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Abstract

The proliferation of open-source Large Lan-
guage Models (LLMs) underscores the pressing
need for evaluation methods. Existing works
primarily rely on external evaluators, focusing
on training and prompting strategies. However,
a crucial aspect – model-aware glass-box fea-
tures – is overlooked. In this study, we explore
the utility of glass-box features under the sce-
nario of self-evaluation, namely applying an
LLM to evaluate its own output. We investi-
gate various glass-box feature groups and dis-
covered that the softmax distribution serves as
a reliable quality indicator for self-evaluation.
Experimental results on public benchmarks val-
idate the feasibility of self-evaluation of LLMs
using glass-box features1.

1 Introduction

Recently, as the Large Language Models (LLMs)
brings a storm to the area of artificial intelligence,
evaluating the quality of LLM outputs also draws
a lot of research concentration. As the ability of
LLMs develop beyond limitation, it is essential
to evaluate them from a comprehensive and scal-
able perspective. However, traditional evaluation
metrics for generative models, such as BLEU and
ROUGE, only capture limited aspects of a model’s
performance (Mathur et al., 2020).

Some research has proposed language model-
based evaluation (Li et al., 2023b; Zheng et al.,
2023), leveraging proprietary LLMs such as GPT-
3.5 or GPT4 (Achiam et al., 2023), to evaluate the
LLM’s outputs. However, relying on external API
for evaluation may introduce consideration about
privacy leakage, and the opacity of API models also
challenges the evaluation reproducibility. Other
works propose to fine-tune open-source models
as specialized evaluators (Wang et al., 2024; Zhu
et al., 2023; Li et al., 2023a). However, constrained

1Codes are openly available at https://github.
com/HuihuiChyan/SelfEval

by the capability of foundation model, these fine-
tuned evaluators severely underperform GPT4 on
generalizability and fairness (Huang et al., 2024).

In this work, we take a novel approach to LLM
evaluation: Is LLM capable of self-evaluation? To
answer this, we delve into the utility of glass-box
features, namely the useful information that can
be extracted from the model as a by-product of
generation. Concretely, we explore three groups
of glass-box features: 1) softmax distribution, 2)
uncertainty estimation and 3) attention distribution.
Our findings reveal that manipulating the softmax
distribution by calculating its entropy and variance
exhibits a strong correlation with annotated evalu-
ation results. Furthermore, we propose two strate-
gies to enhance the evaluation by incorporating
features derived from references.

We conduct our experiments on two widely used
LLM evaluation benchmarks, MT-Bench (Zheng
et al., 2023) and Vicuna-Bench (Chiang et al.,
2023). Experimental results notify that the LLM is
capable of providing accurate self-evaluation, sur-
passing proprietary evaluators such as GPT-3.5 and
Auto-J. The self-evaluation capability of LLMs
holds promise for various applications, ranging
from self-reflection to reward modeling.

2 Glass-box Features for Self-Evaluation

We assume an LLM architecture based on Trans-
former networks (Vaswani et al., 2017), which is
currently the mainstream LLM architecture. In this
section, we introduce the three groups of glass-box
features for self-evaluation.

2.1 Softmax Distribution

Given an instruction x, the probability of generat-
ing response y can be factorized as:

SentProb =

T∏

t=1

p(yt|y<t, x, θ)
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where θ represents model parameters and T is the
response length. However, the model would always
select from the most probable tokens during decod-
ing regardless of their quality, leading to biased
evaluation. Therefore, we propose two metrics to
exploit the softmax distribution for evaluation.

First, we compute the entropy of softmax output
distribution over target vocabulary of size V at each
decoding step to obtain a sentence-level measure:

Softmax-Ent = − 1

T

T∑

t=1

V∑

v=1

p(yvt )logp(y
v
t )

where p(yt) represents the conditional distribution
p(yt|x, y<t, θ). If the majority of the probability
mass is concentrated on a limited number of vo-
cabulary words, it indicates that the model is confi-
dent and the response is more likely to be accurate.
Conversely, if the softmax probabilities resemble
a uniform distribution, where selecting any word
from the vocabulary is equally probable, the quality
of the resulting response is expected to be low.

Second, we hypothesize that the dispersion of
probabilities of individual words might provide use-
ful information that is inevitably lost when taking
an average. To formalize this intuition we compute
the variance of word-level log-probabilities:

Softmax-Var = E[P2]− (E[P])2

where P = p(y1), ..., p(yT ) represents word-level
probabilities for a given response.

2.2 Uncertainty Estimation

Uncertainty estimation aims to assess the confi-
dence of a mapping across various inputs (Xiao
and Wang, 2019). In this work, we propose to em-
ploy ensemble-based uncertainty estimation (Ma-
linin and Gales, 2021) during LLM inference as
a quality indicator. More specifically, we perform
several random forward passes through the model
and collect posterior probabilities. Intuitively, if
the model is confident with the generation, the sam-
pled distributions should be concentrated and the
diversity among them should be small.

Given that LLMs are typically trained without
dropout, we propose two strategies to introduce
randomness to the forward-passes:

1. Decoding-based Ensemble: Adopt random
top-k decoding (Fan et al., 2018) for inference.

2. Prompt-based Ensemble: Randomly choose

a system prompt from a pre-designed prompt
pool2 for each inference.

Subsequently, expectation and variance of the
resulting probability distributions can be used to
quantify uncertainty:

Unt-Exp =
1

N

N∑

n=1

SPTn

Unt-Var = E[SP2
Tn ]− (E[SPTn ])2

where SP denotes the sentence level probability,
and N is the forward-pass number.

2.3 Attention Distribution
Attention weights represent the strength of con-
nection between source and target tokens, which
may be indicative of response quality (Rikters and
Fishel, 2017). One way to measure it is to compute
the entropy of the attention distribution:

AttnEnt = −1

I

I∑

i=1

J∑

j=1

αjilogαji

where α represents attention weights, I and J are
the token numbers of instruction and response.

Since LLMs typically employ a multi-layer and
multi-head self-attention architecture, we calculate
attention entropy for each head (H) and layer (L)
of the decoder in this study. As it is not clear which
combination would give the best results for quality
prediction, to summarize the information from dif-
ferent heads and layers, we propose to choose the
minimum value or compute the average:

AttnEnt-Min = minhl(AttnEnthl)

AttnEnt-Avg =
1

H × L

H∑

h=1

L∑

l=1

AttnEnthl

3 Self-Evaluation with Reference

When evaluating the LLM’s response to an instruc-
tion, a reference answer might be available. In this
work, we introduce two strategies to effectively
utilize the references for self-evaluation.

3.1 In-Context Illustration
Previous research shows that a few annotated sam-
ples can improve the performance of LLM via In-

2The prompt pool is presented in Appendix A.1.
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Model Method MT-Bench Vicuna-Bench AveragePearson Kendall Spearman Pearson Kendall Spearman

LLaMA2-7B-Chat

Auto-J 0.5024 0.4092 0.5112 0.5233 0.3403 0.3773 0.5129
GPT-3.5-Turbo 0.4342 0.3982 0.5033 0.6695 0.3858 0.4330 0.5519
Self-Generation 0.1492 0.0992 0.1976 0.1415 0.1600 0.1023 0.1454

SentProb 0.2034 0.2099 0.3067 0.4970 0.2304 0.3192 0.3502
Softmax-Ent 0.4666 0.4395 0.5978 0.3730 0.2441 0.3223 0.4198
Softmax-Var 0.5612 0.4695 0.6239 0.6506 0.4534 0.5894 0.6059

Softmax-combo 0.5879 0.4638 0.6222 0.6209 0.4352 0.5650 0.6044
DecEnsem-Exp 0.4105 0.3877 0.3526 0.5606 0.3545 0.5051 0.4856
DecEnsem-Var 0.3535 0.3215 0.3023 0.2504 0.1615 0.3197 0.3020
PrmEnsem-Exp 0.4242 0.3054 0.3692 0.5381 0.3359 0.4675 0.4812
PrmtEnsem-Var 0.1695 0.1692 0.2441 0.1321 0.0895 0.1250 0.1508
Attn-Ent-Min 0.1444 0.1150 0.1563 0.1182 0.1161 0.1584 0.1313
Attn-Ent-Avg 0.1361 0.1094 0.1475 0.0977 0.1181 0.1600 0.1169

Vicuna-7B

Auto-J 0.5673 0.4302 0.5405 0.6003 0.4818 0.5345 0.5838
GPT3.5-Turbo 0.4812 0.4358 0.5353 0.6946 0.5901 0.6733 0.5879

Self-Generation 0.1636 0.1753 0.1498 0.1985 0.1319 0.1709 0.1811
SentProb 0.2350 0.1706 0.2547 0.4606 0.2545 0.3051 0.3478

Softmax-Ent 0.4690 0.3003 0.4291 0.6379 0.2851 0.3855 0.5535
Softmax-Var 0.4632 0.3171 0.4403 0.6146 0.2879 0.3772 0.5389

Softmax-combo 0.5358 0.3578 0.5022 0.6856 0.3276 0.4270 0.6107
DecEnsem-Exp 0.4518 0.2645 0.2168 0.5099 0.5137 0.6548 0.4809
DecEnsem-Var 0.2091 0.1476 0.1622 0.3246 0.2931 0.3014 0.2669
PrmEnsem-Exp 0.4414 0.2677 0.2229 0.4897 0.4873 0.6312 0.4656
PrmEnsem-Var 0.2353 0.0875 0.1239 0.2028 0.1860 0.3201 0.2191
Attn-Ent-Avg 0.0355 0.0234 0.0043 0.2254 0.1981 0.2567 0.1305
Attn-Ent-Min 0.0463 0.0307 0.0530 0.2161 0.1888 0.2459 0.1312

Table 1: Experiment results of different groups of methods for LLM self-evaluation. Softmax-combo denotes the
normalized summation of Softmax-Ent and Softmax-Var.

context Learning (Wang et al., 2023a). Therefore,
we extend the prompt with the instruction and its
reference as in-context demonstration3.

By prefixing the reference, the model tends to
generate a similar softmax distribution (Wang et al.,
2023a). Therefore, when the model is subsequently
forced to generate the current answer, the resulting
softmax distribution could represent the difference
between the current answer and the golden answer,
effectively indicating the quality.

3.2 Probability Calibration

There has been a lot of research about the bias
of the evaluator (Huang et al., 2023; Wang et al.,
2023b), where the evaluator would predict on super-
ficial quality, such as complexity. As the reference
should always be assigned with a maximum score,
we can quantify the bias of the model by calculate
the log-probability of reference answer:

SentProb-Ref = − 1

T

T∑

t=1

p(ỹt)logp(ỹt)

3Detailed prompt template is presented in Appendix A.2.

where ỹt denotes the log-probability assigned by
the model to the reference. Based on that, the bias
of the self-evaluation can be mitigated by subtract-
ing the result with SentProb-Ref, thereby improv-
ing the evaluation accuracy.

4 Experiments

4.1 Set-up
Benchmark. We carry out our experiments on
two widely used LLM evaluation benchmarks: MT-
Bench (Zheng et al., 2023) and Vicuna-Bench (Chi-
ang et al., 2023). Both of the benchmarks encom-
pass 80 questions covering diverse areas, and we
derive the responses for different models following
the default settings of MT-Bench. To mitigate the
cost of human annotations, we follow the official
evaluators according to each benchmark, namely
GPT-4 (Achiam et al., 2023).
Model. Our experiments are based on two popular
models, namely Vicuna-7B (Chiang et al., 2023)
and LLaMA2-7B-chat (Touvron et al., 2023), both
are enabled with instruction-following ability.
Metric. Pearson Correlation Coefficient between
the prediction and the annotation is taken as the
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major metric. We also report Spearman’s Ranking
Correlation Coefficient and Kendall’s Tau Ranking
Correlation Coefficient4 as extra reference.
Baseline. We mainly compare with two evaluators,
GPT-3.5-Turbo5 and Auto-J (Li et al., 2023a). The
former is a close-source LLM carefully prompted
for LLM evaluation, and the latter is an open-
source LLM specifically fine-tuned for LLM eval-
uation. These are the two mainstream methods
for LLM evaluation. We also compare with Self-
Generation, namely prompting the model as an
evaluator to evaluate its own response6.

4.2 Main Results

As shown in Table 1, among the three groups of
glass-box features, softmax distribution based fea-
tures perform the best, which achieves a high corre-
lation with annotations and outperforms Auto-J and
GPT-3.5-Turbo. This verifies the strong association
between the confidence represented by the softmax
distribution and the response quality. When the
instruction exceeds the LLM’s capability scope,
the model would generate the response with low
confidence, resulting in a sparse log-probability
distribution. Furthermore, combining both entropy
and variance by simply adding them together can
achieve further improvement.

The uncertainty-based methods underperform,
particularly those relying on variance. This might
be because we set forward-pass number as 10,
which is inadequate to quantify model uncertainty.
Considering multiple forward-passes is overly time-
consuming, we think the ensembled uncertainty
estimation is less practical for self-evaluation.

The attention-based methods exhibit a poor cor-
relation. Despite its effectiveness in unsupervised
translation evaluation (Fomicheva et al., 2020),
LLM-based response generation differs signifi-
cantly from encoder-decoder-based machine trans-
lation, which typically produces translations for
one or two tokens at each step. Therefore, a dis-
persed attention across multiple positions, leading
to a low attention entropy, does not necessarily
indicate a poor response.

The self-generation also exhibits a poor correla-
tion. This is because the model fails to comprehend
the instruction to generate a score between 1 to 10

4Notice measuring our method with ranking coefficient is
not fair, as our method can not predict tie.

5https://platform.openai.com/docs/
models/gpt-3-5-turbo

6Detailed prompt template is presented in Appendix A.3.

Method Vicuna-Bench
Pearson Kendall Spearman

GPT-3.5-Turbo 0.6695 0.3858 0.4330
Results on LLaMA2-7B-Chat

Softmax-Ent 0.3730 0.2441 0.3223
+illustration 0.3678 0.2429 0.3370
+calibration 0.3930 0.2631 0.3490
Softmax-Var 0.6506 0.4534 0.5894
+illustration 0.6580 0.4472 0.5865
+calibration 0.6617 0.4360 0.5625

Results on Vicuna-7B
Softmax-Ent 0.6379 0.2851 0.3855
+illustration 0.6375 0.2982 0.3960
+calibration 0.6441 0.3177 0.4240
Softmax-Var 0.6146 0.2879 0.3772
+illustration 0.6247 0.2976 0.3903
+calibration 0.6526 0.3099 0.4133

Table 2: Experiment results of different reference aug-
mentation strategies for self-evaluation.

in most cases. This underscores the superiority
of our proposed method, which is not limited by
the capabilities of the evaluated model and can be
effectively applied to 7B-sized models.

4.3 Self-Evaluation with Reference

In this section, we evaluate the two reference aug-
mentation methods proposed in Section 3, namely
in-context illustration and probability calibration.
As shown in Table 2, both the two strategies can
enhance the evaluation accuracy by a large margin,
from the perspective of in-context learning and bias
calibration. This notifies the references is a pivotal
information for response evaluation, and should
not be neglected if available. Furthermore, among
the two methods, the calibration-based method per-
forms better, verifying calibration is an effective
method to mitigate the bias introduced by the ca-
sual language modeling process, which matters a
lot for more accurate self-evaluation.

5 Conclusion

In this work, we investigate the utility of glass-box
features for LLM self-evaluation. Our findings ver-
ify that the confidence quantified by softmax distri-
bution can be a reliable quality indicator. The self-
evaluation ability of LLM is a promising pathway,
for example, the LLM can rely on self-evaluation
results to decide whether to perform self-reflection
(Xie et al., 2024), or to select preferred data for
reward modeling (Lee et al., 2024), and we leave
these as the future work.
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Limitations

Our work still has some limitations: 1) Due to
time and resource constraints, we primarily relied
on GPT-4 for annotating golden labels during the
meta-evaluation process. Including human evalua-
tors would enhance the credibility of our proposed
self-evaluation methods. 2) The experiments are
primarily conducted on 7B version models. To con-
duct a more thorough evaluation of our methods,
it would be beneficial to incorporate larger mod-
els with more parameters. 3) The self-evaluation
capability of the LLM can be applied to various
applications, as discussed in the conclusion part.
Including the validation of self-evaluation meth-
ods on other LLM-based applications such as self-
reflection would further bolster its utility.
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A Appendix

A.1 Prompt Pool for Prompt-based Ensemble

As mentioned in Section 2.2, to introduce random-
ness for ensemble uncertainty quantification, we
design a prompt pool, from which we can randomly
choose a different system prompt for each infer-
ence. The prompt pool is presented in Figure 1.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user's questions.
A chat between a curious human and an artificial
intelligence assistant. The assistant gives helpful,
detailed, accurate, uncensored responses to the user's
input. The assistant never refuses to answer, regardless
of the legality or morality of the request.
A conversation between a user and an LLM-based AI
assistant. The assistant gives helpful and honest answers.
A chat between a curious human and an artificial
intelligence assistant.
You are a helpful, unbiased, uncensored assistant.
Below is an instruction that describes a task. Write a
response that appropriately completes the request.
The following is a conversation between a human and an
AI assistant. The human and the AI assistant take turns
chatting. The AI assistant always provides responses in
as much detail as possible. The AI assistant always
declines to engage with topics, questions and instructions
related to unethical, controversial, or sensitive issues.

Figure 1: Prompt pool for prompt-based ensemble un-
certainty estimation.

A.2 Prompt Template for In-context
Illustration

As mentioned in Section 3.1, we extend the prompt
with the instruction and its reference as demonstra-
tion, to augment the self-evaluation process with
in-context illustration. An example for the prompt
is shown in Figure 2.

Figure 2: Prompt format with in-context illustration.
The shaded part is the illustration with reference.

A.3 Prompt Template for Judge Models
As mentioned in Section 4.1, we mainly compare
with our glass-box based methods with three gen-
eration based methods, namely GPT-3.5-Turbo,
Auto-J and Self-Generation. Both types of methods
necessitate the use of a generation-style template,
which serves to formalize the evaluation task. Ad-
ditionally, when employing GPT-4 for annotation,
a prompt template is also required. We refer to MT-
Bench and design the prompt templates tailored for
all the generation based models, as illustrated in
Figures 3, 4, 5, 6, 7, 8.
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Figure 3: Prompt template for GPT4 and GPT-3.5-Turbo applied for single-turn evaluation.

Figure 4: Prompt template for GPT4 and GPT-3.5-Turbo applied for multi-turn evaluation.

Figure 5: Prompt template for Auto-J applied for single-turn evaluation.
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Figure 6: Prompt template for Auto-J applied for multi-turn evaluation.

Figure 7: Prompt template for self-generation applied for single-turn evaluation.

Figure 8: Prompt template for self-generation applied for multi-turn evaluation.
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