledge
with guidance from the student. Additionally, it em-
ploys regularization loss during the early stages of
training to prevent significant divergence from the
original teacher when appending prompts, ensuring
stable training.

For evaluation, we measure the instruction-
following performance (Ouyang et al., 2022), aim-
ing to cover a variety of tasks that generative lan-
guage models can perform. Compared to the exist-
ing baseline, PromptKD achieves state-of-the-art
performance by adding prompt parameters equiv-
alent to only 0.0007% of the teacher parameters,
as depicted in Figure 1. Additionally, the analy-
sis of exposure bias suggests that remarkable alle-
viation of exposure bias through student-friendly

knowledge is likely the cause of performance im-
provement. Lastly, we explore the student-friendly
knowledge in PromptKD and confirm the necessity
of regularization loss and the importance of prompt
initialization through ablation studies.

To summarize, our contribution is four-fold:

• We investigate the effect of student-friendly
knowledge, which has not been previously
explored in knowledge distillation (KD) for
generation tasks.

• We propose PromptKD, the first usage of
prompt tuning in KD, enabling memory-
efficient extraction of student-friendly knowl-
edge from teacher.

• Through extensive experiments on 5
instruction-following datasets, PromptKD
achieves state-of-the-art performance.

• We suggest that the superiority of PromptKD
lies in its ability to fully mitigate exposure
bias in the training phase.

2 Related Work

KD for text classification Knowledge distilla-
tion (KD) (Hinton et al., 2015) is a model compres-
sion technique where the knowledge of a teacher
model is transferred to improve the performance
of a student model. Most KD research has been
focused on text classification tasks. It has evolved
from simple approaches (Song et al., 2020) that
match the class distributions between teacher and
student to more complex methods (Jiao et al., 2020;
Sun et al., 2019; Wang et al., 2020; Park et al.,
2021b) that involve matching hidden states or at-
tention matrices between models. Recently, con-
cerns have been raised about the observation (Cho
and Hariharan, 2019) that larger teacher models
do not necessarily produce better students and the
issue of teachers distilling knowledge while being
unaware of the student’s capacity. To address this,
Park et al. (2021a); Zhou et al. (2022); Ren et al.
(2023) transfer student-friendly knowledge, which
requires the teacher to transform during the dis-
tillation process, influenced by specific objectives
aimed at benefiting the student. Additionally, fo-
cusing on the capacity gap between the teacher and
student during training, Yang et al. (2022) proposes
gradually pruning the teacher, while Liang et al.
(2023a) suggests initializing the student as a model
of the same size as the teacher and then pruning it
during training.
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KD for text generation For text generation,
Sanh et al. (2019) minimizes the KL divergence
between the next token prediction distributions of
the teacher and student at each time step. In addi-
tion, some research (Calderon et al., 2023; Agarwal
et al., 2024) focus on the sentences inputted to the
teacher and student during the distillation process.
For example, Kim and Rush (2016) uses sentences
generated by the teacher as pseudo-targets instead
of ground truth. Moreover, black-box KD meth-
ods (Hsieh et al., 2023; Ho et al., 2023) that use
inference-only black-box LLMs as teachers and
augment existing data before training are proposed.
Recently, Agarwal et al. (2024); Gu et al. (2024)
explored discrepancy metrics between model dis-
tributions and used sentences generated by the stu-
dent as pseudo-targets to minimize exposure bias.
However, there have been no attempts yet to dis-
till student-friendly knowledge while the teacher
is aware of the student’s capacity. Although Liang
et al. (2023b) incorporates task-aware filters into
both teacher and student to transfer knowledge, its
scalability is limited due to the addition of filters
at each layer for layer distillation. Crucially, it en-
courages knowledge to be task-specific, making it
diverge from what we aim to explore in this paper.

Prompt tuning After Brown et al. (2020) demon-
strates that pre-trained language models can per-
form specific tasks by prepending text prompts to
input, many studies have tried to either manually
craft (Schick and Schütze, 2021) or automatically
discover (Shin et al., 2020; Jiang et al., 2020; Gao
et al., 2021) such hard prompts, which are discrete
tokens. Subsequently, research (Hambardzumyan
et al., 2021; Zhong et al., 2021) emerged to ad-
vance prompts into the form of soft prompts com-
posed of embeddings, making prompt updates via
back-propagation easier and resulting in better per-
formance compared to hard prompts. Presently,
prompt tuning (Lester et al., 2021) has become
a prominent parameter-efficient fine-tuning tech-
nique. Although Ma et al. (2022) uses hard prompts
to generate input data for knowledge extraction, we
are pioneering the use of prompts for parameter-
efficient fine-tuning in KD research.

3 PromptKD

PromptKD is devised in the instruction-
following (Ouyang et al., 2022) setting for
application to generative language models. We
formulate instruction-following as a condi-

tional text generation task, where the request
x = {x1, x2, . . . , xn} sampled from the data
distribution px comprises instruction and input
to describe the task. Then, given the request x
as a condition, the model generates a response
y = {y1, y2, . . . , yT }. For prompt tuning, soft
prompts P = {p1,p2, . . . ,pm}, where pi is an
embedding vector of the same dimension as the
token embedding, are initialized with text and
prepended to the input request x. Formally, given
the request x, the teacher model distribution
conditioned on the prompt P is denoted as
p(y|P,x) (here we suppress the teacher’s model
parameter since it is fixed), and the student’s model
distribution parameterized by θ is denoted as
qθ(y|x), where only the student model parameters
θ and the prompt P are trainable. The training
process consists of 3 steps per iteration, as shown
in Figure 2. First, generating input data used for
knowledge distillation (pseudo-target generation).
Then, updating the prompt based on guidance
from the student and teacher models to facilitate
adaptive teaching (prompt tuning for adaptive
teaching). Finally, distilling student-friendly
knowledge to the student using the updated prompt
(student-friendly knowledge distillation).

3.1 Pseudo-Target Generation

PromptKD uses the response y generated by the
student for the prompt tuning and knowledge distil-
lation processes, treating it as the pseudo-target.
This approach addresses exposure bias, which
arises due to the discrepancy between the sentences
used during training and those generated during
inference, leading to degraded performance in free-
run generation (Zhang et al., 2019). Based on the
insight (Agarwal et al., 2024) that incorporating
sentences that the model can generate during free-
run generation into the training process can miti-
gate exposure bias, we devise the approach accord-
ingly. It is worth noting that for the sake of method
simplicity, back-propagation during this sampling
process is not conducted.

3.2 Prompt Tuning for Adaptive Teaching

Initially, we concatenate the request x and response
y, including the prompt P for the teacher, and input
them into both models. Prompt P is updated to
minimize the KD loss Lkd, which computes the
distribution discrepancy of the response part. This
encourages the prompt to enable the teacher to
generate sentences at a similar level to the student
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Figure 2: Training procedure of PromptKD. To mitigate exposure bias, responses are generated by the student to be
used as pseudo-targets. Then, for adaptive teaching, the prompt input to the teacher is trained based on guidance
from the student. During this process, regularization loss is also employed to address instability stemming from the
prompt. Lastly, teacher distills student-friendly knowledge to the student using the trained prompt.

when it is prepended to the teacher’s input. Drawing
inspiration from the concept of adaptive teaching
in education, we design this objective with the aim
of enabling students to receive knowledge from the
teacher at a level they can comprehend.

However, during the early stages of training, the
influence of the prompt may cause significant devi-
ations or inaccuracies in the teacher model distribu-
tion, leading to unstable learning (Hou et al., 2022).
To address this issue, we initialize the prompt with
text embedding and devise an additional regulariza-
tion lossLreg to ensure that the teacher model distri-
bution remains similar whether the prompt is used
or not. The regularization loss Lreg is computed in
a similar manner to the KD loss Lkd, but with the
difference that it is measured based on the teacher
model distribution when the prompt is excluded
from the input given to the teacher. This approach
allows for the continued use of the fixed teacher
model, making it memory-efficient. However, since
the fixed teacher is unaware of the student’s capac-
ity, Lreg deviates from our ultimate goal. Therefore,
we introduce a coefficient that starts at 1 for Lreg
and linearly decreases to 0 during training, focusing
solely on stabilizing the early stages of learning.

Regarding the two objectives, we opt for mini-
mizing the reverse KL divergence instead of the for-
ward KL divergence to measure the discrepancy, as
it exhibits mode-seeking behavior (Nowozin et al.,
2016) and benefits generation tasks. Hence, sum-
marizing the two objectives, the final loss Lprompt,
which updates only the prompt, is determined by

Algorithm 1 PromptKD

Input: teacher T , student’s output distribution qθ,
data distribution px, prompt P , training step K,
learning rate η
for each step k = 1, ...,K do

Sample a request x from px
Sample a response y from qθ(·|x)
Update P ← P − η∇Lprompt ▷ Eq. (3)
Update θ ← θ − η∇Lstudent ▷ Eq. (4)

end for
return qθ

their summation, as follows:

Lkd =DKL

(
p(y|P,x) ∥ qθ(y|x)

)
, (1)

Lreg =DKL

(
p(y|P,x) ∥ p(y|x)

)
, (2)

Lprompt =Lkd +

(
K − k

K

)
Lreg, (3)

where K represents the total training steps, and k
denotes the current step.

3.3 Student-Friendly Knowledge Distillation
The updated prompt is utilized as a trigger to ex-
tract student-friendly knowledge from the teacher
and distill it to the student. The student loss Lstudent
minimizes the distribution discrepancy between
teacher and student through reverse KL divergence,
as follows:

Lstudent =DKL

(
qθ(y|x) ∥ p(y|P,x)

)
. (4)

For a clear understanding, we summarize the
PromptKD algorithm in Algorithm 1.
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Model #Params Method
Instruction-following datasets

Dolly SelfInst Vicuna S-NI UnNI

GPT-2

1.5B Teacher 27.3 14.5 16.2 27.1 31.6

120M

SFT 22.9 10.2 14.5 16.3 18.5
KD 22.6 11.0 15.1 18.0 20.1
SeqKD 23.3 10.3 14.7 16.6 19.2
GKD 24.8 11.1 17.7† 20.7 23.2
MiniLLM 24.2 12.7 16.9† 25.1 26.2
PromptKD 25.6 13.1 16.8† 26.8 28.9

340M

SFT 25.1 12.9 15.9 23.7 27.4
KD 25.1 13.0 15.6 24.5 27.7
SeqKD 25.3 12.7 16.0 23.8 27.5
GKD 26.9 14.8† 17.8† 26.6 30.9
MiniLLM 26.3 14.8† 17.9† 26.4 31.2
PromptKD 27.3† 15.0† 17.6† 27.1† 32.6†

760M

SFT 24.9 13.4 15.8 24.0 27.6
KD 25.7 13.7 15.9 24.0 27.7
SeqKD 25.2 13.3 15.8 24.0 27.4
GKD 26.9 14.1 17.1† 25.4 29.6
MiniLLM 26.2 15.8† 16.9† 28.5† 33.5†

PromptKD 26.9 16.4† 17.8† 29.5† 34.8†

OPT

13B Teacher 29.3 17.7 17.3 30.7 33.8

1.3B
MiniLLM 26.8 15.2 18.1† 28.6 30.9
PromptKD 28.0 15.5 18.5† 29.6 33.5

2.7B
MiniLLM 27.2 16.2 18.6† 29.8 33.1
PromptKD 28.7 17.8† 18.9† 31.4† 34.8†

6.7B
MiniLLM 28.6 18.0† 19.1† 32.5† 34.5†

PromptKD 29.9† 19.0† 19.8† 33.8† 35.2†

Llama
13B Teacher 30.2 23.1 19.0 35.7 36.9

7B
MiniLLM 29.0 21.3 20.6† 36.7† 38.1†

PromptKD 30.0 23.4† 21.1† 36.6† 38.9†

Table 1: Evaluation results on 5 instruction-following datasets. Each ROUGE-L score is averaged over 5 random
seeds. The best score for each model size is highlighted in boldface. †Results surpass those of the teacher.

4 Experiments

4.1 Experimental Setup

Following Gu et al. (2024), we evaluate PromptKD
using 5 instruction-following datasets.

Settings We split the Dolly (Conover et al.,
2023), consisting of 15,000 human-written
instruction-response pairs, into 14,000 for train-
ing and 500 for validation and testing. For evalua-
tion, we employ not only the Dolly but also 4 addi-
tional datasets: SelfInst (Wang et al., 2023), consist-
ing of user-oriented instruction-following sets; Vi-
cuna (Chiang et al., 2023), comprising 80 questions
used in the Vicuna evaluation; S-NI, the test set
of SUPER-NATURALINSTRUCTIONS (Wang et al.,
2022); and UnNI, the core dataset of UNNATU-

RALINSTRUCTIONS (Honovich et al., 2023). Sim-
ilar to Gu et al. (2024), data samples with ground
truth response lengths of 11 or more are utilized
for S-NI and UnNI. We generate 5 responses for
each request in each dataset using different ran-
dom seeds and evaluate them to report the aver-
age scores for reliability. We choose the ROUGE-
L score (Lin, 2004) as the metric for evaluation,
as it aligns well with human preferences (Wang
et al., 2022) in instruction-following evaluations.
The best checkpoint based on the ROUGE-L score
on the validation set is used for evaluation. We
also measure the GPT-4 feedback scores (Zheng
et al., 2024), which are separately summarized in
Appendix C.
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Models To evaluate the instruction-following per-
formance of PromptKD across various models, we
utilize pre-trained GPT-2 (Radford et al., 2019),
OPT (Zhang et al., 2022), and Llama (Touvron
et al., 2023a) model families. For the GPT-2 model
family, GPT-2 XL (1.5B params) is employed
for the teacher model, and GPT-2 Base (120M
params), GPT-2 Medium (340M params), GPT-
2 Large (760M params) are used for the student
model. For the OPT and Llama model families,
we use OPT-13B and Llama-13B as the teacher
models, and OPT-1.3B, OPT-2.7B, OPT-6.7B, and
Llama-7B as the student models, respectively. Be-
fore knowledge distillation, the teacher model un-
dergoes supervised fine-tuning on the Dolly train-
ing set. Similarly, the student model is also fine-
tuned on the same training data for only three
epochs, following the previous works (Agarwal
et al., 2024; Gu et al., 2024).

Baselines PromptKD is compared with various
approaches ranging from supervised fine-tuning
(SFT), which does not involve knowledge distil-
lation, to commonly used methods in generation
tasks such as Supervised KD (KD; Sanh et al.,
2019), SeqKD (Kim and Rush, 2016), and more
recent proposals like MiniLLM (Gu et al., 2024)
and GKD (Agarwal et al., 2024). KD and SeqKD
both aim to minimize the discrepancy between the
model distributions of teacher and student at each
token step. The difference lies in whether the input
sentence is ground truth or pseudo-target generated
by the teacher. MiniLLM replaces forward KL di-
vergence with reverse KL divergence and updates
the student model using policy gradient. On the
other hand, GKD focuses on distribution discrep-
ancy metrics and pseudo-targets to propose a gen-
eral method. In this paper, GKD computes reverse
KL divergence and utilizes sentences generated by
the student as pseudo-targets, and this choice is
based on the reported performance in their paper.
Additionally, it is worth noting that the students
for MiniLLM, GKD, and PromptKD all commence
from the same supervised fine-tuned checkpoint,
while other methods start from pre-trained mod-
els. Due to resource limitations, experiments on
the OPT and Llama models are conducted only in
comparison with MiniLLM, which demonstrated
outstanding performance among all baselines in the
GPT-2 results. For training details, please see the
Appendix A.

4.2 Experimental Results
We report the instruction-following performance of
PromptKD and baselines on 5 datasets in Table 1.

Firstly, PromptKD achieves state-of-the-art per-
formance overall in the instruction-following set-
ting, outperforming other KD baselines. Addition-
ally, it also outperforms on 4 datasets not used in
training, demonstrating PromptKD’s superb gener-
alization ability. These results robustly demonstrate
the superiority of PromptKD, as they consistently
appear across all model families and model sizes.
It’s worth noting that despite MiniLLM incorpo-
rating language modeling loss through the corpus
used for pre-training, PromptKD exhibits better
performance.

Furthermore, only PromptKD shows superior
performance to the teacher across all datasets. This
demonstrates that modifying the teacher to extract
student-friendly knowledge for distillation works
not only for classification tasks but also for gener-
ation tasks. Moreover, the better performance of
PromptKD, MiniLLM, and GKD, which utilize re-
sponses generated by the student as pseudo-targets,
compared to other baselines, can be interpreted as
exposure bias mitigation contributing to the perfor-
mance improvement.

PromptKD and the baselines’ qualitative results
are summarized in the Appendix B, where it is
shown that PromptKD generates responses most
similar to the ground truth.

4.3 Analysis
Exposure bias In this section, we investigate ex-
posure bias to understand why PromptKD performs
well. Exposure bias refers to the mismatch in distri-
bution between the sentences seen during training
and those generated during inference. If exposure
bias is significant, the tokens generated during in-
ference may diverge from those seen during train-
ing, leading to accumulated errors in the generation
process. Following Arora et al. (2022), exposure
bias up to l generation steps can be quantified as
follows:

ExAccErr(l) =
R(l)− E(l)

E(l)
× 100%, (5)

R(l) =
l∑

t=1

E
y<t∼qθ(·|x)
yt∼p(·|y<t,x)

log
p(yt|y<t,x)

qθ(yt|y<t,x)
, (6)

E(l) =
l∑

t=1

E
y<t∼p(·|x)

yt∼p(·|y<t,x)

log
p(yt|y<t,x)

qθ(yt|y<t,x)
. (7)
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(b) exposure bias against training progress

Figure 3: The measurement of exposure bias. Excess accumulated error (ExAccErr) is measured with respect to
generation steps and training progress, where values closer to 0 indicate alleviation of exposure bias.

R(l) represents the average forward KL divergence
up to l time steps when the student-generated re-
sponse is used as the pseudo-target, while E(l) is
similar to R(l) but differs in that it uses the teacher-
generated response as the pseudo-target. R(l) can
be interpreted as the distribution gap between the
teacher and the student due to low-quality pseudo-
targets generated by the student, while E(l) serves
as a lower-bound of distribution gap between the
teacher and the student. Therefore, ExAccErr cal-
culates the relative error caused solely by expo-
sure bias. If exposure bias is alleviated, the student
should exhibit a nearly identical distribution gap
regardless of which model generated the response.
Therefore, the ExAccErr value should approach 0.

We depict the ExAccErr at each generation step
and the variation of ExAccErr up to 50 generation
steps during the model training in Figure 3. In this
experiment, a fixed pre-trained teacher is used as
the teacher, while the student employs models dis-
tilled using each KD method.

When examining the ExAccErr over generation
steps in Figure 3(a), it can be observed that for most
methods, the error due to exposure bias accumu-
lates as the generation length increases, increasing
ExAccErr values. In the case of GKD, the objective
used in training leads the student to minimize R(l).
Consequently, the value becomes negative, indicat-
ing that the distribution gap between the student
and the teacher approaches 0 when using a student-
generated response as a pseudo-target. However,
there still exists a distribution gap for the teacher’s
oracle response, and this means exposure bias also
still exists. Nevertheless, PromptKD maintains Ex-

AccErr values close to 0 at all generation steps,
indicating that error accumulation does not occur.
This demonstrates that PromptKD is the most effec-
tive in alleviating exposure bias compared to other
baselines.

Furthermore, ExAccErr is measured up to 50
generation steps in Figure 3(b) to focus on the early
generations where errors tend to accumulate. To
observe how it changes during the training process,
the total training step of best checkpoint is divided
by 10, and the model is saved at each time step for
ExAccErr measurement. It is apparent that Promp-
tKD, MiniLLM, and GKD, which utilize student’s
responses, exhibit consistently lower ExAccErr val-
ues compared to other baselines from the early
stages of training. Among them, PromptKD demon-
strates the most stable maintenance of ExAccErr
close to 0, signifying that distilling student-friendly
knowledge aids in mitigating exposure bias during
training.

Computational cost To demonstrate the effi-
ciency of PromptKD, we compare its computa-
tional cost with baselines in Table 3. OPT-13B
and OPT-6.7B are used as the teacher and the stu-
dent, with measurements conducted on 4 NVIDIA
A100 80GB (PCIe) GPUs. From a time perspec-
tive, methods that sample the student at each it-
eration to create pseudo-targets take significantly
more time than those that do not. In particular,
MiniLLM requires a significant amount of time,
primarily due to the additional use of the corpus
used for pre-training, along with the complexity
of calculating intricate rewards for optimization
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Case 1
Instruction Tell me whether these are books by black authors: I Know Why the Caged Bird Sings,

Homegoing, Between the World and Me, Becoming, Beloved, The Color Purple.
Ground Truth The books: I Know Why the Caged Bird Sings, Homegoing, Between the World and

Me, Becoming, Beloved, and The Color Purple are all written by black authors.
Teacher All of the books you mentioned are by black authors. I Know Why the Caged Bird
w/o Prompt Sings and Beloved are by Maya Angelou. Homegoing is by Yaa Gyasi. Between the

World and Me is by Ta-Nehisi Coates. Becoming is by Michelle Obama. The Color
Purple is by Alice Walker.

Teacher I Know Why the Caged Bird Sings, Homegoing, Between the World and Me, Be-
w/ Prompt coming, and The Color Purple are all books by black authors.
Student Yes, these are all books by black authors.

Case 2
Instruction Tell me which one does not fit with the group: Football, Volleyball, Cricket, Chess,

Hockey
Ground Truth All except Chess are outdoor games.
Teacher All of these are sports. However, Chess and Hockey are the odd ones out. Chess is a
w/o Prompt board game, and Hockey is a winter sport.
Teacher All except Chess are sports that are played in teams
w/ Prompt
Student All of the given options are sports. The one that does not fit with the group is Chess.

The other options are sports.

Table 2: Qualitative results of generated response from the Dolly validation set with and without using prompts for
the Llama-13B teacher. A teacher with a prompt generates a response more similar to that of the student.

Method
MA CA Time
(GB) (GB) (hour)

SFT 15.70 28.90 15.70
KD 40.13 52.82 20.62
SeqKD 40.13 52.82 20.13
GKD 41.99 56.13 25.37
MiniLLM 68.91 78.54 85.71
PromptKD 43.62 56.57 26.97

Table 3: Comparison of computational costs. Where
MA denotes the maximum allocated memory on the
GPU and CA denotes the maximum cached memory
on the GPU. Time indicates the total training time for
each method. All computational costs are calculated on
4 NVIDIA A100 80 GB (PCIe) GPUs.

with policy gradient, unlike other methods. For
the same reason, MiniLLM demands a substantial
amount of memory. In contrast, PromptKD adds
only a minimal amount of memory by introduc-
ing parameters equivalent to the product of prompt
length and input embedding dimension. PromptKD
demonstrates clear efficiency over MiniLLM and
comparable costs to GKD, while significantly out-
performing both in terms of performance. There-
fore, PromptKD proves competitive in this regard.

Student-friendly knowledge To provide a clear
interpretation of student-friendly knowledge, we
investigate how the prompt modifies the teacher
model. As shown in Table 2, we generate responses
to a validation set that was unseen during train-
ing using both teacher models—with and without
prompt—and the trained student model. The find-
ings reveal that while the original teacher generates
a complex response, the student-friendly teacher,
modified by the prompt, produces a response that is
similar to and easily understood by the student. No-
tably, despite its simplicity, this response remains
accurate.

Furthermore, akin to the training process where
responses are fed into both models via teacher-
forcing, we measure the KL divergence between
the output of the teacher and student model in the
response part. Here, the student models considered
are both at the beginning and end of distillation.
Additionally, we generate responses directly and
evaluate their ROUGE-L score against ground truth.
For the dataset, we use 1000 samples from each,
specifically from the Dolly training set observed
during training and the Dolly validation set unseen
during training. For each model family, we use
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Model Prompt
Training set (seen) Validation set (unseen)

KLD w/ Si KLD w/ Sf ROUGE-L KLD w/ Si KLD w/ Sf ROUGE-L

GPT-2
✗ 1.7426 2.2896 96.510 0.9203 1.0631 29.695
✓ 1.7416 2.2882 74.659 0.9069 1.0261 26.893

OPT
✗ 1.2360 1.6180 89.969 0.7038 0.8302 31.603
✓ 1.2299 1.6089 89.137 0.6988 0.8065 31.933

Llama
✗ 1.3193 1.9413 96.951 0.7279 0.9335 35.116
✓ 1.3186 1.9405 97.095 0.7184 0.9123 35.168

Table 4: Quantitative comparison between the teacher with prompt and without prompt. Measurements are conducted
on both the training set and the validation set. Si and Sf denote the student at the beginning and end of distillation,
respectively. ROUGE-L evaluates how similar the responses are to the ground truth for each dataset. For each model,
the smaller KL divergence values and larger ROUGE-L scores are highlighted in boldface.

GPT-XL (1.5B), OPT-13B, and Llama-13B as the
teacher models, and GPT-Large (760M), OPT-6.7B,
and Llama-7B as the student models.

Examining the KL divergence in Table 4 first, it
is evident that the teacher using prompts achieves
a smaller KL divergence value compared to the
student at the end of distillation, as encouraged by
the given objective. However, this trend is also ob-
served with the validation set. This pattern appears
across all models, indicating that using prompts
makes the teacher operate more like a general lan-
guage model at a similar level to the student. More-
over, the teacher using prompts exhibits prediction
distributions even closer to the initial student, be-
fore distillation has taken place.

When considering ROUGE-L scores, it is ob-
served that as the model size increases, the teacher
using prompts generates responses more similar to
the ground truth. This suggests that with smaller
models, the teacher is adversely affected by the
low level of the student when training prompts to
distill student-friendly knowledge. Nevertheless,
the results from the Llama model indicate that the
teacher becoming similar to the student’s predic-
tive distribution does not imply a decline in its
instruction-following performance.

Therefore, the student-friendly knowledge dis-
tilled in PromptKD refers to knowledge transferred
by a student-friendly teacher, who maintains a sim-
ilar output distribution to the student for easier un-
derstanding while preserving the original genera-
tive performance. This aligns with the concept of
adaptive teaching that served as the inspiration.

Ablation study Due to the page limit, we detail
an ablation study on parameter-efficient fine-tuning
methods, regularization loss, prompt settings, and
KL divergence in Appendix D.

5 Conclusions

In this work, we have pioneered the exploration
of extracting and distilling student-friendly knowl-
edge for generative language models. To achieve
this, we have proposed a novel method called
PromptKD, which leverages prompt tuning in
knowledge distillation for the first time. Owing
to the memory-efficient nature of prompts and the
advantage of replacing full-parameter fine-tuning,
particularly beneficial for larger models like LLMs,
PromptKD has proven to be an efficient approach.
Through extensive experiments, PromptKD has
achieved state-of-the-art performance, confirming
the effectiveness of student-friendly knowledge in
generation tasks. Specifically, it has been revealed
that this student-friendly knowledge is extracted
from a modified teacher, which outputs a distribu-
tion similar to that of the student while maintaining
the generation performance. Moreover, through ex-
posure bias analysis, we have demonstrated that
PromptKD successfully alleviates exposure bias
throughout the training process.

Limitations

While PromptKD has achieved state-of-the-art per-
formance by distilling student-friendly knowledge,
it still has limitations in terms of its naive extraction
approach. Considering that knowledge distillation
(KD) research for classification tasks employs vari-
ous methods to distill student-friendly knowledge,
it is expected that there are alternative approaches
to effectively transfer student-friendly knowledge
in a generative language model. Furthermore, al-
though PromptKD is designed for instruction-
following settings based on task-specific KD, there
is a need for expansion towards task-agnostic KD
to make it usable during the pre-training process.
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Ethics Statement

PromptKD utilizes pre-trained models, exposing
it to risks similar to those highlighted by Wei-
dinger et al. (2021); Bommasani et al. (2021), re-
garding the vulnerability of pre-trained language
models to ethical and social risks. Additionally,
Hooker et al. (2020) mentions that the process of
model compression can introduce biases. However,
since most model compression studies leverage pre-
trained models, these issues are general risks and
not specific to PromptKD. Nevertheless, these risks
should be addressed in the future through advanced
pre-training objectives and dataset collection meth-
ods (Lee et al., 2023).
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A Training Details

In our study, we employ the AdamW (Loshchilov
and Hutter, 2019) optimizer for training, with
batch sizes of 32 for GPT-2 Base and 8 for GPT-2
Medium and Large. The learning rates of prompt
and student are set at 5e-5 for Base, 1e-5 for
Medium, and 5e-6 for Large. In both the Llama
and OPT model families, we set the batch size to
64 and the learning rates of prompt and student to
5e-6. For the generation, we sample with top-k and
top-p parameters at 0 and 1.0, respectively, and use
a fixed temperature of 1.0. Training and generation
phases both have a maximum sequence length of

Prompt Format
Below is an instruction that describes a task.
Write a response that appropriately completes
the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:

Table 5: Prompt format used for training and evaluation.

Method Dolly SelfInst Vicuna
GKD 68.83 63.87 66.68
MiniLLM 71.39 66.96 67.78
PromptKD 72.12 67.22 68.01

Table 6: Evaluation results with GPT-4 feedback scores.

512 and a maximum prompt length of 256. Please
note that we pre-process each instruction-following
dataset by converting the instruction-response pairs
into a standardized sentence structure, as shown in
Table 5. For the reproducibility of our PromptKD,
we will make both the code and the checkpoints
public.

B Qualitative Results

For the qualitative results, we present samples gen-
erated by student models trained using various
methods. The samples are drawn from the S-NI
dataset and utilize GPT-2 XL as the teacher model,
with GPT-2 Large employed as the student model.
Results are shown in Table 7. Additionally, the gen-
eration results obtained using the Llama model are
summarized in Table 8.

C GPT-4 Feedback Score

We follow the approach described in Appendix D.1
of MiniLLM (Gu et al., 2024) to measure the GPT-
4 feedback score. We utilize the GPT-4 model with
a temperature of 0.7. To evaluate model output com-
pared to ground truth response, we employ a fixed
form of prompt consisting of instruction, input, as-
sistant 1, and assistant 2. The instruction of task
and input are entered first, followed by the model
output in assistant 1 and the ground truth response
in assistant 2, as shown in Table 10. Through this
prompt, scores for the model output and ground
truth response, which are separated by spaces and
range from 1 to 10, are obtained. The sum of the
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Case 1
Instruction Convert a disfluent question to a proper question. A disfluent question is a question

that has some interruptions in it while framing. A proper question is the correct form
of the question without any disfluency.

Input What do no I meant Who do some tax agents want to make an impression on during
an arrest?

Ground Truth Who do some tax agents want to make an impression on during an arrest?
SFT Some tax agents want to make an impression on during an arrest.
KD The tax agents want to make an impression on during an arrest.
SeqKD No I meant to ask who are some tax agents that want to make an impression on an

arrest.
GKD No I mean that there are no tax agents who want to make an impression on the arrest.
MiniLLM A disfluent question is one that has some interruptions while framing. A proper

questions is the correct form of a question without any disfluidity.
PromptKD Who do some tax agents want make an impression on during a arrest?

Case 2
Instruction Given an entity, a before event, an after event, and an attribute related to the entity,

generate a sentence as output. Your sentence should show the changes in the attribute
of the entity.

Input entity: rope, before: separate from ball, after: through slot in ball, attr: location
Ground Truth The location of the rope was separate from the ball before and through a slot in the

ball afterwards.
SFT Rope was previously connected to a ball through a slot in the ball. When the rope is

pulled through the ball, it changes location and is no longer connected to the ball.
KD Rope is a string. before: ball, after: rope stroke
SeqKD Rope is made of rope.
GKD before: separate from Ball, after: through slot In Ball, attr: location
MiniLLM through slot in ball
PromptKD Rope was separate from Ball until through slot in Ball.

Table 7: Sample response from the S-NI dataset. PromptKD follows the instructions most accurately.

model output scores is divided by the sum of the
ground truth scores to calculate the GPT-4 feed-
back score for each method. Similar to the main
result in Table 1, scores are calculated for seeds
10, 20, 30, 40, and 50, then the average is taken.
Following this approach, we measure the GPT-4
feedback scores for MiniLLM (Gu et al., 2024),
GKD (Agarwal et al., 2024), and PromptKD, which
demonstrated strong performance in Table 1. Here,
we omit KD (Sanh et al., 2019) and SeqKD (Kim
and Rush, 2016) from the measurement since they
did not compete well against other baselines.

The evaluation results when using GPT-2 XL
(1.5B) as the teacher and GPT-2 Large (760M)
as the student are summarized in Table 6. Con-
sistent with the trends observed in Table 1, Promp-
tKD exhibits the best performance, followed by
MiniLLM and then GKD. Particularly notewor-

thy is that PromptKD outperforms others on all
datasets, further demonstrating the effectiveness of
student-friendly knowledge.

D Ablation Study

Parameter-efficient fine-tuning methods To ex-
plore the effect of prompt tuning, we replace
prompt tuning with LoRA (Hu et al., 2022), one
of the most widely used parameter-efficient fine-
tuning methods, to tune the teacher model GPT-2
XL. Since LoRA can start training from the same
state as the base model, the regularization loss de-
signed for initial stability in prompt tuning is not
used here. We use the GPT-2 base model as a stu-
dent. Table 9 summarizes the average instruction-
following performance along with the number of
trainable parameters and the training time.

From the cost perspective, using LoRA requires
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Case 1
Instruction You are given two passages. For each word in the first passage, you need to find its

synonym from the second passage such that both words have the same meaning and
belong to the same part of speech. The input consists of two paragraphs with a list of
words following each paragraph. The output is a list of synonyms (one for each word
in the first paragraph) such that they have similar meaning as corresponding words
in the first paragraph and belong to same parts of speech. Note: Some sentences may
not contain a particular type of word

Input Paragraph 1: They water their crops with canal water. Paragraph 2: They irrigate
their plants with pipeline fluid.

Ground Truth Canal water and pipeline fluid are both synonyms for irrigation.
MiniLLM Paragraph 2 synonyms for Paragraph 1: They irrigate Their plants with pipeline fluid.
PromptKD Canal water, pipeline fluid

Case 2
Instruction You are given a list of numerical values. Find the value that is halfway between the

maximum and minimum values in the list, and output that value.
Input List = [1, 3, 4, 6, 8].
Ground Truth The value halfway between the maximum and minimum values in the list is 4.
MiniLLM The value that is halfwaybetween the maximum and minimum values is 4. This is

because 4 is the average of the list, which is 1 + 3 + 4 + 6 + 8 / 5 = 4.
PromptKD The median value is 4.

Table 8: Sample response from the UnNI dataset. The Llama model is used here. Similar to the results with GPT-2,
PromptKD generates appropriate responses following the instructions better than MiniLLM.

Method
ROUGE-L #Params

Time
(rank/alpha) (hour)
Prompt tuning 22.25 11.2K 9.78
RoLA (4/32) 21.84 1.229M 9.97
RoLA (8/16) 21.66 2.458M 10.13

Table 9: Comparison results according to the parameter-
efficient fine-tuning method used for modifying the
teacher.

training approximately 100 to 200 times more pa-
rameters compared to prompt tuning, depending
on the rank. This increase becomes more signif-
icant as the model size grows. This is because,
in prompt tuning, the parameters are proportional
to the prompt length and embedding dimension,
whereas, in LoRA, they are proportional not only
to the rank but also to the embedding dimension
and the number of weight matrices. Additionally,
training time is slightly longer when using LoRA,
likely due to the increased number of trainable pa-
rameters. It is noteworthy that despite not using reg-
ularization loss, training with LoRA takes longer
than with prompt tuning. Therefore, in terms of
efficiency, prompt tuning is a better choice than
LoRA.

In terms of performance, both prompt tuning and
LoRA perform similarly, with prompt tuning hav-
ing a slight edge on average. This demonstrates
that it is possible to extract student-friendly knowl-
edge with a relatively small number of trainable
parameters. Furthermore, given the existing ob-
servation (Lester et al., 2021) that prompt tuning
becomes more effective with larger models, we
can expect prompt tuning to be more suitable than
LoRA for LLMs. Thus, using prompt tuning in-
stead of LoRA is both an efficient and effective
choice.

Regularization loss To confirm the effectiveness
of the introduced regularization loss in alleviat-
ing instability when the prompt is prepended, we
conduct experiments by excluding this objective.
The average performance across the 5 datasets is
reported in Table 11. Although there is a slight
performance drop when using regularization loss
with GPT-2 Medium, we observe a more significant
performance increase with the other two models.
This suggests the necessity of regularization loss
for improving performance.

Prompt settings Although the regularization
loss effectively mitigates the initial instability, the
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Prompt Format
### Instruction:
{instruction}
### Input:
{input}
### Assistant 1:
{model output}
### Assistant 2:
{ground truth response}

We would like to request your feedback on
the performance of two AI assistants in re-
sponse to the user instruction and input dis-
played above.
Please rate the helpfulness, relevance, accu-
racy, and level of detail of their responses.
Each assistant receives an overall score on a
scale of 1 to 10, where a higher score indicates
better overall performance.
Please first output a single line containing only
two values indicating the scores for Assistant
1 and 2, respectively. The two scores are sepa-
rated by a space.
In the subsequent line, please provide a com-
prehensive explanation of your evaluation,
avoiding any potential bias and ensuring that
the order in which the responses were pre-
sented does not affect your judgment.

Table 10: Prompt format used for measuring GPT-4
feedback scores.

#Params w/o Lreg w/ Lreg

120M 21.97 22.25
340M 24.13 23.92
760M 24.47 25.08

Table 11: Ablation on regularization loss. We assess the
average instruction-following performance of student
models without and with regularization loss to verify
the effectiveness of regularization.

prompt’s length and initialization also significantly
influence the prompt tuning process (Hou et al.,
2022). Therefore, the average instruction-following
performance is measured by varying the prompt
length m from 5, 7, 10 and the initialization method
from random, padding, text. GPT-2 Large (760M)
and GPT-2 XL (1.5B) are utilized for this ablation
study. Results are summarized in Figure 4. In the
padding method, all prompt tokens are initialized
with the embedding of the "[PAD]" token, while in
the text method, the sentence "Suppose you are a
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Figure 4: Ablation on prompt settings. To validate the
impact of prompt initialization method and length, we
evaluate the average ROUGE-L score over varying these
settings.

student." is tokenized, and these embeddings are
used for initializing prompt tokens from the begin-
ning. In this case, if the number of prompt tokens
is smaller, the sentence is truncated, while if it is
larger, all embeddings of the sentence are assigned,
and then the embeddings are assigned again from
the beginning for the next prompt token.

Firstly, considering the emphasis on the impor-
tance of prompt initialization in previous works,
it is found that training does not proceed properly
with random initialization. Moreover, generally, the
text initialization method shows better performance
than the padding method. Regarding length, when
initialized with text, better performance is observed
with a length of 7, while with padding initialization,
shorter lengths exhibit better performance. This is
presumably because, in text initialization, the sen-
tence is fully encoded since it is tokenized into
7 tokens, while in padding initialization, longer
lengths exert a greater influence on the instabil-
ity of teacher model distribution when prepended.
Therefore, all experiments in this paper are per-
formed with a prompt length of 7, initialized using
text initialization.

KL divergences To assess the impact of distribu-
tion discrepancy metrics, we conduct an ablation
study on this with the same model setting. During
prompt tuning, PromptKD minimizes the reverse
KL divergence between the teacher distribution
and the student distribution (Lkd) or between the
teacher distribution and the teacher distribution ex-
cluding the prompt (Lreg). In this context, forward
KL divergence can also be considered instead of re-
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Lkd & Lreg ROUGE-L
Reverse KL & Reverse KL 22.25
Reverse KL & Forward KL 21.91
Forward KL & Reverse KL 22.20
Forward KL & Forward KL 22.13

Table 12: Ablation on distribution discrepancy metric.
Since each loss can compute distribution discrepancy
with either forward or reverse, we report the average
instruction-following performance for each pair.

verse KL divergence. As shown in Table 12, exper-
imental results indicate that using reverse KL diver-
gence yields the best performance. However, there
is barely any significant difference. We conjecture
that since the model distribution being trained is
derived from the teacher, resulting in similar or
even more modes in distribution, which prevent
undesirable behaviors such as mode-covering even
during forward KL divergence minimization.
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