
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6223–6235
November 12-16, 2024 ©2024 Association for Computational Linguistics

AdaMOE: Token-Adaptive Routing with Null Experts for
Mixture-of-Experts Language Models

Zihao Zeng1*, Yibo Miao1*, Hongcheng Gao2, Hao Zhang3, Zhijie Deng1†

1Qing Yuan Research Institute, SEIEE, Shanghai Jiao Tong University
2University of Chinese Academy of Sciences 3University of California, San Diego

{zengzihao, miaoyibo, zhijied}@sjtu.edu.cn
gaohongcheng23@mails.ucas.ac.cn, haozhang@ucsd.edu

Abstract
Mixture of experts (MoE) has become the stan-
dard for constructing production-level large lan-
guage models (LLMs) due to its promise to
boost model capacity without causing signif-
icant overheads. Nevertheless, existing MoE
methods usually enforce a constant top-k rout-
ing for all tokens, which is arguably restric-
tive because various tokens (e.g., “<EOS>” vs.
“apple”) may require various numbers of ex-
perts for feature abstraction. Lifting such a
constraint can help make the most of limited re-
sources and unleash the potential of the model
for downstream tasks. In this sense, we intro-
duce AdaMOE to realize token-adaptive rout-
ing for MoE, where different tokens are per-
mitted to select a various number of experts.
AdaMOE makes minimal modifications to the
vanilla MoE with top-k routing—it simply in-
troduces a fixed number of null experts, which
do not consume any FLOPs, to the expert set
and increases the value of k. AdaMOE does not
force each token to occupy a fixed number of
null experts but ensures the average usage of
the null experts with a load-balancing loss, lead-
ing to an adaptive number of null/true experts
used by each token. AdaMOE exhibits a strong
resemblance to MoEs with expert choice rout-
ing while allowing for trivial auto-regressive
modeling. AdaMOE is easy to implement and
can be effectively applied to pre-trained (MoE-
)LLMs. Extensive studies show that AdaMOE
can reduce average expert load (FLOPs) while
achieving superior performance. For example,
on the ARC-C dataset, applying our method
to fine-tuning Mixtral-8x7B can reduce FLOPs
by 14.5% while increasing accuracy by 1.69%.
Code is available at this link.

1 Introduction

Large language models (LLMs) have exhibited ex-
ceptional performance across diverse tasks and do-

*Equal contribution.
†Corresponding authors.

mains (Touvron et al., 2023; Chiang et al., 2023;
Chowdhery et al., 2023; Zhang et al., 2022). Nev-
ertheless, LLMs’ efficacy is heavily impacted by
the substantial number of parameters they possess,
with some high-performing LLMs containing up
to 540B parameters (Chowdhery et al., 2023). The
mixture of experts (MoE) mechanism (Shazeer
et al., 2017) offers a compelling way to enhance
model capability without a corresponding increase
in computational overhead. Recent research further
underscores the merits of MoE, vividly demon-
strating its potential to support production-level
applications (Jiang et al., 2024; Qwen, 2024).

MoE operates on the core assumption that a
(small) subset of experts is sufficient to handle a
single token effectively. MoE-LLMs, with Mix-
tral (Jiang et al., 2024) and DeepSeekMoE (Dai
et al., 2024) as popular examples, often replace the
feed-forward network (FFN) in the model with a set
of FFN experts. A token-level router is introduced
to sparsely activate the experts for various tokens,
so the computational cost is constrained to a low
level. We can also build experts with parameter-
efficient fine-tuning (PEFT) modules (Hu et al.,
2021; Liu et al., 2022) like LoRA, giving rise to
Mo-LoRA approaches (Zadouri et al., 2023).

MoE routinely routes each token to a fixed
amount of experts, typically the k ones with top
routing probabilities. However, not all tokens re-
quire the same number of experts for feature ab-
straction. Intuitively, the semantic tokens deserve a
higher concentration of experts, while others with
less significant meaning can be processed more
swiftly. Lifting the top-k routing constraint can
help make the most of limited resources and un-
leash the potential of the model. To achieve this,
MoE with expert choice routing (Zhou et al., 2022)
performs expert-level routing, where each expert
chooses a fixed number of tokens for processing
and different tokens could be processed by different
numbers of experts. Yet, an unacceptable drawback

6223

https://github.com/CengZihao/AdaMoE

<s>
_Tr
acy

_didn
'
t

_go
_home
_that

_evening
_and
_res

isted

_R
iley

'
s

_attacks
.

\n
Question

:
_What
_does

_Tr
acy

_need
_to
_do

_before
_this

?
\n
A

.
_make

_a
_new

_plan

\n
B
.

_Go
_home
_and
_see

_R
iley

\n
C
.

_Find

Layer Index 0 7 16 27 31 0 7 16 27 31 0 7 16 27 31 0 7 16 27 31 0 7 16 27 31

A sample from SIQA dataset -Mixtral-8x7BdaMOE

<s> Tracy didn't go home that evening and resisted Riley's attacks.\nQuestion: What does Tracy need to do before this?\n
A. make a new plan\nB. Go home and see Riley\nC. Find somewhere to go\nAnswer:

_somewhere
_to
_go
\n
An

swer
:

Number of
selected experts

0 1
2 3

Figure 1: The number of selected experts for various tokens in an AdaMOE variant of Mixtral-8x7b. As shown,
after applying AdaMOE, the model possesses the ability to perform token-adaptive routing. Also note that some
tokens only require 1 expert for feature abstraction, which offers the opportunity for inference acceleration.

is that it is not suited to casual language modeling
due to the reliance on future tokens for the top-k
token selection (Zhou et al., 2022).

This work introduces AdaMOE, a novel method
designed to achieve token-level adaptive routing
in MoE, allowing different tokens to select vary-
ing numbers of experts. An illustrative example
is presented in Figure 1. AdaMOE requires mini-
mal changes to the vanilla MoE with top-k routing
by incorporating a fixed number of null experts
into the expert set. These null experts do not con-
sume any computational resources. By increasing
the value of k, more experts can be activated. To
encourage the average usage rate of the null ex-
perts, AdaMOE minimizes a load balancing loss.
This leads to an adaptive number of null experts
and true experts being employed by each token.
Notably, AdaMOE shares similarities with existing
MoE with expert choice routing while also enabling
straightforward causal language modeling.

AdaMOE is easy to implement and can be ap-
plied to both pre-trained regular LLMs and MoE-
LLMs for supervised fine-tuning. For the for-
mer, we experiment on Llama2-7B (Touvron et al.,
2023) by introducing LoRA experts and corre-
sponding routers to the model. For the latter, we
experiment on Mixtral-8x7B (Jiang et al., 2024) by
augmenting the original router with extra weights
for the null experts. The results underscore the
effectiveness of AdaMOE’s token-adaptive mech-
anism in enhancing both computational efficiency
and model performance. For example, when fine-
tuning Llama2-7B, AdaMOE achieves much higher
accuracy across almost all evaluated datasets.
Moreover, when fine-tuning Mixtral-8x7B with

AdaMOE on ARC-Challenge (Clark et al., 2018),
we observed a 14.5% reduction in total FLOPs,
accompanied by a 1.69% increase in accuracy.

2 Related Works

2.1 Mixture of Experts

Mixture of Experts (MoE) (Jacobs et al., 1991;
Shazeer et al., 2017) is an efficient scaling tech-
nique that allows for larger model sizes with less
computation, resulting in enhanced performance.
MoE models can be trained and used for inference
more efficiently compared to dense models, requir-
ing substantially fewer computational resources.
Due to these advantages, pioneering works (Jiang
et al., 2024; Dai et al., 2024) have applied MoE
to transformer-based language models and demon-
strated their superiority. Typically, they replace the
feed-forward network (FFN) in each layer of the
model with a routing function and multiple FFNs,
referred to as experts, with only a subset of these ex-
perts being activated at any time. We refer to these
models, which combine MoE and large language
models (LLMs), as MoE-LLMs.

In addition to MoE-LLMs, fine-tuning tech-
niques have also seen significant advancements.
Pre-trained LLMs are often fine-tuned for down-
stream tasks. However, as models increase in size,
full fine-tuning becomes increasingly computation-
ally expensive (Brown et al., 2020; Chang et al.,
2024). LoRA (Hu et al., 2021) addresses this chal-
lenge by providing an effective fine-tuning method-
ology for scenarios with constrained computational
resources. LoRA freezes model weights and injects
trainable rank decomposition matrices, thereby
modifying the behavior of dense linear layers with-

6224

Router

Expert 1 Expert 2 Expert 3 Expert 4

Token 1

Router

Token 2

Top-2 Router in Vanilla MoE

Token 1

Router

Expert 1 Expert 2 Expert 3 Expert 4

M Eda o

Token 2

Router

Token-Adaptive Router in

Null
Experts 5

Figure 2: Comparison of Routing Mechanisms: vanilla MoE v.s. AdaMOE. Left: In vanilla MoE, each token selects
the top 2 experts based on the routing probabilities. Right: AdaMOE introduces an additional set of null experts and
makes each token select the top 4 experts, which can include both the true and null experts. For example, token 1
selects three true experts, while token 2 selects only one true expert. Despite this variation, the average number of
true experts selected per token remains two, maintaining parity with the vanilla method.

out substantially changing the original model pa-
rameters (Lester et al., 2021; An et al., 2022). Re-
cent studies (Zadouri et al., 2023; Liu et al., 2023;
Dou et al., 2023) convincingly show that integrat-
ing LoRA with MoE offers a promising approach
for achieving high performance with minimal pa-
rameter updates. Methods like MixLoRA (Li
et al., 2024), MoLE (Wu et al., 2023), and Lo-
RAMoE (Dou et al., 2023) combine MoE with
LoRA by learning multiple pairs of low-rank ma-
trices, known as LoRA experts, and use a router
to compute the probabilities of each expert for the
inputs. MoLA (Gao et al., 2024) explores the re-
lationship between the number of LoRA experts
and the depth of model layers. For consistency
and convenience, we will refer to these methods
collectively as Mo-LoRA in the following text.

2.2 Routing Strategies

The early MoE architecture utilized gate units as
the router to select experts for each token (Shazeer
et al., 2017; Lepikhin et al., 2020). Following the
success of the Switch Transformer (Fedus et al.,
2022) in large-scale pre-training, MoE received in-
creased attention, leading to the development of
more advanced routing algorithms. For example,
BASE Layers (Lewis et al., 2021) use a linear as-
signment problem to maximize token-expert affini-
ties while ensuring each expert receives an equal
number of tokens. Hash layers (Roller et al., 2021)
employ hashing techniques on input tokens to allo-
cate different sets of weights. A different approach,
Expert-Choice Routing (Zhou et al., 2022), allows
experts to select their preferred tokens, achiev-

ing a more balanced expert load and better cost-
effectiveness. Furthermore, DeepMind’s Mixture-
of-Depths (MoD) (Raposo et al., 2024) introduces
a router to determine the necessity of computation
for each input token at each layer.

3 Method

In this section, we introduce AdaMOE, which incor-
porates null experts to allow for more flexible and
efficient expert selection for various tokens. An
illustrative comparison between vanilla MoE and
AdaMOE is presented in Figure 2.

3.1 Preliminary on MoE
MoE has been widely applied in two scenarios for
large language models: MoE-LLMs (Jiang et al.,
2024; Dai et al., 2024) and Mo-LoRA (Dou et al.,
2023; Gao et al., 2024; Li et al., 2024) , as briefly
introduced in Section 2. The core component of
both is the MoE layer, which consists of n special-
ized experts Ei : Rdin → Rdout , i = 1, . . . , n and
a router G : Rdin → Rn. The experts often have
the same parameterization, such as feed-forward
neural networks (FFNs) in MoE-LLMs or LoRA
modules in Mo-LoRA. The router usually activates
the k (k < n) experts with the highest routing
probabilities (i.e., the top-k experts) and distributes
input tokens to corresponding experts.

Given an input token x ∈ Rdin , the routing pro-
cess works as:

G(x) ∈ Rn := Softmax
(
TopK(x ·Wg, k)

)
, (1)

where Wg ∈ Rdin×n is the parameter matrix of the
router, and TopK(·, k) retains only the top-k ele-

6225

ments, setting the rest to −∞ (so that after Softmax,
the corresponding routing probabilities are zero).
The output of the MoE layer is then computed as:

y ∈ Rdout :=
n∑

i=1

G(x)i · Ei(x) . (2)

Additionally, an auxiliary loss is applied during
the training stage to encourage a balanced load
across experts within the same MoE layer (Fedus
et al., 2022). Given a batch B of tokens, this load
balancing loss for a MoE layer is defined as:

ℓload := α · n ·
n∑

i=1

fi · Pi , (3)

where α is a hyperparameter, and fi represents the
fraction of tokens dispatched to expert Ei,

fi =
1

|B|
∑

x∈B
1{G(x)i ̸= 0} , (4)

and Pi denotes the average fraction of the router
probability allocated for expert Ei, i.e.,

Pi =
1

|B|
∑

x∈B
Softmax

(
x ·Wg

)
i
. (5)

3.2 Drawback of Top-k Router
Almost all traditional MoE methods adopt a top-k
routing strategy for expert selection (Fedus et al.,
2022; Lepikhin et al., 2020; Jiang et al., 2024).
Therefore, each token passes through exactly k
experts and occupies the same amount of computa-
tion. We first question the rationality of the fixed
top-k routing with the following studies.

Concretely, the SocialIQA dataset (Sap et al.,
2019) is fed into Mixtral-8x7B (Jiang et al., 2024),
which employs a top-2 routing strategy for expert
selection. We record the routing distribution for all
tokens in each MoE layer of the model. To evaluate
the sharpness of the routing distribution, we count
the number of top experts whose cumulative rout-
ing probabilities exceed 50% and according to this,
all tokens can be divided into four categories. The
proportions of the tokens are displayed in Figure 3.

As shown, the proportions of tokens within dif-
ferent counts show substantial variation. Namely,
the sharpness of the routing distribution varies sig-
nificantly. A considerable number of tokens have
highly uneven routing distributions. Some tokens
tend towards a single expert, while a significant pro-
portion of tokens distribute attention to more than

0 5 10 15 20 25 30
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Top Experts (50% Routing Probability)
1 2 3 4

Figure 3: Proportions of the number of top experts with
cumulative routing probabilities exceeding 50% for to-
kens in the SocialIQA dataset. Each bar represents the
proportion of different counts of tokens at the corre-
sponding MoE layer in Mixtral-8x7B.

2 experts. These observations imply that the tra-
ditional fixed top-k routing strategy, which selects
the same number of experts for each token, may not
be optimal. This is also implied by the argument in
MoD (Raposo et al., 2024) that some tokens may
not need to pass through all MoE layers.

3.3 Null Experts for Token-Adaptive Router

AdaMOE achieves token-adaptive expert selection
by incorporating null experts, which are defined as
an empty operation requiring zero FLOPs to pro-
cess the token feature. In the context of LLMs,
common operations satisfying this requirement in-
clude a constant zero mapping and an identity map-
ping (we take the zero mappings null expert as
the default choice in the following just for sim-
plicity). Consequently, an AdaMOE layer includes
n + m experts, where {Ei}ni=1 are true experts
and {Ei}n+m

i=n+1 are null experts, and a top-k router
G : Rd → Rn+m, which functions the same as the
vanilla MoE router except for its output dimension.

Token-level adaptive routing. The router still
performs fixed top-k selection but with k larger
than in vanilla MoE. When null experts are chosen,
no additional computation occurs due to their def-
inition. Consequently, the number of true experts
selected varies for different tokens.

Prespecified expert load. We can adjust the
number of null experts according to the compute

6226

Transformer-based
language model

Multi-head attn

Mixture of LoRAs with null experts

Weights
of the

pretrained
model

Top-4 router

E1 E2 E3 E4
❄

8 true
experts

Input

Output

Top-2 router

🔥
8 true

experts

Output

Top-3 router

8 null
experts

Input

0
5 null
expertsMLP

🔥

Figure 4: Left: Adding null experts to Mo-LoRA. Right: Adding null experts to the MoE layer of MoE-LLMs.

budget, and then reinforce the usage of null experts
with a load balancing loss (see Section 3.4). This
way, the load of true experts (or the overall FLOPs)
can be easily adjusted to an appropriate degree.

Autoregressive task suitability. Expert-choice
routing (Zhou et al., 2022) also allows varying num-
bers of experts for different tokens but struggles
with autoregressive text generation since it requires
considering both past and future tokens. In contrast,
our token-choice method avoids this issue.

Bypassing MoE layers. MoD (Raposo et al.,
2024) uses expert-choice routing to let tokens by-
pass some FFN layers, speeding up inference. Simi-
larly, in AdaMOE, if all selected experts for a token
are null experts, the token effectively bypasses the
AdaMOE layer, achieving a similar effect.

3.4 More Details
Load balancing loss with null experts. Including
null experts in the load balancing loss is necessary
to prevent tokens from disproportionately selecting
true experts. However, since all null experts are
identical in nature, it is unnecessary to balance the
load among them. Treating null experts as distinct
entities for load balancing can significantly hinder
performance, as shown in Table 3.

To address this, we modify the load balancing
loss in Equation (3) as

ℓnull = α · (n+m) ·
n+m∑

i=1

f̃i · Pi , (6)

where

f̃i =





fi if i ≤ n

1
m

n+m∑
j=n+1

fj if i > n
.

By using an average load among the null experts,
we make no distinction between them, which can
avoid unnecessary constraints on the router.

Load balancing constraints: from tight to
loose. In practice, we anneal the weight α of
our load balancing loss to chase a better balance-
efficiency trade-off. In particular, we first set a
larger α to enforce strict load balancing, ensuring
tokens do not disproportionately select true experts,
leading to a more even load distribution among all
experts. In the latter, we use a smaller α to give
tokens greater freedom in choosing experts. The
empirical efficacy of doing so is verified in Table 5.

Normalization of routing probabilities. In
vanilla MoE, TopK(x ·Wg, k) is normalized using
the Softmax activation function. With null experts,
we have two options: 1) normalizing over all se-
lected top-k experts, or 2) normalizing over only
the true experts within the top-k ones. We choose
the latter to ensure that the weighted average output
by the AdaMOE layer remains consistent with the
scale of that from the vanilla MoE layer.

3.5 Compatibility with Vanilla (MoE-)LLMs

AdaMOE is designed to be plug-and-play, able to
be seamlessly integrated with pre-trained LLMs
and MoE-LLMs, as illustrated in Figure 4. Due
to resource constraints, we mainly focus on fine-
tuning such models. For fine-tuning regular LLMs
with the Mo-LoRA architecture, we need to add a
randomly initialized router and multiple LoRA ex-
perts to the corresponding module. When applying
AdaMOE to MoE-LLMs, the router’s output dimen-
sions are expanded to provide corresponding prob-
abilities for null experts. The parameters for the
new dimensions can be derived from the original
parameter values. This ensures the expanded router
balances the load across all experts, including both
true and null experts, at the beginning of the fine-
tuning process. For more specific implementation
details, see Section 4.2.1. To fine-tune AdaMOE,
we need to adjust the router and experts to meet
our token-adaptive routing strategy and follow the

6227

1.7
8

1.4
7

1.2
2

0.4
4

1.0
0

2.0
0

Load

64.00

65.00

66.00

67.00

68.00

A
cc

. m5k4

m7k4

m9k4

m5k2

RTE

AdaMoE
Baseline

1.7
7

1.4
5

1.2
3

0.4
4

1.0
0

2.0
0

Load

84.60

84.80

85.00

85.20

85.40

85.60

85.80

m5k4

m7k4

m9k4

m5k2

COLA

1.8
0

1.4
7

1.2
2

0.4
4

1.0
0

2.0
0

Load

58.00

60.00

62.00

64.00

66.00

68.00

m5k4

m7k4

m9k4

m5k2

SQA

1.7
7

1.4
4

1.2
2

0.4
4

1.0
0

2.0
0

Load

76.20
76.40
76.60
76.80
77.00
77.20
77.40
77.60

m5k4

m7k4

m9k4
m5k2

CQA

1.7
8

1.4
7

1.2
2

0.4
4

1.0
0

2.0
0

Load

65.50

66.00

66.50

67.00

67.50

68.00

m5k4
m7k4

m9k4
m5k2

OQA

Figure 5: Performance comparison across five datasets: RTE, COLA, SQA, CQA, and OQA. The baseline is
fine-tuned Llama2-7B using the vanilla Mo-LoRA method with top-1/top-2 routing. Acc. represents accuracy, and
Load represents the average number of experts used per Mo-LoRA module or AdaMOE layer. AdaMOE use different
configurations: m5k2 (5 null experts, top-2 selection), m9k4, m7k4 and m5k4. As shown, AdaMOE achieves higher
accuracy across almost all datasets compared to the baseline. The exact accuracy values can be found in Table 7.

detailed modifications outlined in Section 3.4 to
achieve adaptive routing.

4 Experiments

In this section, we demonstrate the superior per-
formance of AdaMOE across various benchmarks,
particularly in reducing expert load and enhanc-
ing task performance through its token-adaptive
routing strategy. We first apply our method to reg-
ular LLMs with the Mo-LoRA architecture (Sec-
tion 4.1). Then apply it to traditional MoE-LLMs
(Section 4.2). Additionally, We also include exten-
sive ablation studies to provide further insights into
our approach’s effectiveness.

4.1 Application to Regular LLMs

4.1.1 Experiments Setup
Model and datasets. We select Llama2-7B (Tou-
vron et al., 2023) as our base model due to its
strong performance and popularity within the AI
community. To validate the effectiveness of our
method, we evaluate it on two distinct task types
using five widely recognized datasets. The first task
focuses on semantic understanding, for which we
use two datasets from the renowned GLUE Bench-
mark (Wang et al., 2018): Recognizing Textual
Entailment (RTE) and the Corpus of Linguistic
Acceptability (COLA). The second task involves
commonsense reasoning and includes the follow-
ing datasets: ScienceQA (SQA) (Lu et al., 2022),
CommonsenseQA (CQA) (Talmor et al., 2018),
and OpenBookQA (OQA) (Mihaylov et al., 2018).

Baseline and implementation details. To high-

light our method’s significance, we use the typical
Mo-LoRA method as the baseline for comparison.
For each MoE/AdaMOE layer, we set n = 4 (4
true experts). For the baseline, we set k = 1, 2 for
the top-k routing strategy, which are the most com-
mon choices. For our AdaMOE, we selected vari-
ous configurations for k (the number of top-k ex-
perts) and m (the number of null experts). We use
AdamW (Loshchilov and Hutter, 2017) as the opti-
mizer with a learning rate of 3e-4. The rank of each
LoRA expert is set to 8, and the initialization of the
LoRA modules follows the original LoRA imple-
mentation (Hu et al., 2021). For each LLM layer,
we applied LoRA to (Wq,Wk,Wv,Wo) in the self-
attention modules and (Wgate,Wdown,Wup) in the
MLP modules. We trained on each dataset for 2
epochs, using 3 random seeds, and averaged the
results to obtain the final performance metrics.

4.1.2 Experiments Results

The results are shown in Figure 5. We use accuracy
as the main metric to evaluate the model’s perfor-
mance 1. It is evident that AdaMOE achieves higher
accuracy across almost all datasets compared to
the traditional baseline. For instance, on the RTE
and OQA datasets, all configurations of AdaMOE
surpass the baseline in accuracy. This trend con-
tinues across the other datasets, demonstrating the
robustness and effectiveness of AdaMOE in achiev-
ing better performance with more adaptive expert
utilization.

1LoRA expert load has minimal impact on total FLOPs;
therefore, it is not considered a primary evaluation metric.

6228

Metric WINO HELLA PIQA SIQA OQA ARC-C Avg.

Original Mixtral-8x7B Acc. 55.96 53.62 68.06 64.59 65.40 83.73 65.23
Fine-tuned Mixtral-8x7B Acc. 80.43 84.10 90.48 76.36 89.00 87.46 84.64

AdaMOE
Acc. 81.93 85.50 90.32 76.97 88.20 89.15 85.35

%FLOPs↓ 14.99 14.10 18.07 16.31 13.22 14.55 15.21
Load 1.66 1.68 1.59 1.63 1.70 1.67 1.66

Table 1: Comparison of performance and computational efficiency across six datasets: WINO, HELLA, PIQA,
SIQA, OQA and ARC-C. Metrics include Acc. (accuracy), %FLOPs↓ (percentage of FLOPs reduction by AdaMOE
compared to the baselines), and Load (the average number of experts used per MoE/AdaMOE layer). The baselines
are original/fine-tuned Mixtral-8x7B, both using the top-2 routing strategy (Load = 2.00). AdaMOE not only reduces
FLOPs but also achieves better accuracy across most datasets compared to the fine-tuned Mixtral-8x7B with LoRA.

4.2 Application to MoE-LLMs

4.2.1 Experiments Setup
Model and datasets. We use Mixtral-8x7B (Jiang
et al., 2024) as the base model, where each
MoE layer has 8 FFN experts and a top-2 router.
We selected six well-known datasets from differ-
ent categories for our experiments: WinoGrande
(WINO) (Sakaguchi et al., 2021) for coreference
resolution, Hellaswag (HELLA) (Zellers et al.,
2019), PIQA (Bisk et al., 2020), and SIQA (Sap
et al., 2019) for commonsense reasoning, Open-
BookQA (OQA) (Mihaylov et al., 2018) for read-
ing comprehension, and ARC-Challenge (ARC-
C) (Clark et al., 2018) for science examination.

Baseline and implementation details. Due to
the substantial resources required for pre-training,
we focus on fine-tuning. To save memory, we use 4-
bit quantization and the QLoRA method (Dettmers
et al., 2024). The LoRA target modules for the base-
line are gate, w1, w2, and w3. For our AdaMOE,
we modify this architecture as described in Sec-
tion 3.5. Specifically, we add null experts to each
MoE layer, and the router expands its output di-
mension to assign probabilities to all experts. To
simplify the modification, we define an additional
module, gate2, whose parameters can be derived
from gate. 2 Together, gate and gate2 form the
router that assigns weights to all experts. Thus,
the LoRA target modules for our method are gate,
gate2, w1, w2, and w3. The rank of the LoRA
module is set to 8, and the learning rate is 5e-5.
Due to the tendency of MoE-LLMs to overfit dur-
ing fine-tuning, we use 1000 samples for training
on each dataset and train for 2 epochs. In the 2

2For instance, if gate2 has an output dimension of 16,
meaning there are 16 null experts, the parameters of gate2
can be copied from gate in two segments.

epochs, we set different values of α in Equation (6)
to α1 = 0.02, α2 = 0.0001, as described in Sec-
tion 3.4. All evaluations are conducted using Open-
Compass (Contributors, 2023) to assess accuracy.

4.2.2 Experiment Results
In this section, we present the results for the config-
uration with m = 8 and k = 3 (i.e., 8 null experts
and top-3 expert selection), as shown in Table 1.
Additional results are in Section 4.3 and Table 8.

Accuracy. AdaMOE outperforms the baseline
on WinoGrande, HellaSwag, SIQA, and ARC-
Challenge. Although the baseline slightly sur-
passes AdaMOE on PIQA and OpenBookQA,
AdaMOE achieves a higher average accuracy.

FLOPs. FFNs account for the majority of the
FLOPs during inference. This issue is exacerbated
in Mixtral-8x7B, which replaces the FFN with a
set of 8 FFNs and selects the top-2 during each
inference step. This greatly increases the computa-
tional load. AdaMOE significantly reduces FLOPs
across all datasets, achieving an average reduction
of 15.21% compared to the baseline. This demon-
strates that AdaMOE is more computationally effi-
cient while maintaining competitive performance.

Load. The Load metric indicates the average
number of experts used per MoE/AdaMOE layer.
The baseline method has a Load of 2. In contrast,
AdaMOE achieves a lower average Load of 1.66,
indicating more efficient utilization of experts.

Overall, the results confirm the effectiveness of
the token-adaptive mechanism in improving both
computational efficiency and model performance.

4.3 Ablation

In this section, we provide results for various m
and k, beyond the single configuration shown in
Section 4.2. We also present ablation studies for

6229

Baseline AdaMOE

m, k 0, 2 8, 3 16, 4 32, 4 32, 5 32, 6 40, 6 40, 7 40, 8 48, 8

Acc. 76.36 76.97 76.92 66.27 72.93 76.46 69.86 76.05 77.23 74.67
Load 2.00 1.63 1.66 0.77 1.05 1.54 1.01 1.49 1.64 1.48

Table 2: Performance of different m and k combinations on the SIQA dataset. The Baseline represents fine-tuned
Mixtral-8x7B using LoRA method, with a Load of 2. Bold values indicate accuracy higher than the baseline.

RTE COLA SQA OQA

Acc. Load Acc. Load Acc. Load Acc. Load

ℓbal 56.68 1.77 83.68 1.77 65.65 1.78 69.80 1.76
ℓnull 67.51 1.77 85.01 1.77 66.64 1.80 71.40 1.77

Table 3: Comparison of accuracy and load on four datasets using load balancing
loss with and without balancing among null experts. ℓbal represents the loss
with load balancing constraints among null experts, and ℓnull represents the loss
without these constraints. Bold values indicate higher accuracy.

SIQA

Option Acc. Load

1) 80.19 1.50
2) 81.27 1.54

Table 4: 1) Normalizing all
selected top-k experts, and 2)
normalizing only the true ex-
perts within the top-k.

AdaMOE, corresponding to Section 3.4. Additional
ablation experiments can be found in Appendix A.

More results for Section 4.2. We tested dif-
ferent combinations of m and k on the SIQA
dataset, with results shown in Table 2. Com-
pared to the m = 8, k = 3 configuration in Sec-
tion 4.2, AdaMOE can further reduce the expert
load (FLOPs) while maintaining competitive per-
formance. For example, with m = 32, k = 6, the
expert load is 1.54 (79.57% of baseline FLOPs), yet
accuracy remains higher than the baseline. There
are also accuracy differences among configurations
with similar loads. For instance, m = 40, k = 7
and m = 48, k = 8 have nearly identical loads
but differ in accuracy. This discrepancy highlights
areas for further exploration in future research.

Load balancing loss with null experts. To ver-
ify the effectiveness of the modified load balancing
loss introduced in Equation (6), we selected two
datasets from each of the semantic understanding
and commonsense reasoning tasks. The results,
illustrated in Table 3, show that lifting the load bal-
ancing constraints among null experts significantly
improves the performance of the fine-tuned model
on the RTE, COLA, SQA, and OQA datasets.

Load balancing constraints: from tight to
loose. The effectiveness of the annealing train-
ing process described in Section 3.4 is validated
in Table 5. The tight load balancing constraints in
the first epoch effectively control the expert load in
AdaMOE, meeting our expectations. The loose con-

WINO SIQA

Acc. Load Acc. Load

α1
Baseline 78.14 2.00 75.38 2.00
AdaMOE 76.24 1.65 75.90 1.62

α2
Baseline 80.43 2.00 76.36 2.00
AdaMOE 81.93 1.66 76.97 1.63

Table 5: Performance for finetuning Mixtral-8x7B with
AdaMOE on the WINO and SIQA datasets for two
epochs with α1 = 0.02 and α2 = 0.0001.

straints in the second epoch allow tokens greater
freedom in selecting experts, thereby enhancing
performance with almost no increase in expert load.
For example, on the WINO dataset, the accuracy
increased by 5.69% compared to the result after
epoch 1, with almost no increase in expert load.

Normalization of routing probabilities. We
tried the two options mentioned in Section 3.4 on
the SIQA dataset, and the results are shown in Ta-
ble 4. As we can see, option 2) is a superior choice,
showing a significant improvement in accuracy ,
with only a minor change in expert load.

5 Conclusion

MoE has been a promising method for training
powerful models with fewer parameters. In this
paper, we introduced AdaMOE, which uses null
experts to enable token-level adaptive expert allo-
cation and overcome the drawbacks of fixed expert

6230

allocation. Extensive experiments validate its ef-
fectiveness. The AdaMOE approach significantly
enhances efficiency and adaptability, paving the
way for more capable large language models.

Limitations

One potential drawback of this work is that we
did not pre-train a MoE-LLM using our AdaMOE
method. Pre-training an MoE-LLM would have
allowed us to thoroughly evaluate the full capabili-
ties and performance improvements of our method,
but the significant resources required made it im-
practical for our current study. Additionally, we did
not explore the scenario of null experts as identity
mappings, where null experts would also need zero
FLOPs to process input tokens. We hypothesize
that this approach might accelerate training conver-
gence because null experts as identity mappings
would potentially update their corresponding router
parameters more frequently.

We acknowledge these limitations and leave
these aspects for future work. Addressing these
issues could provide a more comprehensive eval-
uation of the AdaMOE method and potentially un-
cover additional benefits or areas for improvement.

References
Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen,

Qiang Fu, Weizhu Chen, Nanning Zheng, and Jian-
Guang Lou. 2022. Input-tuning: Adapting unfamiliar
inputs to frozen pretrained models. arXiv preprint
arXiv:2203.03131.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1–45.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion

Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, et al. 2023. Loramoe: Revolu-
tionizing mixture of experts for maintaining world
knowledge in language model alignment. arXiv
preprint arXiv:2312.09979.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen
Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang, Xi-
aoyuan Guo, Jie Yang, and VS Subrahmanian. 2024.
Higher layers need more lora experts. arXiv preprint
arXiv:2402.08562.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

6231

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. In In-
ternational Conference on Machine Learning, pages
6265–6274. PMLR.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan
Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie
Tang. 2024. Mixlora: Enhancing large language
models fine-tuning with lora based mixture of experts.
arXiv preprint arXiv:2404.15159.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2023.
Moelora: An moe-based parameter efficient fine-
tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339.

Ilya Loshchilov and Frank Hutter. 2017. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507–2521.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Qwen. 2024. Qwen1.5-moe: Matching 7b model per-
formance with 1/3 activated parameters. https:
//qwenlm.github.io/blog/qwen-moe.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
arXiv preprint arXiv:2404.02258.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston,
et al. 2021. Hash layers for large sparse models.
Advances in Neural Information Processing Systems,
34:17555–17566.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Xun Wu, Shaohan Huang, and Furu Wei. 2023. Mole:
Mixture of lora experts. In The Twelfth International
Conference on Learning Representations.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Er-
miş, Acyr Locatelli, and Sara Hooker. 2023. Pushing
mixture of experts to the limit: Extremely parameter
efficient moe for instruction tuning. arXiv preprint
arXiv:2309.05444.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Informa-
tion Processing Systems, 35:7103–7114.

6232

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://qwenlm.github.io/blog/qwen-moe
https://qwenlm.github.io/blog/qwen-moe

A Additional Ablation
Robustness. We primarily considered the impact
of two hyperparameters, the number of epochs and
the rank of LoRA module. We evaluated their im-
pact on the SQA dataset, as shown in Table 6. Re-
gardless of the number of training epochs and rank
of the LoRA, our method outperforms the base-
line consistently. Therefore, we can conclude that
our method demonstrates strong robustness across
different epochs and ranks of LoRAs.

B Additional Results
Exact values for results in Figure 5. Table 7
presents the exact values corresponding to Figure 5,
averaged from results with three random seeds. The
performance metrics evaluated include accuracy
and average number of experts used per Mo-LoRA
module/AdaMOE layer across five datasets: RTE,
COLA, SQA, CQA, and OQA.

For the baseline model, two configurations (k1
and k2) are tested. The k1 configuration, with a
fixed top-1 routing strategy, achieves an accuracy
of 65.06 on RTE, 85.39 on COLA, 63.35 on SQA,
76.09 on CQA, and 65.81 on OQA. The k2 config-
uration, with a fixed top-2 routing strategy, results
in slightly lower accuracy values of 63.66 on RTE,
84.69 on COLA, 58.41 on SQA, 76.77 on CQA,
and 65.57 on OQA.

The AdaMOE model is evaluated with four con-
figurations (m5k4, m7k4, m9k4, and m5k2). The
m5k4 configuration achieves an accuracy of 66.64
on RTE, 85.01 on COLA, 66.64 on SQA, 76.96 on
CQA, and 66.48 on OQA, with a load ranging from
1.77 to 1.80. The m7k4 configuration shows im-
proved accuracy, reaching 67.19 on RTE, 85.83 on
COLA, 68.17 on SQA, 77.64 on CQA, and 66.79
on OQA, with a load between 1.44 and 1.47. The
m9k4 configuration presents an accuracy of 68.38
on RTE, 84.95 on COLA, 63.62 on SQA, 76.47
on CQA, and 67.98 on OQA, with a load consis-
tently around 1.22. Lastly, the m5k2 configuration
records an accuracy of 67.01 on RTE, 84.61 on
COLA, 66.82 on SQA, 76.52 on CQA, and 67.89
on OQA, with a significantly lower load of 0.44.

Additional results for Section 4.2. Table 8
presents the performance of various m and k com-
binations for the AdaMOE model across different
datasets, including ARC-C, HELLA, OQA, PIQA,
and WINO. These results supplement the experi-
mental findings discussed in Section 4.2.

For the ARC-C dataset, the baseline model with
m = 0 and k = 2 achieved an accuracy of 87.46

and a load of 2.00. The AdaMOE configurations
demonstrated varying performance, with the high-
est accuracy of 89.15 observed for m = 8 and
k = 3, accompanied by a load of 1.67. As the
values of m and k increased, the load generally
decreased, with the lowest load of 1.34 recorded
for m = 40 and k = 8. On the HELLA dataset,
the baseline model achieved an accuracy of 84.10
and a load of 2.00. The AdaMOE model’s best per-
formance was observed with m = 8 and k = 3,
achieving an accuracy of 85.50 and a load of 1.68.
Similar to the ARC-C results, higher values of m
and k led to reduced loads, with a minimum load
of 1.37 for m = 40 and k = 7. For the OQA
dataset, the baseline model achieved an accuracy
of 89.94 and a load of 2.00. The AdaMOE config-
urations showed varying results, with the highest
accuracy of 89.2 observed for m = 16 and k = 4,
and the load varying between 1.49 and 1.71. The
lowest load of 1.50 was recorded for m = 40 and
k = 8. In the case of the PIQA dataset, the base-
line model reached an accuracy of 90.48 and a load
of 2.00. The best accuracy among the AdaMOE
configurations was 90.32 for m = 8 and k = 3,
with a load of 1.59. The load decreased as m and k
values increased, reaching a minimum of 1.32 for
m = 40 and k = 7. Finally, on the WINO dataset,
the baseline model achieved an accuracy of 80.43
and a load of 2.00. The highest accuracy of 81.93
was observed for m = 8 and k = 3, with a load
of 1.66. The load showed a decreasing trend with
increasing values of m and k, with the lowest load
of 1.45 recorded for m = 40 and k = 8.

C Additional Discussion
The top-p router can also implement token-adaptive
expert selection. It selects experts based on the
sum of routing probabilities exceeding a threshold
p. This allows for a variable number of experts to
be chosen for different tokens. However, compared
to our AdaMOE, this approach has the following
drawbacks:

1. The value of p cannot be predefined according
to the compute budget, and finding an appro-
priate p often requires multiple attempts.

2. It cannot enable tokens to bypass some layers.

Moreover, our method is actually compatible
with the top-p approach. We can incorporate null
experts and simultaneously use top-p. This com-
patibility opens up avenues for further exploration
in the future.

6233

Epoch Rank of LoRAs

1 10 8 32

Baseline
Acc. 45.95 87.19 45.95 46.72
Load 2.00 2.00 2.00 2.00

AdaMOE
Acc. 48.88 88.54 48.88 49.01
Load 1.92 1.88 1.92 1.89

Table 6: Robustness of our method under different epochs and ranks of LoRAs.

Metric RTE COLA SQA CQA OQA

Baseline
k1

Acc. 65.06 85.39 63.35 76.09 65.81
Load 1.00 1.00 1.00 1.00 1.00

k2
Acc. 63.66 84.69 58.41 76.77 65.57
Load 2.00 2.00 2.00 2.00 2.00

AdaMOE

m5k4
Acc. 66.64 85.01 66.64 76.96 66.48
Load 1.78 1.77 1.80 1.77 1.78

m7k4
Acc. 67.19 85.83 68.17 77.64 66.79
Load 1.47 1.45 1.47 1.44 1.47

m9k4
Acc. 68.38 84.95 63.62 76.47 67.98
Load 1.22 1.23 1.22 1.22 1.22

m5k2
Acc. 67.01 84.61 66.82 76.52 67.89
Load 0.44 0.44 0.44 0.44 0.44

Table 7: Exact values for Figure 5, averaged from results with 3 random seeds.

6234

ARC-C Baseline AdaMOE

m, k 0,2 8,3 16,4 24,5 32,6 40,7 40,8

Acc. 87.46 89.15 87.12 86.10 85.08 86.10 85.76
Load 2.00 1.67 1.70 1.56 1.49 1.59 1.34

HELLA Baseline AdaMOE

m, k 0,2 8,3 16,4 24,5 32,6 40,7 40,8

Acc. 84.10 85.50 83.10 81.30 80.40 82.50 79.20
Load 2.00 1.68 1.64 1.45 1.39 1.37 1.44

OQA Baseline AdaMOE

m, k 0,2 8,3 16,4 24,5 32,6 40,7 40,8

Acc. 89 94 88.2 89.2 86.6 86.8 85 82.6
Load 2.00 1.70 1.71 1.49 1.54 1.56 1.50

PIQA Baseline AdaMOE

m, k 0,2 8,3 16,4 24,5 32,6 40,7 40,8

Acc. 90.48 90.32 89.99 88.30 86.67 86.78 85.42
Load 2.00 1.59 1.53 1.46 1.39 1.32 1.33

WINO Baseline AdaMOE

m, k 0,2 8,3 16,4 24,5 32,6 40,7 40,8

Acc. 80.43 81.93 79.32 78.17 77.66 71.43 79.16
Load 2.00 1.66 1.72 1.71 1.73 1.59 1.45

Table 8: Performance of more m and k combinations on various datasets. As a supplement to the experimental
results in Section 4.2.

6235

