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Abstract

The quality of training data are crucial for en-
hancing the long-text capabilities of founda-
tion models. Despite existing efforts to re-
fine data quality through heuristic rules and
evaluations based on data diversity and diffi-
culty, there’s a lack of systematic approaches
specifically tailored for assessing long texts.
Addressing this gap, our work systematically
measures the quality of long texts by evaluat-
ing three fundamental linguistic dimensions:
coherence, cohesion, and complexity. Draw-
ing inspiration from the aforementioned three
dimensions, we introduce a suite of metrics
designed to evaluate the quality of long texts,
encompassing both statistical and pre-trained
language model-based ones. Leveraging these
metrics, we present LongWanjuan, a bilingual
dataset specifically tailored to enhance the train-
ing of language models for long-text tasks with
over 160B tokens. In LongWanjuan, we cate-
gorize long texts into holistic, aggregated, and
chaotic types, enabling a detailed analysis of
long-text quality. Furthermore, we devise a
data mixture recipe that strategically balances
different types of long texts within LongWan-
juan, leading to significant improvements in
model performance on long-text tasks.

1 Introduction

Effectively processing long texts is a crucial capa-
bility of language models and has recently become
a focal point of research (Chen et al., 2023; Peng
et al., 2023; Liu et al., 2023b). Tasks such as long
document summarization (Zhong et al., 2021), long
document question answering (Dasigi et al., 2021),
repository-level code tasks (Liu et al., 2023a), and
retrieval-augmentation generation (Xu et al., 2023)
often involve handling thousands or even tens of
thousands of tokens.

The quality of data is vital for the long-text ca-
pabilities of foundation models (Zha et al., 2023;
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Figure 1: The three dimensions for measuring the qual-
ity of long texts: coherence, cohesion and complexity.

Xiong et al., 2023; Rozière et al., 2023). There
have been efforts made to improve data quality.
Some approaches employ heuristic rules, such as
deduplication and the removal of overly short data
entries (Soboleva et al., 2023; Penedo et al., 2023).
Additionally, some other approaches consider data
diversity and perplexity based on pre-trained lan-
guage models (Tirumala et al., 2023; Marion et al.,
2023). However, these filtering rules are designed
for general training data and do not take into ac-
count the unique characteristics of long texts.

To systematically assess the quality of long texts,
we adhere to linguistic fundamentals and evaluate
them through three dimensions: coherence (Wang
and Guo, 2014), cohesion (Halliday and Hasan,
2014; Carrell, 1982), and complexity (Pallotti,
2015), as illustrated in Figure 1. These three di-
mensions have often been used to evaluate and ana-
lyze text quality(Mathias and Bhattacharyya, 2018).
Coherence measures the overall consistency and
clarity of the text as a whole(Zhong et al.; Wu et al.,
2023; Shrivastava et al., 2018; Cho et al.). Cohe-
sion gauges the strength of connections between
sentences or sections of the text(Zhong et al.; Wu
et al., 2023; Cho et al.; Tan et al., 2022). Complex-
ity assesses the linguistic sophistication within the
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text(Imperial and Madabushi, 2023; Li et al., 2022;
Salman et al., 2023). Given that long texts typi-
cally contain more extensive content, they necessi-
tate elevated levels of these characteristics to effec-
tively convey information and engage in discussion.
Drawing from these three fundamental dimensions,
we propose a set of metrics to quantitatively ana-
lyze the quality of long texts. These metrics encom-
pass both statistical and pre-trained model-based
approaches, offering strong interpretability. Further
details on these metrics can be found in Section 3.

Based on the characteristics across these three
dimensions, we categorize the long texts in pre-
training dataset into three types: holistic long texts,
encompassing complete works such as books, aca-
demic papers, reports, novels, and interviews; ag-
gregated long texts, consisting of short texts re-
lated by topic or fragmented texts like extensive
lists or tables; and chaotic long texts, characterized
by nonsensical content such as garbled data. Draw-
ing upon these classifications, we manually anno-
tated a validation set of 200 samples from SlimPa-
jama (Soboleva et al., 2023) and Wanjuan (He et al.,
2023) to validate the correlation between our pro-
posed metrics and human judgments. Our quanti-
tative metrics effectively differentiate between the
three categories of long texts.

Building on these analysis and metrics, we cre-
ate a bilingual long-text dataset with category la-
bels, named LongWanjuan, containing over 160B
tokens. With LongWanjuan, we propose a data
mixture recipe to mitigate the imbalance between
holistic long texts and aggregated long texts within
the dataset. Specifically, by removing chaotic long
texts and upsampling aggregated long texts, we
continue to train InternLM2-7B (Team, 2023) with
an additional 5B tokens, thereby achieving state-of-
the-art performance for long texts on models of the
7B parameter scale. The effectiveness and general-
izability of this recipe are analyzed in Section 5.4.

In summary, our contributions are as follows:

1. To the best of our knowledge, this is the first
work to systematically analyze and introduce
quantitative metrics for assessing the quality
of long texts. Grounded in linguistic princi-
ples, we measure the quality of long texts in
terms of coherence, cohesion, and complexity.

2. Leveraging SlimPajama and Wanjuan, we con-
structed a bilingual long-text dataset with over
160B tokens, LongWanjuan, which is avail-

able to the community as an open-source re-
source.

3. Based on LongWanjuan, we devise a data mix-
ture recipe to mitigate the imbalance in the
dataset, and advance to a new state-of-the-art
long-text model at the 7B parameter scale,
demonstrating a 13.07% improvement over
the untrained baseline on Longbench (Bai
et al., 2023b).

2 Related Work

2.1 Pre-training Data Pruning

The quality of pre-training data plays a crucial role
in the performance of foundation models (Rae et al.,
2021; Du et al., 2022; Xiong et al., 2023; Rozière
et al., 2023; Gunasekar et al., 2023). Several studies
have enhanced data quality by pruning the original
training data into a subset.

Some works primarily focus on heuristic rules
and deduplication to improve data quality. Raffel
et al. (2020) and Soboleva et al. (2023) employ sim-
ilar heuristic rules to enhance data quality, includ-
ing the removal of overly short entries and dedupli-
cation. Abbas et al. (2023) leverages embeddings
from pre-trained models to further eliminate se-
mantic duplicates. Another notable contribution
is RefinedWeb (Penedo et al., 2023), which metic-
ulously designs a comprehensive data processing
pipeline.

Moreover, several studies take into consider-
ation the data diversity and difficulty to prune
data. Tirumala et al. (2023) employs clustering-
based methods to augment data diversity. Marion
et al. (2023) evaluates the effectiveness of perplex-
ity, EL2N (Paul et al., 2021), and memorization
score (Biderman et al., 2023) in assessing data diffi-
culty. Maharana et al. (2023) regards data diversity
and difficulty as complementary aspects, selecting
data through forward and reverse message passing
on a dataset graph.

Distinct from these studies that concentrate on
general pre-training data, our research specifically
targets long texts. It is essential to highlight that our
work extends beyond mere data curation and is ap-
plicable in a wider range of contexts for evaluating
the quality of long texts.

2.2 Text Quality Assessment

Several works score texts through supervised learn-
ing. Alikaniotis et al. (2016) trains score-specific
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Low Level Example High Level Example

Coherence The project aims to reduce carbon emissions by
25% within the next five years. Strawberries are
rich in vitamins and antioxidants. It’s raining
today.

The project aims to reduce carbon emissions by 25%
within the next five years. This goal will be achieved
through the implementation of renewable energy sources
and improved energy efficiency. The initiative reflects our
commitment to environmental sustainability.

Cohesion I prepared the soil in my garden. I planted some
tomato seeds. I watered seeds in my garden.

Firstly, I prepared the soil in my garden. Then, I planted
some tomato seeds in the prepared ground. After that, I
watered them.

Complexity Eating fish is good. It helps your brain. After researching various nutrition sources, I concluded
that incorporating omega-3 fatty acids and antioxidants
into our diet can significantly ameliorate cognitive decline
in elderly individuals.

Table 1: Examples illustrating dimensions of coherence, cohesion, and complexity. Blue and orange illustrate
distinct aspects of each dimension. In the context of coherence, the blue and orange texts signify different elements
that maintain thematic consistency throughout the text. For cohesion, the blue text indicates connectors that link
sentences together, while the orange text refers to references to previously mentioned entities. Within complexity,
the blue text represents lexical sophistication, whereas the orange text denotes the complexity of sentence structure.

word embeddings and a Long Short-Term Mem-
ory (LSTM) network (Hochreiter and Schmidhu-
ber, 1997) for text scoring purposes. Similarly, Wu
et al. (2023) conducts fine-grained annotations on
501 Chinese essays and achieves comparable scor-
ing performance to ChatGPT-3.5 through training
based on RoBERTa (Liu et al., 2019). However,
these approaches suffer from limited generalizabil-
ity, being applicable only within the confines of
labeled domains.

Other works leverage unsupervised methods to
automatically construct data for training purposes.
UNION (Guan and Huang, 2020) is trained to dif-
ferentiate between human-written stories and neg-
ative samples. Ru et al. (2023) explores implicit
discourse relations with a latent discourse sense,
showcasing strong performance.

Furthermore, some studies utilize pre-trained
language models to assess text quality without ad-
ditional training. Shrivastava et al. (2018) eval-
uates textual coherence by modeling the uncer-
tainty of topics within paragraphs and their interre-
lations, thus scoring texts. BARTScore (Yuan et al.,
2021) and GPTScore (Fu et al., 2023) employ the
weighted average of the model’s output conditional
probabilities as a metric, facilitating multifaceted
evaluation across a broad range of generative tasks.

Our work measures the quality of long texts
from multiple dimensions, introducing metrics that
are task-agnostic and do not necessitate additional
training.

3 Method

Long texts, characterized by their extended con-
texts and abundant information, pose distinct chal-
lenges in maintaining textual integrity and quality.
We systematically measure the quality of long texts
through three dimensions: coherence, cohesion,
and complexity. Each dimension is accompanied
by corresponding quantitative metrics, allowing for
an effective measurement of long text quality.

3.1 Coherence, Cohesion and Complexity

In accordance with linguistic fundamentals, we sys-
tematically assess the quality of long texts through
the following three dimensions.

Coherence refers to the consistency and clarity
of the text as a whole. A coherent text maintains
thematic unity throughout its parts, with logical
connections between the different sections.

Cohesion measures the degree of tight connec-
tion between two sentences or sections of the text,
reflected in the use of connectives, pronouns, syn-
onyms, and hypernyms/hyponyms.

Complexity assesses the level of linguistic so-
phistication in the use of language in the text. This
can be gauged through the richness and diversity of
vocabulary, as well as the complexity of sentence
structures.

To better elucidate these dimensions, we provide
examples in Table 1 that illustrate both high and
low levels of these dimensions. Key terms that
exemplify specific features of each dimension are
highlighted for emphasis.
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3.2 Metric
Inspired by the three dimensions mentioned above,
we propose the following metrics to assess the qual-
ity of long text t = {t1, t2, . . . , tn}, including both
statistical and model-based ones, where higher val-
ues correlate with more pronounced characteristics
of the corresponding dimension.

To measure the coherence of a long text, we eval-
uate the extent to which prior segments of the text
contribute to understanding subsequent segments.
A coherent text should make it easier to predict
its following content based on its preceding con-
text. For example, when predicting the blue text
below, it is easier to make a correct prediction if
the preceding text is provided.

The sky darkened, and the wind howled. 
It was clear 

It was clear 

We evaluate the coherence of long texts by com-
paring the prediction accuracy with a longer con-
text and the accuracy with a shorter context, as well
as the difference. Specifically, with a pre-trained
causal language model parameterized by θ, we em-
ploy the following three metrics for assessing the
coherence of long texts:

Coherenceaccl =

⌊ n
w⌋∑

i=1

acc
(
yi|xi

l, θ
)
/
⌊ n
w

⌋
, (1)
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⌊ n
w⌋∑
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(
yi|xi
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)
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w

⌋
, (2)

Coherencediff =
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l ,θ)−ℓ(yi|xi

s,θ)
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n
w
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where xi
l = {t(i−1)w, . . . , t(i− 1

4
)w},

xi
s = {t(i− 1

2
)w, . . . , t(i− 1

4
)w},

yi = {t(i− 1
4
)w, . . . , tiw}. (4)

acc(y|x, θ) and ℓ(y|x, θ) denote the model’s
average top-1 prediction accuracy and negative
log-likelihood loss for generating y given the
prompt x, parameterized by θ. Coherenceaccl and
Coherenceaccs respectively denote the model’s top-
1 prediction accuracy with longer and shorter pre-
ceding texts, and Coherencediff represents the pro-
portional improvement in model performance when

using a longer versus a shorter context. We pro-
cess long texts with a sliding window of size w to
avoid exceeding the processing capabilities of the
language model, setting w to 4096 in practice.

We quantitatively measure cohesion by analyz-
ing the density of connectives and pronouns in the
text and the relationships between adjacent sen-
tences. Connectives play pivotal roles in linking
words, sentences, or ideas within sentences and
paragraphs. Pronouns, serving as substitutes for
nouns or noun phrases, maintain references to spe-
cific entities mentioned earlier while avoiding un-
necessary repetition.

Cohesionconn =
Nconn

n
, (5)

Cohesionpron =
Npron

n
, (6)

CohesionDMR = 1−
N∑

i=1

p(no_conn|si, si+1)

N
,

(7)

where Nconn and Npron represent the number of
connectives and pronouns in the text, respectively.
The comprehensive list of considered connectives
and pronouns can be found in the Appendix A.
The text t consists of N + 1 sentences, with si
denoting the ith sentence in the text. The term
p(no_conn|si, si+1) indicates the probability, as
determined using Distributed Marker Representa-
tion (DMR) (Ru et al., 2023), that sentences si and
si+1 are unrelated.1

The complexity of the text is assessed from vo-
cabulary and paragraph.

ComplexityTTR =
Nunique

n
, (8)

Complexitypara =
n

Npara
, (9)

where Nunique refers to the number of unique tokens
in the text, used to calculate the Type-Token Ratio
(TTR) (Richards, 1987). Npara denotes the number
of paragraphs in the text, used to determine the
average paragraph length.

4 LongWanjuan

4.1 Dataset Construction
Based on the analysis and metrics discussed pre-
viously, we introduce LongWanjuan, a bilingual

1The DMR approach is originally considered for English
texts only. To process Chinese data, we follow its training
methodology and train a Chinese DMR model based on the
Wanjuan dataset.
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Figure 2: Pipeline for constructing the LongWanjuan dataset.

long-text dataset. The pipeline for constructing our
dataset is illustrated in Figure 2.

Given that the majority of the SlimPa-
jama (Soboleva et al., 2023) corpus is in English,
we enrich it with Chinese texts from the Wan-
juan (He et al., 2023) dataset. Initially, we extract
data entries exceeding 32K bytes from both the
SlimPajama and Wanjuan datasets, serving as the
starting point for our dataset construction.

Subsequently, we evaluate each data entry
using the metrics we proposed. Specifically,
we first tokenize the data with InternLM2 to-
kenizer (Team, 2023), thereafter calculating
ComplexityTTR. The tokenized results are further
processed with InternLM2-7B to obtain coherence
scores, including Coherenceaccl , Coherenceaccs ,
and Coherencediff. We employ NLTK (Bird and
Loper, 2004) and LTP (Che et al., 2021) respec-
tively for English and Chinese sentence segmenta-
tion. These sentences are then fed into DMR model
to derive the CohesionDMR score. The metrics
Cohesionconn, Cohesionpron and Complexitypara,
are calculated by straightforward word counting.

After scoring each data entry with these met-
rics, we establish thresholds to categorize the data
into holistic long texts, aggregated long texts, and
chaotic long texts. During this process, it is nec-
essary only to check whether texts on either side
of the threshold belong to different categories. Fig-
ure 3 shows the distribution of texts within the C4
domain based on the Cohesionconn metric. As illus-
trated, the texts within different ranges of our pro-
posed metric exhibit distinct characteristics, simpli-
fying the process of threshold determination. For
each domain in the dataset, we can extract approx-

Figure 3: Distribution of texts with different character-
istics on the Cohesionconn metric in the C4 domain.

imately 30 data samples based on the distribution
of this metric and identify the thresholds between
different categories of texts. More information on
the distribution of text quality across various met-
rics are shown in Appendix C. In this phase, we
initially determine thresholds to segregate holis-
tic long texts. Subsequently, within the remain-
ing texts, we establish thresholds to differentiate
chaotic long texts, with the residual texts classified
as aggregated long texts.

Overall, holistic long texts are characterized by
high coherence and cohesion, with moderate com-
plexity. Aggregated long texts exhibit lower coher-
ence and cohesion compared to the former. The
main feature of chaotic long texts is their complex-
ity, which is anomalously high or low.

4.2 Statistics

The LongWanjuan dataset comprises a total of
160.6B tokens, as tokenized by the InternLM2 to-
kenizer. Of these, holistic texts constitute 137.6B
tokens, accounting for 85.7% of the dataset; aggre-
gated texts make up 21.8 billion tokens, or 13.6%;
and chaotic texts comprise 1.2B tokens, represent-
ing 0.7%. In this section, we will present statistical
information about LongWanjuan, focusing on the
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Figure 4: Distribution of token and document counts
across different lengths. In LongWanjuan, over 99.9%
of the data exceed the truncation length in pre-training.

Holistic Aggregated Chaotic Total

EN 0.97 0.87 0.81 0.91
ZH 0.97 0.58 0.79 0.80

Table 2: The correlation between manual validation and
the classification method we proposed

distribution of domains and lengths. The specific
values of token count and document count for each
domain are provided in Appendix C.

Length Figure 4 illustrates the distribution of the
number of data entries and the number of tokens
across different lengths within the LongWanjuan
dataset. During pre-training, the training data is
generally truncated to a maximum length of 4K
tokens, and entries of this length account for less
than 0.1% of the dataset in LongWanjuan. In terms
of the number of tokens, more than 50% of the
data spans lengths between 8K and 32K tokens.
Furthermore, over 10% of the data exceeds a length
of 128K tokens. With regard to the number of data
entries, more than 50% of the documents fall within
the 8K to 16K token range. The trend in data entries
by length initially increases before decreasing, and
due to longer documents containing more tokens,
the smallest quantity of tokens is observed in the
48K to 64K range.

5 Experiments

5.1 Manual Validation

Complementary to the following training and eval-
uating results, we conduct human validation by

Human Annotators Annotators v.s. Metrics

EN 0.9095 0.9048
ZH 0.8933 0.6755

Table 3: The kappa score among annotators and that
between human validation and classification method.

manually annotating the type of 200 long texts
from SlimPajama (Soboleva et al., 2023) and Wan-
juan (He et al., 2023) and then calculating the clas-
sification accuracy. The verification set includes
120 items in English and 80 items in Chinese, cov-
ering various domains as well as all three types of
long texts in SlimPajama and Wanjuan. The verifi-
cation results are shown in Table 2 and Table 3.

The quantitative metrics we proposed can effec-
tively distinguish the three types of long texts in
SlimPajama and Wanjuan. Specifically, for Chi-
nese, the accuracy of the aggregated long text is
relatively low. This is because the ‘TextBook’ do-
main in Wanjuan contains a large amount of classi-
cal Chinese texts, which have inherent differences
compared to modern Chinese texts. On one hand,
it is challenging for models and rule-based scoring
methods to accurately distinguish between them.
On the other hand, there exist difficulties and bi-
ases in human annotation. As a result, the rela-
tively lower accuracy is reasonable. Overall, our
proposed method can still effectively differentiate
the three types of long texts in general Chinese and
English language data. In other words, long texts
can be classified into these three types from the per-
spectives of coherence, cohesion, and complexity.

5.2 Setup
We conduct experiments on LLaMA2-7B-4K (Tou-
vron et al., 2023b), LLaMA3-8B-8K (Meta, 2024)
and InternLM2-7B (Team, 2023) corresponding to
LLMs with and without long context capability re-
spectively. Detailed training hyper-parameters can
be found in Appendix D.

For all models, we use a 9:1 ratio of English
to Chinese language data. For SlimPajama, we
follow the data mixtures used for LLaMA pre-
training (Touvron et al., 2023a). Due to the limited
amount of Chinese data, we sample data uniformly
from Wanjuan. We excluded chaotic texts and up-
sample aggregated texts to balance the holistic and
aggregated texts as our proposed recipe.

We compare our proposed data-mixing recipe
with the following three strategies: 1. Training on
long texts from all categories. 2. Training LLM
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EN ZH Text Code Total

LongChat-v1.5-7B-32K 37.13 14.88 27.63 54.15 33.22
Yi-6B-200K 37.65 15.12 28.04 64.55 35.72
Qwen1.5-7B-128K 42.61 26.33 31.62 68.45 39.37
InternLM2-7B 51.61 34.07 40.91 62.86 45.43
ChatGLM3-6B-32K 55.36 42.43 45.64 57.10 48.05

LLaMA2-7B with LongWanjuan 33.92 18.94 25.15 62.90 33.10
LLaMA3-8B with LongWanjuan 34.82 20.23 27.55 67.23 35.91
InternLM2-7B with LongWanjuan 56.64 39.31 46.26 65.26 50.26

Table 4: Comparison between our proposed training strategy with other open-sourced LLMs on LongBench. The
terms HOL, AGG, and CHA respectively denote holistic texts, aggregated texts, and chaotic texts.

EN ∆ ZH ∆ Text ∆

LLaMA2-7B-4K 28.55 13.62 21.41
HOL. + AGG. + CHA. 32.86 +15.11% 17.18 +26.20% 24.30 +13.46%
HOL. 33.17 +16.20% 18.44 +35.44% 24.63 +15.02%
HOL. + AGG. 33.66 +17.91% 17.14 +25.88% 24.99 +16.70%
HOL. + Upsampling AGG. 33.92 +18.80% 18.94 +39.09% 25.15 +17.45%

LLaMA3-8B-8K 33.16 18.86 25.47
HOL. + AGG. + CHA. 33.54 +1.15% 21.12 +12.02% 26.51 +4.09%
HOL. 33.50 +1.03% 21.71 +15.16% 26.61 +4.46%
HOL. + AGG. 34.00 +2.51% 23.02 +22.08% 27.55 +8.17%
HOL. + Upsampling AGG. 34.82 +5.00% 20.23 +7.30% 27.55 +8.17%

InternLM2-7B 51.61 34.07 40.91
HOL. + AGG. + CHA. 55.03 +6.63% 36.63 +7.52% 44.49 +8.74%
HOL. 55.12 +6.81% 36.97 +8.51% 44.61 +9.04%
HOL. + AGG. 55.54 +7.62% 37.36 +9.67% 44.79 +9.46%
HOL. + Upsampling AGG. 56.64 +9.76% 39.31 +15.38% 46.26 +13.07%

Table 5: Comparison of different training strategies data on LongBench. We also report relative improvements over
the pre-trained LLMs in the same way as LLaMA2Long (Xiong et al., 2023). The terms HOL, AGG, and CHA
respectively denote holistic texts, aggregated texts, and chaotic texts.

with only the holistic long texts. 3. Excluding
chaotic texts and employing holistic and aggregated
texts for training.

5.3 Main Results

We first compare the training results of LLaMA2-
7B, LLaMA3-8B and InternLM2-7B with our data
mixing recipe mentioned above on LongWanjuan
with other long-context LLMs, such as LongChat-
v1.5-7B-32K (Li et al., 2023), Yi-6B-200K (01-
ai, 2023), Qwen1.5-7B-128K (Bai et al., 2023a)
and ChatGLM3-6B-32K (Zeng et al., 2023), on
LongBench (Bai et al., 2023b), a widely accepted
benchmark dataset for long-context LLM. Long-
Bench includes different languages (Chinese and
English) and application areas (such as single-doc
QA, multi-doc QA, summarization, few-shot learn-
ing tasks, synthetic tasks, and code completion)
to provide a comprehensive evaluation of the lan-
guage model’s capabilities in handling long con-
texts. During the evaluation, we limit the maximum
input length to 4K tokens for pre-trained LLaMA2-

7B-4K, 8K tokens for pre-trained LLaMA3-8B-8K,
and 32K tokens for other models. We apply the
truncation from the middle used in LongBench.

The results are shown in Table 4, and detailed
scores for each subtask can be found in the Ap-
pendix F. Despite the strong long-text capabilities
of InternLM2-7B, continuing training on Long-
Wanjuan using our recipe leads to performance
improvements across all domains. Moreover, we
surpassed ChatGLM3-6B-32K overall, achieving a
new state-of-the-art performance on LongBench.

5.4 Analysis

Then we compare the training results of LLaMA2-
7B, LLaMA3-8B and InternLM2-7B with the three
strategies mentioned above. The results are shown
in Table 5, and detailed scores for each subtask can
be found in Appendix F. Since our work mainly
focuses on the quality of long text, we do not em-
phasize the improvement in code-related abilities.
We observed that training solely on holistic texts
yielded only marginal improvements compared to
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Single-doc Multi-doc Sum Few-shot Synthetic

LLaMA2-7B-4K 18.43 11.50 15.24 52.36 5.34
HOL. + AGG. + CHA. 23.71 12.54 17.32 59.23 3.45
HOL. 23.57 12.87 19.43 57.79 4.38
HOL. + AGG. 22.35 12.38 20.42 59.68 4.96
HOL. + Upsampling AGG. 22.56 12.74 19.97 61.14 3.86

LLaMA3-8B-8K 23.56 13.74 20.97 62.14 4.86
HOL. + AGG. + CHA. 24.56 14.74 21.97 63.14 5.86
HOL. 25.56 15.74 22.97 64.14 6.86
HOL. + AGG. 26.56 16.74 23.97 65.14 7.86
HOL. + Upsampling AGG. 27.56 17.74 24.97 66.14 8.86

InternLM2-7B 43.50 37.10 23.70 59.95 40.33
HOL. + AGG. + CHA. 42.05 39.96 23.73 61.43 58.67
HOL. 40.46 40.83 24.03 62.07 59.00
HOL. + AGG. 42.63 40.35 24.66 61.83 57.50
HOL. + Upsampling AGG. 44.20 40.15 25.28 62.70 63.05

Table 6: Comparison of different training strategies data on the major task categories in LongBench. The terms
HOL, AGG, and CHA respectively denote holistic texts, aggregated texts, and chaotic texts.

using data from all categories without any filter-
ing. Incorporating aggregated texts can lead to a
significant enhancement and achieve optimal per-
formance among these strategies, especially when
the ratio of aggregated texts is upsampled.

We analyze the performance of these data mix-
ing strategies across different tasks in Table 6. For
LLaMA2-7B, the removal of chaotic texts results
in improvements across multi-doc QA, summa-
rization, few-shot learning tasks, and synthetic
tasks. Additionally, incorporating aggregated texts
alongside training solely on holistic texts enhances
performance on these tasks. Although our pro-
posed recipe excels primarily in few-shot learn-
ing tasks, it demonstrates overall superior perfor-
mance. Regarding InternLM2-7B, our proposed
recipe achieves optimal performance across all
tasks except for multi-doc QA. We attribute the dif-
fering performances between the two models to the
relatively lower proportion of Chinese in LLaMA2-
7B’s pretraining corpus compared to our continued
training with a 10% Chinese ratio. Despite this
distinction, our recipe yields the best overall per-
formance on both these models. When it comes to
LLaMA3-8B, our proposed method acquires the
optimal performance across all task types.

To validate the generality of our LongWanjuan,
we compare the performance of models trained
with different data mixing strategies on another
commonly used long-context evaluation dataset,
L-Eval(An et al., 2023). The results are shown in
Table 11 in Appendix E. It can be found that the
models trained on the filtered text significantly out-
performed those trained on the unfiltered text. Due

to the lack of multi-doc-related tasks in L-Eval, the
addition of aggregated texts had a limited impact
on model performance. Nevertheless, fine-tuning
with the holistic and aggregated text still performs
best on average. Our proposed data mixing also
achieves the best results for InternLM2-7B.

We also evaluate the performance of models fine-
tuned on long texts across multiple short tasks with
a length of less than 2K tokens. Our findings in-
dicate that the average performance fluctuation re-
mains within 1.5 percentage points. Furthermore,
incorporating aggregated texts proves to be effec-
tive in enhancing performance on short tasks. For
detailed performance metrics and benchmark test
results, please refer to the Appendix G.

6 Conclusion

We try to systematically analyze the quality of long
texts from three linguistic dimensions: coherence,
cohesion, and complexity. Inspired by these dimen-
sions, we develop a series of metrics based on statis-
tics and pre-trained models to quantitatively assess
the quality of long texts. Utilizing SlimPajama and
Wanjuan, we construct the LongWanjuan dataset
and categorize texts into three types: holistic, aggre-
gated, and chaotic texts, according to our proposed
metrics. We introduce a data mixture recipe based
on the LongWanjuan dataset to address the issue
of the imbalance between holistic long texts and
aggregated long texts, achieving state-of-the-art
performance on the LongBench benchmark. Our
experimental analysis further validates the effec-
tiveness of the proposed recipe.
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Limitations

We utilize SlimPajama and Wanjuan to construct
LongWanjuan, with the Chinese data still remain-
ing relatively limited. Based on the scalability and
generalizability of our approach, additional Chi-
nese datasets and datasets from other languages
can be incorporated on top of deduplication. We
alleviate the imbalance between the quantities of
holistic and aggregated texts by upsampling aggre-
gated texts. However, we did not attempt to provide
an optimal ratio, leaving this for future work.

Ethics Statement

LongWanjuan is constructed based on Wanjuan
(under the CC BY 4.0 license) and SlimPajama
(under the Apache 2.0 license), both of which per-
mit open and free usage. We plan to open-source
LongWanjuan under the CC BY 4.0 license.

Throughout the dataset construction process,
there are 3 annotators involved, all of whom are au-
thors. The annotators are all native Chinese speaker
and proficient in reading and understanding En-
glish. They consent to contribute their efforts to
building LongWanjuan.
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A Connectives and Pronouns

The connectives and pronouns utilized in our metric
calculations are outlined in Table 7 and Table 8,
respectively.

B Distribution of Texts across Metrics

In this section, we report the distribution features
with more characteristics, including Cohesionconn,
Cohesionpron, CohesionDMR, Complexitypara, in
Figure 5 to Figure 11. We take the C4 domain and
the ChinaNews domain as an example of English
and Chinese texts respectively.

Figure 5: Distribution of texts with different character-
istics on the Cohesionpron metric in the C4 domain.

Figure 6: Distribution of texts with different character-
istics on the CohesionDMR metric in the C4 domain.

Figure 7: Distribution of texts with different character-
istics on the Complexitypara metric in the C4 domain.
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Conn. in English ’but ’, ’whereas’, ’however’, ’though’, ’yet’, ’nevertheless’, ’still’, ’despite’,
’nonetheless’, ’notwithstanding’, ’regardless of’, ’in spite of’, ’apart from’,
’in any case’, ’in any event’, ’supposedly’, ’provided’, ’otherwise’, ’unless’, ’once’,
’as long as’, ’because’, ’so ’, ’since’, ’thus’, ’therefore’, ’as a result’,
’accordingly’, ’thereafter’, ’thereby’, ’hence’, ’given’, ’due to’, ’owing to’,
’on account of’, ’in light of’, ’as a matter of fact’, ’in other words’, ’alternatively,’,
’alternately,’, ’optionally,’, ’namely,’, ’that is to say’, ’in contrast’, ’on the contrary’,
’in turn’, ’by contrast’, ’conversely,’, ’by comparison’, ’for example’, ’for instance’,
’typically,’, ’specifically,’, ’especially,’, ’particularly,’, ’in particular’,
’until’, ’while’, ’when’, ’recently,’, ’presently,’, ’currently,’, ’in the meantime’,
’previously,’, ’initially,’, ’originally,’, ’subsequently,’, ’later’, ’consequently,’,
’finally,’, ’ultimately,’, ’eventually,’, ’in the end’, ’lately,’, ’lastly,’,
’firstly,’, ’secondly,’, ’thirdly,’, ’next’, ’on one hand’, ’on the other hand’,
’moreover’, ’in addition’, ’additionally,’, ’besides’, ’furthermore’,
’in sum’, ’in summary’, ’overall’, ’in short’, ’in conclusion’, ’in brief’, ’in detail’,
’personally,’, ’luckily,’, ’thankfully,’, ’fortunately,’, ’hopefully,’, ’preferably,’,
’surprisingly,’, ’ironically,’, ’amazingly,’, ’oddly,’, ’sadly,’, ’historically,’,
’traditionally,’, ’theoretically,’, ’practically,’, ’realistically,’, ’actually,’,
’generally,’, ’ideally,’, ’technically,’, ’honestly,’, ’frankly,’, ’basically,’,
’admittedly,’, ’undoubtedly,’, ’importantly,’, ’essentially,’, ’naturally,’, ’arguably,’,
’remarkably,’, ’in fact’, ’in essence’, ’in practice’, ’in general’, ’by doing this’.

Conn. in Chinese ’至今为止，’, ’目前’, ’这样一来’, ’详细地’, ’与此同时，’, ’起初’, ’换言之’, ’此刻’,
’鉴于’, ’其中，’, ’例如，’, ’突然’, ’那么，’, ’不久，’, ’并且’, ’确实，’, ’尽管’,
’而不是’, ’总体上，’, ’第一，’, ’无论’, ’最近’, ’无论如何’, ’简而言之’, ’这里，’,
’有时候，’, ’除非’, ’结果，’, ’然后，’, ’除开’, ’当然，’, ’很快，’, ’但是，’,
’另一方面，’, ’换句话说，’, ’理论上’, ’历史上’, ’虽然’, ’不管’, ’所以，’,
’首先’, ’而且’, ’而’, ’由于’, ’第三，’, ’可是，’, ’但’, ’由此可见，’, ’而是’,
’最初，’, ’最终，’, ’后来，’, ’即使’, ’只有这样，’, ’但事实上，’, ’相反’,
’总的来说，’, ’只是’, ’取决于’, ’这时，’, ’用来’, ’以便’, ’基本上，’, ’不料’,
’就像’, ’接下来’, ’老实说’, ’相比之下，’, ’本质上’, ’否则，’, ’从某种意义上’,
’之前’, ’当时’, ’以前’, ’以至于’, ’特别是’, ’尤其是’, ’实际上，’, ’只要’,
’理想情况’, ’或者，’, ’不仅如此，’, ’幸运’, ’事实上，’, ’然而，’, ’一方面，’,
’比如，’, ’通常’, ’原因是’, ’从长远来看’, ’此后’, ’其次’, ’渐渐地，’, ’直到’,
’不论’, ’大多数情况下’, ’之后，’, ’显然’, ’也就是说，’, ’以及’, ’随后，’, ’没想到’,
’不过，’, ’除此之外’, ’无疑’, ’第二，’, ’反过来，’, ’若是’, ’以上就是’, ’也许’,
’假如’, ’可’, ’如果’, ’一如既往’, ’结果就是’, ’通过这样’, ’类似地，’, ’一般来说，’,
’除了’, ’据说’, ’另外，’, ’同样地’, ’反之，’, ’总之，’, ’进一步’, ’可以说’, ’于是，’,
’最后，’, ’既然’, ’尽管如此，’, ’这意味着’, ’同时，’, ’因此，’, ’某种程度上’,
’综上，’, ’随着’, ’此外，’, ’即便如此’, ’有时，’, ’同样，’.

Table 7: The connectives we use to calculate Cohesionconn. These words and phrases are collected from the list of
connective words in Ru et al. (2023).

Pron. in English ’one’, ’ones’, ’i’, ’me’, ’my’, ’mine’, ’myself’, ’you’, ’your’, ’yours’, ’yourself’,
’he’, ’him’, ’his’, ’himself’, ’she’, ’her’, ’hers’, ’herself’, ’it’, ’its’, ’itself’,
’we’, ’us’, ’our’, ’ours’, ’ourselves’, ’they’, ’them’, ’their’, ’theirs’, ’themselves’,
’this’, ’that’, ’these’, ’those’, ’who’, ’whom’, ’whose’.

Pron. in Chinese ’我’, ’自己’, ’你’, ’他’, ’她’, ’它’, ’这’, ’那’, ’这个’, ’那个’, ’那里’, ’彼此’, ’您’,
’我们’, ’你们’, ’他们’, ’她们’, ’它们’, ’这些’, ’那些’.

Table 8: The pronouns we use to calculate Cohesionpron.

C Detailed Statistics

Figures 12a and 12b depict the distribution of data
across various domains in English and Chinese,
respectively, within the LongWanjuan dataset. In
these bar graphs, each row is divided into three
segments from left to right, representing holistic
texts, aggregated texts, and chaotic texts, in that
order. In the English data, the CommonCrawl do-
main predominates, accounting for over 50% of the

data. Apart from a significant amount of aggregated
texts in the CommonCrawl domain, the majority
of data in other domains consists of holistic texts.
In the Chinese data, the distribution across differ-
ent domains is more balanced, with each domain
featuring both holistic and aggregated texts. The
WebText and Law domains contain a notable num-
ber of chaotic texts. Detailed statistical information
is available in Table 9 and Table 10, respectively.
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Domain #Docs #Tokens
Holistic Aggregated Chaotic Total Holistic Aggregated Chaotic Total

CommonCrawl 4740880 638363 36664 5415907 76.5B 9.9B 719.8M 87.2B
C4 632819 88119 2732 723670 7.0B 1.1B 36.6M 8.2B
ArXiv 1045806 3274 287 1049367 25.4B 153.9M 68.3M 25.6B
Book 187396 7369 252 195017 24.2B 893.9M 80.7M 25.1B
Github 377312 56557 0 433869 7.4B 1.3B 0.0M 8.7B
Wikipedia 146469 29745 1883 178097 2.9B 654.4M 97.8M 3.7B
StackExchange 5295 1750 659 7704 60.6M 21.9M 11.3M 93.8M
Total 6856817 786654 48564 7692035 137.6B 13.0B 1.2B 151.8B

Table 9: An overview of the dataset statistics in the English part of LongWanjuan. The number of tokens is
calculated with the tokenizer in InternLM2-7B (Team, 2023).

Domain #Docs #Tokens
Holistic Aggregated Chaotic Total Holistic Aggregated Chaotic Total

ChinaNews 5211 1331 240 6782 51.3M 15.5M 4.3M 71.1M
Law 24575 5212 1310 31097 276.3M 58.1M 69.4M 403.8M
Patent 44922 2956 682 48560 438.0M 31.6M 9.9M 479.5M
TextBook 4746 693 0 5439 496.0M 119.3M 0.0M 615.3M
WebText 18698 7842 3855 30395 180.6M 93.0M 91.4M 365.1M
Total 98152 18034 6087 122273 1.4B 317.4M 175.1M 1.9B

Table 10: An overview of the dataset statistics in the Chinese part of LongWanjuan. The number of tokens is
calculated with the tokenizer in InternLM2-7B (Team, 2023).

Figure 8: Distribution of texts with different charac-
teristics on the Cohesionconn metric in the ChinaNews
domain.

Figure 9: Distribution of texts with different charac-
teristics on the Cohesionpron metric in the ChinaNews
domain.

D Hyper-parameters

We use 64 A100 GPUs and adopt ZeRO3 strate-
gies (Rajbhandari et al., 2020) to tune a 7B model.
We use AdamW (Loshchilov and Hutter, 2017)
with β1 = 0.9 and β2 = 0.95. We set the learn-
ing rate to 3 × 10−5 with a cosine learning rate
schedule with a 20-step warmup. We set the max
gradient norm to 1 and the weight decay to zero.

Figure 10: Distribution of texts with different charac-
teristics on the CohesionDMR metric in the ChinaNews
domain.

Figure 11: Distribution of texts with different charac-
teristics on the Complexitypara metric in the ChinaNews
domain.

We fine-tune both LLaMA2-7B-4K and
InternLM2-7B with 5B tokens using the next token
prediction objective. We set the global batch size
to 2M tokens, with a max length of 32K tokens.
Specifically, for the fine-tuning of LLaMA2-7B
to achieve context over 32K tokens, we adjust the
base of the rotation angle in RoPE (Su et al., 2024)
to 500000 based on LLaMA2Long (Xiong et al.,
2023) and ScalingRoPE (Liu et al., 2023b).
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Figure 12: Distribution of token and document counts across different domains. Each bar is divided from left to
right into three parts: holistic, aggregated, and chaotic texts.

TOEFL QuALITY Coursera SF MD NQ FQA CUAD NQA Avg.

LLaMA2-7B-4K 37.55 27.72 15.12 4.80 1.12 6.17 8.23 6.11 3.41 12.25
HOL. + AGG. + CHA. 45.72 20.30 23.84 4.35 2.33 5.27 9.90 0.61 5.40 13.08
HOL. 38.66 26.73 21.51 4.25 3.45 6.51 9.30 0.71 6.10 13.02
HOL. + AGG. 48.33 25.25 22.67 4.83 1.01 7.63 9.04 1.42 5.79 14.00
HOL. + U. AGG. 40.15 23.27 19.19 4.13 1.80 6.35 9.66 1.51 5.18 12.36

LLaMA3-8B-8K 79.93 54.46 22.67 2.10 8.29 0.00 1.13 2.18 0.44 19.02
HOL. + AGG. + CHA. 72.86 51.49 22.67 6.47 18.41 1.59 3.76 3.65 1.72 20.29
HOL. 71.38 44.55 35.47 7.33 13.26 1.07 6.20 5.46 1.87 20.73
HOL. + AGG. 76.95 51.98 23.26 8.34 17.65 0.41 7.30 5.29 2.12 21.48
HOL. + U. AGG. 73.61 49.50 17.44 7.41 16.66 0.35 9.07 4.45 1.41 19.99

InternLM2-7B-200K 83.64 74.26 41.86 2.94 17.75 0.00 0.00 2.31 0.08 24.76
HOL. + AGG. + CHA. 84.76 71.29 52.91 13.45 17.95 1.83 7.35 5.29 1.04 28.43
HOL. 83.64 69.31 54.65 12.33 17.97 2.78 7.28 4.57 1.20 28.19
HOL. + AGG. 82.90 71.78 54.07 13.06 16.62 3.04 6.57 4.85 0.91 28.20
HOL. + U. AGG. 82.53 72.28 55.81 13.00 18.66 3.61 8.74 4.91 1.09 28.96

Table 11: Comparison of different training strategies data on subtasks in L-Eval, including TOEFL, QuALITY,
Coursera, SFictionQA(SF), MultiDoc2Dial(MD), NQ, LongFQA(FQA), CUAD, NarrativeQA(NQA)

E Performance on L-Eval

The results on LongBench of all the models we
tested are shown in Table 11. Since we focus on
the performance of the pre-trained model and the
quality of the pre-trained data, we omitted certain
instruction-following oriented tasks in L-Eval in
our experiments.

F Detailed Results on LongBench

Detailed results on LongBench of all the models we
tested are shown in Table 12, Table 13 and Table 14.

G Performance on Short Tasks

To verify that the LLM trained on long text in our
proposed strategies can still achieve good perfor-
mance on short-text tasks, we also evaluate our
fine-tuned LLaMA2-7B and InternLM2-7B with a
maximum input context of 2K tokens on short tasks,
including ARC-easy/challenge (Clark et al., 2018),

Hellaswag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), TruthfulQA (Lin et al., 2022),
SuperGLUE (Wang et al., 2019), GSM8K (Cobbe
et al., 2021) and MMLU (Hendrycks et al., 2020).
The results are shown in Table 15.
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Narrative
QA Qasper MF_en MF_zh Hotpot

QA
2Wikim

QA Musique Dureader

LLaMA2-7B-4K 16.86 15.35 23.78 19.08 7.85 10.54 4.27 23.34
HOL. + AGG. + CHA. 22.61 20.39 30.60 22.96 9.34 10.78 6.01 24.01
HOL. 15.36 19.12 35.04 27.64 9.74 10.83 6.00 24.89
HOL. + AGG. 19.15 19.68 29.60 22.78 10.36 10.49 5.47 23.19
HOL. + Upsampling AGG. 16.93 20.16 26.43 27.68 9.63 10.82 6.75 23.77

LLaMA3-8B-8K 18.02 18.78 20.90 20.48 9.11 10.41 6.98 24.45
HOL. + AGG. + CHA. 2.52 19.56 23.57 20.71 10.00 11.50 6.92 19.81
HOL. 6.59 20.17 22.17 20.61 10.56 11.58 6.78 19.91
HOL. + AGG. 6.74 18.40 24.84 22.26 9.80 12.88 6.47 20.28
HOL. + Upsampling AGG. 3.14 18.82 26.05 20.65 8.89 11.07 6.32 19.00

InternLM2-7B 24.02 41.97 47.95 61.16 52.98 37.89 28.02 29.52
HOL. + AGG. + CHA. 26.86 39.95 41.28 59.90 54.76 43.03 31.04 31.00
HOL. 22.52 40.46 39.99 58.76 54.77 45.07 32.28 31.18
HOL. + AGG. 27.25 40.29 42.92 60.14 53.75 44.53 30.87 32.25
HOL. + Upsampling AGG. 29.93 39.62 50.17 58.57 53.68 42.31 32.14 32.46

LongChat-v1.5-7B-32K 16.90 27.70 41.40 29.10 31.50 20.60 9.70 19.50
Yi-6B-200K 12.36 26.41 36.78 22.36 46.57 40.38 25.78 14.73
Qwen1.5-7B-128K 22.59 23.93 46.99 59.39 20.81 16.36 15.99 36.90
ChatGLM3-6B-32K 9.21 43.07 50.86 60.33 55.33 43.73 38.94 41.89

Table 12: Results on single-doc and multi-doc QA subtasks in Longbench including NarrativeQA, Qasper, Multi-
Field_en (MF_en), MultiField_zh (MF_zh), HotpotQA, 2WikimQA, Musique, and Dureader.

Gov
Report QMSum MultiNews VCSum TREC Trivia

QA
SAM
Sum LSHT

LLaMA2-7B-4K 27.09 20.63 3.21 10.02 68.00 89.09 32.09 20.25
HOL. + AGG. + CHA. 29.54 21.75 6.61 11.37 70.00 86.75 39.15 41.00
HOL. 28.66 21.35 16.34 11.36 69.00 88.44 32.71 41.00
HOL. + AGG. 30.72 21.58 18.26 11.11 71.00 88.36 39.36 40.00
HOL. + Upsampling AGG. 28.87 22.14 16.46 12.42 71.50 88.78 39.78 44.50

LLaMA3-8B-8K 31.31 23.00 12.50 7.09 72.00 89.74 44.89 39.50
HOL. + AGG. + CHA. 30.61 22.57 24.78 9.31 74.50 89.03 46.28 41.00
HOL. 30.35 22.84 25.48 8.52 75.00 89.46 44.28 43.00
HOL. + AGG. 30.22 23.24 25.36 5.84 73.00 89.15 44.26 40.50
HOL. + Upsampling AGG. 30.47 22.94 24.73 3.89 70.00 89.45 44.45 40.00

InternLM2-7B 30.02 23.09 26.46 15.23 75.50 92.36 30.94 41.00
HOL. + AGG. + CHA. 33.69 25.03 27.14 9.05 76.00 89.41 37.99 42.33
HOL. 33.68 25.29 27.04 10.12 77.00 89.17 38.85 43.25
HOL. + AGG. 33.49 25.64 27.54 11.95 77.00 89.07 37.43 43.83
HOL. + Upsampling AGG. 32.96 25.49 27.84 14.81 77.00 91.29 41.00 41.50

LongChat-v1.5-7B-32K 30.80 22.70 26.40 9.90 63.50 82.30 34.20 23.20
Yi-6B-200K 29.34 20.65 27.14 8.14 73.50 86.94 9.85 37.50
Qwen1.5-7B-128K 31.17 25.39 26.00 16.17 73.00 89.39 42.51 38.50
ChatGLM3-6B-32K 35.99 24.68 27.44 15.83 79.00 87.39 17.72 42.00

Table 13: Results on summarization and few-shot learning subtasks in Longbench including GovReport, QMSum,
MultiNews, VCSum, TREC, TriviaQA, SAMSum, and LSHT.
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PC PR_en PR_zh LCC Repobench-p

LLaMA2-7B-4K 1.50 5.52 9.00 68.22 62.25
HOL. + AGG. + CHA. 2.05 4.55 3.75 65.17 60.91
HOL. 2.00 5.38 5.75 65.97 61.33
HOL. + AGG. 1.50 7.62 5.75 65.10 60.52
HOL. + Upsampling AGG. 2.50 3.82 5.25 65.93 59.86

LLaMA3-8B-8K 4.21 7.85 21.61 72.36 67.14
HOL. + AGG. + CHA. 1.82 12.64 35.90 67.57 67.25
HOL. 0.72 8.20 38.24 69.98 67.07
HOL. + AGG. 1.09 19.32 49.23 68.54 66.62
HOL. + Upsampling AGG. 1.05 44.37 37.85 67.78 66.68

InternLM2-7B 7.00 56.50 57.50 63.90 61.81
HOL. + AGG. + CHA. 2.00 96.50 77.50 69.96 64.58
HOL. 0.00 98.50 78.50 69.42 65.39
HOL. + AGG. 0.50 96.00 76.00 69.13 65.06
HOL. + Upsampling AGG. 3.14 97.50 88.50 66.80 63.71

LongChat-v1.5-7B-32K 1.00 30.50 7.60 53.00 55.30
Yi-6B-200K 2.50 6.00 7.97 66.10 63.00
Qwen1.5-7B-128K 3.00 9.50 7.00 71.80 65.10
ChatGLM3-6B-32K 2.00 98.50 94.50 60.07 54.12

Table 14: Results on synthetic and code subtasks in Longbench including PassageCount (PC), PassageRetrieval_en
(PR_en), PassageRetrieval_zh (PR_zh), LCC and Repobench-p.

GSM8K ARC-e ARC-c HS WG TQA SG MMLU Average

LLaMA2-7B-4K 16.30 52.73 36.95 69.24 61.25 35.09 50.43 46.78 46.10
HOL. + AGG. + CHA. 16.45 53.09 34.24 65.11 61.01 36.11 51.25 44.13 45.17
HOL. 15.54 53.09 33.90 65.46 61.40 34.80 51.40 42.71 44.79
HOL. + AGG. 16.76 54.67 35.93 65.90 61.01 36.40 50.60 44.74 45.75
HOL. + Upsampling AGG. 17.13 53.97 33.22 65.86 60.30 36.26 49.50 44.49 45.09

LLaMA3-8B-8K 49.05 66.49 41.69 72.81 71.51 35.38 51.97 66.09 56.87
HOL. + AGG. + CHA. 41.47 64.73 38.98 72.16 67.32 34.36 48.93 61.97 53.74
HOL. 45.41 66.31 40.34 72.03 68.19 34.65 50.72 61.68 54.92
HOL. + AGG. 43.52 67.37 39.32 71.47 68.03 34.06 48.35 61.63 54.22
HOL. + Upsampling AGG. 46.10 67.20 39.66 72.07 70.09 35.23 49.49 61.87 55.21

InternLM2-7B 69.83 51.50 42.37 54.87 77.35 39.62 78.83 65.60 60.00
HOL. + AGG. + CHA. 69.67 58.38 41.69 64.46 78.93 37.43 78.43 64.45 61.68
HOL. 70.20 50.26 42.37 56.87 77.90 38.30 79.01 64.75 59.96
HOL. + AGG. 70.43 55.56 40.34 61.64 77.43 37.57 78.85 64.11 60.74
HOL. + Upsampling AGG. 68.99 57.14 41.69 65.46 78.61 38.30 79.20 64.11 61.69

Table 15: Results on 0-shot ARC-easy/challenge, Hellaswag (HS), Winogrande (WG), TruthfulQA (TQA), Super-
GLUE (SG), 4-shot GSM8K and 5-shot MMLU.
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