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Abstract

Multimodal Large Language Models (MLLMs)
have shown promising results in various tasks,
but their ability to perceive the visual world
with deep, hierarchical understanding similar
to humans remains uncertain. To address this
gap, we introduce CONSTRUCTURE, a novel
concept-level benchmark to assess MLLMs’ hi-
erarchical concept understanding and reasoning
abilities. Our goal is to evaluate MLLMs across
four key aspects: 1) Understanding atomic con-
cepts at different levels of abstraction; 2) Per-
forming upward abstraction reasoning across
concepts; 3) Achieving downward concretiza-
tion reasoning across concepts; and 4) Con-
ducting multi-hop reasoning between sibling
or common ancestor concepts. Our findings
indicate that even state-of-the-art multimodal
models struggle with concept structure reason-
ing (e.g., GPT-4o averages a score of 62.1%).
We summarize key findings of MLLMs in con-
cept structure reasoning evaluation. Morever,
we provide key insights from experiments us-
ing CoT prompting and fine-tuning to enhance
their abilities.

1 Introduction

The basic level is the level in a taxonomy
at which things are normally named, in
the absence of reasons to the contrary.

‘Dog’ is a basic level category, ‘boxer’
a subordinate category, ‘quadruped’ a
superordinate category.

— John R. Taylor

According to the prototype theory (Taylor, 2019)
in cognitive science, humans perceive the visual
world hierarchically, with basic, subordinate, and
superordinate categories. People interpret the
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Figure 1: Demo of Concept Structure.

world differently based on these conceptual lev-
els in diverse environments. As shown in Figure 1,
humans can not only understand basic concepts,
but also have a deep concept structure cognition
in minds (Medin, 1989; Suresh et al., 2023). This
raises the question: do multimodal AI systems,
like Multimodal Large Language Models(e.g. GPT-
4V (OpenAI, 2023)), exhibit similar concept struc-
ture cognition ability?

Recently, pretrained multimodal large language
models (MLLMs) have transcended the confines of
text-only modalities, gaining a deeper conceptual
understanding of the world and demonstrating re-
markable performance across a spectrum of down-
stream tasks. As a result, there is a growing impor-
tance and challenge in conducting comprehensive
evaluations of these models to better understand
their capabilities and pinpoint areas for enhance-
ment. Inspired by the cognitive processes under-
lying human conceptual understanding, we posit
that similar deep and structured visual conceptual
cognition capabilities are pivotal for the profound
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Benchmark Assessment of cognitive related abilities Data Source Answer Type Evaluator Size

LVLM-eHub (Xu et al., 2023) Visual Reasoning, Visual Commonsense Datasets MC/OE Metrics/LLMs/User 332k
MME (Fu et al.) Commonsense Reasoning, Numerical Calculating, Text Translation, Code Reasoning Datasets MC Accuracy 2,194
MMBench (Liu et al., 2023) Reasoning(e.g. Phsycial Relation Reasoning, Social Relation Reasoning) Datasets/Handcraft/LLMs MC Accuracy 2,974
SEED-Bench (Li et al., 2023a) Visual Reasoning, Spacial Relation Handcraft/LLMs MC Accuracy 19k
MM-Vet (Yu et al., 2023) Spatial awareness, Knowledge, Math Datasets/Handcraft OE LLMs 218
EgoThink (Cheng et al., 2024) Scene Reasoning, Planning Handcraft OE LLMs 700

CONSTRUCTURE(Ours) Concept Structure Reasoning Datasets/Handcraft MC Accuracy 2,064

Table 1: Comparison Between Comprehensive Benchmarks for MLLMs and Our CONSTRUCTURE.

comprehension of MLLMs. This compelling ques-
tion demands exploration: Do MLLMs truly grasp
and internalize concepts, or do they merely learn
the superficial concept alignment through pretrain-
ing?

However, addressing this question requires a
deeper investigation into the underlying mecha-
nisms and limitations of MLLMs. As shown in
Table 1, the deep visual concept structure cognition
remains largely unexplored in existing benchmarks.
On one hand, these benchmarks seldom consider
visual cognitive capabilities. On the other hand,
existing benchmarks for visual cognition typically
focus solely on assessing visual reasoning ability
related to the whole image content, overlooking
the evaluation of deep and structural visual concept
cognition. For example, SEED-bench (Li et al.,
2023a) evaluates spatial relationships or visual rea-
soning tasks based on the content of images, while
MME (Fu et al.) assesses common-sense reason-
ing, numerical computation, code inference, and
text translation. LVLM-eHub (Xu et al., 2023) eval-
uates visual reasoning and visual common sense.
However, all these benchmarks require answering
questions based on the entire content of an image.
Therefore, there is a pressing need to construct an
benchmark specifically designed to assess the deep
visual concept structure cognition in MLLMs.

In this work, we propose the novel CONSTRUC-
TURE benchmark focusing on deep visual concept
structure cognition. To fully uncover the deep vi-
sual cognitive ability of MLLMs across the overall
concept structure beyond the Figure 1, we con-
sider the following four key capabilities, ranging
from atomic visual concenpt understanding, con-
cept abstraction reasoning, concept concretization
reasoning, to common ancestor reasoning. The
first capability is to evaluate the atomic concept un-
derstanding at different levels. The last three capa-
bilities are to evaluate reasoning ability on concept
structure, including upward abstraction reasoning
from child concepts to parent concepts, downward
concretization reasoning from parent concepts to
child concepts and multi-hop reasoning between

sibling concepts or common ancestor concepts, re-
spectively.

Based on the our proposed CONSTRUCTURE
benchmark, we conduct comprehensive experi-
ments to evaluate concept structure cognition ca-
pabilities of fourteen popluar MLLMs (including
six API-based MLLMs and eight open-sourced
MLLMs). We conclude the main findings as fol-
lows:

1) Current MLLMs possess a certain level of
conceptual understanding, but their performance
in concept structure reasoning is poor. The best
model, GPT-4o, only achieved a score of 0.621,
indicating significant room for improvement.

2)In concept structure reasoning tasks, MLLMs
perform the worst in common ancestor reasoning.
The main reasons for errors are inconsistencies
in the reasoning process and constraint violations.
This demonstrates that adhering to multiple con-
straints and maintaining consistency in the rea-
soning process are key challenges to enhancing
MLLMs’ concept structure cognitive abilities.

3) MLLMs still need to improve their ability to
reason about hierarchical relationships in concept
structures. For instance, in abstraction and con-
cretization reasoning tasks, their ability to identify
more abstract or concrete concepts among multi-
ple concepts is still limited. They often struggle
due to a lack of knowledge about related concept
hierarchies.

4) MLLMs’ performance deteriorates as the con-
cept hierarchy deepens and granularity increases.
Therefore, improving fine-grained concept recog-
nition and the ability to reason about related fine-
grained concept structures is crucial for enhance-
ment.

Our evaluation results reveal the limitations of
MLLMs in concept structure cognition, providing
a comprehensive and clear analysis that directs
further improvements for MLLMs. Furthermore,
we improved MLLMs’ concept structure reasoning
abilities through few-shot CoT prompting and fine-
tuning methods, and elucidated three key insights
in the discussion.
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2 Related Work

2.1 Multimodal Large Language Models

Building upon the monumental achievements of
large language models (LLMs) (Du et al., 2022;
OpenAI, 2023; Zhu et al., 2023), recent advance-
ments in multimodal LLMs (MLLMs) have firmly
established LLMs as their foundational backbone.
Initially, MLLMs commence pre-training using
large-scale image-text paired datasets (Yang et al.,
2023; Li et al., 2023b) or by integrating random vi-
sual and textual data (Ye et al., 2023; Bai et al.,
2023). This foundational phase is further en-
riched by leveraging extensive image-text instruc-
tion datasets (Dai et al., 2024). Recent studies (Liu
et al., 2024) have increasingly employed fine-
tuning strategies, significantly enhancing MLLMs’
capacity to deliver superior performance in various
downstream tasks and benchmarks.

2.2 Evaluations of MLLMs

Current benchmarks aim to comprehensively as-
sess MLLMs’ capabilities in multimodal cogni-
tion tasks like reasoning. For example, LVLM-
eHub (Xu et al., 2023) evaluates visual reason-
ing and common-sense cognition across 47 bench-
marks. MME (Fu et al.) covers inference, numer-
ical computation, translation, and code reasoning.
SEED-bench (Li et al., 2023a) focuses on visual
and spatial reasoning, while MM-VET (Yu et al.,
2023) evaluates spatial relationships, knowledge,
and math abilities. EgoThink (Cheng et al., 2024)
assesses scene reasoning and planning. Our CON-
STRUCTURE benchmark specifically targets hi-
erarchical concept structure reasoning in MLLMs’
understanding of visual concepts.

2.3 Concept-Related Datasets and
Benchmarks

Concept-related datasets like ConceptNet (Speer
et al., 2017) and WordNet (Miller, 1995) provide
structured taxonomies for words and concepts but
are limited to a single modality. In contrast, mul-
timodal datasets such as ImageNet (Deng et al.,
2009), M2ConceptBase (Zha et al., 2023), and
BabelPic (Calabrese et al., 2020) align visual im-
ages with concepts, bridging textual and visual
modalities. Datasets like Objects365 (Shao et al.,
2019) focus on object detection, while COCO (Lin
et al., 2014), CC3M (Sharma et al., 2018), and
CC12M (Changpinyo et al., 2021) provide concep-
tual captions paired with images, playing a key role

in training MLLMs. However, benchmarks for eval-
uating the conceptual understanding of MLLMs
are limited. For example, POPE (Li et al., 2023c),
based on COCO, evaluates object hallucination in
MLLMs but does not assess models’ understand-
ing of hierarchical concept structures. In contrast,
our CONSTRUCTURE benchmark integrates hi-
erarchical visual concepts and images to evaluate
MLLMs’ cognition and reasoning abilities related
to concept structure, advancing their evaluation be-
yond surface-level tasks.

3 CONSTRUCTURE Benchmark

3.1 Problem Formulation
Our objective is to assess concept structure cogni-
tion abilities of MLLMs. This task can be formu-
lated as multiple-choice question answering. Given
an image I and a question Q with candidate an-
swers A = {Ai}mi=1, the goal is to select the answer
that best corresponds to the question.

To uncover the concept structure cognition abil-
ity of MLLMs, we design the following four key
tasks, as shown in Figure 2, ranging from atomic
visual concenpt understanding, concept abstrac-
tion reasoning, concept concretization reasoning,
to common ancestor reasoning. We explain why
these are needed inspired by human concept cogni-
tion and introduce how to evaluate with examples.
Atomic Visual Concept Understanding. Human
cognition of concepts has different levels of ab-
straction, and we can not only understand concrete
concepts like “Persian Cat”, but also abstract con-
cepts like “Mammal”. Can MLLMs understand
visual concepts at various levels of abstraction? As
shown in upper left part of Figure 2, to evaluate
atomic visual concept understanding ability, we
query MLLMs with a simple discriminant question
(i.e. “Is the concept depicted in the image a {con-
cept_name}?”) with true or false options related
to specific concepts at various abstraction levels.
To answer this question, MLLMs need to have a
multi-level understanding of visual concepts.
Concept Abstraction Reasoning. Human beings
can categorize concrete concepts into higher-level
abstract concepts; for example, they categorize
“penguins” and “sharks” as “birds” and “fish”, re-
spectively. Furthermore, they can select the most
abstract concept from multiple candidates; for in-
stance, identifying “carnivora” as the most abstract
concept for “Persian Cat” among other potential
choices (e.g., “cats”, “domestic cat”, “carnivora”).
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Question: Please select a concept from the 
following options that is different from the 
concept depicted in the image but still falls 
under the category of {Mammal}.
A. Artiodactyl
B. Penguin
C. Antelope
D. Carnivora

Answer: D

Question: Please choose the most specific and 
accurate concept from the following options that 
accurately describes the concept in the image.
A. Woody Plants
B. Higher Plants
C. Herbaceous Plants
D. Plant

Answer: A

Question: Please choose the most abstract and 
general concept from the following options that 
accurately describes the concept in the image.
A. Cats
B. Domestic Cat
C. Carnivora
D. Artiodactyl

Answer: C

Atomic Concept Understanding

Common Ancestor Reasoning

Concept Abstraction Reasoning

Question: Is the concept depicted in the image 
a {Lynx}?
A. Yes
B. No

Answer: A

Question: Is the concept depicted in the image 
a {Carnivora}?
A. Yes
B. No

Answer: B

Cats
Carnivora
Mammal

Lynx
Wildcat

Image

Concept Concretization Reasoning

Cats
Carnivora
Mammal

Persian Cat
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Image
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Figure 2: CONSTRUCTURE Benchmark. Each sub-task consists of three components: Input, Output, and Concept
Chain with Aligned Image. Concepts in the chains and answer options are consistently color-coded, with green
indicating the correct answer and key question requirements highlighted in red. In the Concept Chain with Aligned
Image, solid arrows denote correct concepts, dashed arrows indicate incorrect concepts, red arrows represent concept
abstraction, and green arrows signify concept concretization.

How well do MLLMs perform this kind of visual
concept abstraction reasoning process? As shown
in upper right part of Figure 2, to evaluate con-
cept abstraction reasoning ablity, we query MLLMs
with multiple-choice questions to select the most
abstract and general visual concept from candidate
options. The image is aligned correctly with sev-
eral concepts in candidate options, MLLMs need
to recognize them and figure out one has the most
abstract level. To answer this question, MLLMs
need firstly recognize correct options and then rea-
son out the most abstract concept aligned with the
image.

Concept Concretization Reasoning. Human be-
ings can concretize abstract concepts to lower-
level concrete concepts; for example, recognizing
from the category of plants (“higher plants”) to
fine-grained types (“woody plants”). Addition-
ally, they can identify the most specific concept
from multiple options; for instance, classifying
“woody plants” as the most specific concept for “Eu-
phorbia Milii” among other potential choices (e.g.,
“woody plants”, “higher plants”, “plants”). How
well do MLLMs perform this kind of visual con-
cept concretization reasoning process? As shown
in lower left part of Figure 2, to evaluate concept
concretization reasoning ability, we query MLLMs
with multiple-choice questions to select the most

specific and accurate concept from candidate op-
tions. The image is aligned correctly with several
concepts in candidate options, MLLMs need to rec-
ognize them and figure out the most concrete one.
To answer this question, MLLMs need firstly rec-
ognize correct options and then reason out the most
concrete concept aligned with the image.

Common Ancestor Reasoning. Human percep-
tion of visual concepts follows a hierarchical struc-
ture. For instance, we recognize that “dogs” and
“cats” have a higher-level common ancestor concept
“mammal”, and within the category of “dogs”, there
are subcategories like “pet dog” and “hunting dog”.
Can MLLMs fully grasp the various hierarchical
levels of a visual concept? Can they reason that
two visual concepts have a common ancestor con-
cept or are they in a sibling relationship? As shown
in lower right part of Figure 2, to evaluate com-
mon ancestor reasoning ability, we query MLLMs
with multiple-choice questions to select a concept
which is different from as well as share the same
parent or common ancestor concept with the con-
cept depicted in the image. To answer this question,
MLLMs need have the ability to reason across sib-
ling concepts or common ancestor concepts, which
indicates that MLLMs need to have the structure
cognition ability of the related concepts.
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3.2 Data collection

Constructing Concept Chains. We use the Open
WordNet (Wang and Bond, 2013) as our data
source of concept structure, which encompasses
19.7K isA relations. We clean the raw data and
construct an isA concept tree (with a root node).
During construction, we drop potential isA rela-
tions to avoid the circular dependency. After that,
we recursively search for the isA concept chains
with a length of 5 as our candidates for the next
stage of sample generation.

Collecting Visual Concept Images with Man-
ual Checking. First, since not all concepts in the
collected candidate chains are necessarily visual
concepts, we leverage M2ConceptBase (Zha et al.,
2023), a multimodal knowledge base with exten-
sive concept-image alignments, to select chains
where all concepts are visual. Second, we assign
images from M2ConceptBase to each of the lowest-
level concepts in these chains. Third, we meticu-
lously verify the accuracy of the concept chains,
ensuring that the lowest concept in each chain cor-
rectly corresponds to its image in the knowledge
base. We eliminate any incorrect candidate chains
or erroneous isA relations (originating from raw
data in Open Wordnet) within the candidate chains.
Additionally, we search the Internet for accurate im-
ages to replace any lower quality or incorrect ones.
In conclusion, we curate a total of 646 chains with
lengths ranging from 3 to 5, each with correctly
aligned images for the lowest-level concepts.

Sample Construction. For each task, a sam-
ple S is composed of an image I , a question
Q, a candidate answer set A and an answer Ay:
S = {I,Q,A,Ay}. For each question in every
task, we construct (image, question, answer can-
didates, answer) pairs based on the concept chain.
The images are assigned in the previous stage, and
the questions are meticulously designed templates,
as shown in Figure 2. Next, we generate the an-
swer and different candidate answers using concept
chains and concept structure, including neighbor-
ing concepts in the concept structure as challenging
distractors. For atomic visual concept understand-
ing, we can generate N questions with true or false
options for every chain of length N . We randomly
assign 50% of concepts paired with correct images
(Ay = “A. Yes”), and 50% with incorrect images
from unrelated concepts (Ay = “B. No”). In con-
cept abstraction reasoning, for each chain of length
N , we generate N − 1 questions with options set

Subset Train Valid Test Total

Atomic Visual Concept Understanding 2,168 313 637 3,118
Concept Abstraction Reasoning 1,738 247 490 2,475
Concept Concretization Reasoning 1,717 246 489 3,210
Common Ancestor Reasoning 1,611 225 448 2,284
Total 7,234 1,031 2,064 10,329

Table 2: Statistics of CONSTRUCTURE.

to current-level concept, lower-level concept, posi-
tive upper-level concept (Ay), and negative upper-
level concept (in random order). Similarly, in
concept concretization reasoning, options include
current-level concept, upper-level concept, posi-
tive lower-level concept (Ay), and negative lower-
level concept. For common ancestor reasoning in
chains of length N , options cover current-level con-
cept, upper-level concept, lower-level concept and
brother or brother-son concept (Ay), arranged ran-
domly. We conduct rigorous programmatic and
manual checks to replace unreasonable options that
might lead to multiple correct answers with appro-
priate options.

3.3 Data Statistics

As shown in Table 2 , our CONSTRUCTURE
benchmark has totally 10, 329 samples. We split
the benchmark into training, validation, and test
sets in a ratio of 7:1:2, totaling 7234, 1031, and
2064 samples, respectively. The test set is exclu-
sively used for evaluating MLLMs, while the train-
ing and validation sets are employed for fine-tuning
MLLMs to enhance their conceptual structure rea-
soning capabilities. The breakdown of question
types is detailed in Table 2. We further elaborate on
the details of the CONSTRUCTURE benchmark
in Table 4. Our benchmark comprises 1315 vi-
sual concepts, 646 concept chains, and 644 images,
with an average concept chain length per sample
of 4.93. The breakdown of subsets is detailed in
Table 4. As shown in Figure 5, our CONSTRUC-
TURE benchmark covers a wide range of topics,
including “animal”, “plant”, “device”, “clothing”,
“chemicals”, and more.

4 Experiments

4.1 Experimental setups

Multimodal Large Language Models. We evalu-
ate six API-based MLLMs (OpenAI, 2023; Yang
et al., 2023; Team et al., 2023; Bai et al., 2023)
and eight open-source MLLMs (Li et al., 2023b;
Dai et al., 2024; Zhu et al., 2023; Ye et al., 2023;
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Model Concept Understanding Abstraction Reasoning Concretization Reasoning Common Ancestor Avg. Score

API-based Models
gpt-4-vision-preview 0.692 0.748 0.601 0.241 0.586

gpt-4o-0513 0.896 0.657 0.663 0.145 0.621
gemini-pro-vision 0.733 0.584 0.486 0.040 0.489

gemini-1.5-pro 0.746 0.692 0.407 0.100 0.513
claude3_sonnet 0.666 0.571 0.501 0.397 0.546
Qwen-VL-Max 0.763 0.543 0.631 0.143 0.545

Open-source Models
BLIP2 0.794 0.484 0.442 0.326 0.535

InstructBLIP 0.000 0.061 0.143 0.069 0.063
MiniGPT-4 0.455 0.257 0.186 0.172 0.283

mPLUG_Owl 0.495 0.216 0.241 0.237 0.313
VisualGLM 0.281 0.027 0.045 0.016 0.107

Chinese_LLaVA 0.532 0.531 0.303 0.201 0.406
LLaVA-1.5 0.670 0.347 0.337 0.246 0.422

Qwen-VL-Chat 0.794 0.316 0.543 0.245 0.502

Table 3: Evaluation Results on CONSTRUCTURE Benchmark.

Du et al., 2022; Liu et al., 2024; Bai et al., 2023).
All open-source MLLMs are ~7B models. We con-
duct zero-shot setups in overall evaluation for all
MLLMs across our CONSTRUCTURE benchmark.
Since our benchmark includes both Chinese and
English versions, we evaluate MLLMs with Chi-
nese capabilities in a Chinese context and those
without in an English context.

Evaluation Methods. In the CONSTRUCTURE
benchmark, test samples are organized in a
multiple-choice format. The questions are divided
into different sets: atomic concept understanding
questions, which include “true” and “false” as the
two options, and three other reasoning question
sets, each offering four challenging options. Only
one of these options is the correct answer. We input
the image and the question to query MLLMs to get
a response. Following (Huang et al., 2024), we
then employ regular expression matching to parse
the model outputs and calculate the accuracy by
comparing it with the ground truth.

4.2 Main Results

Overall Results. We first present the overall results
of the evaluated models on our CONSTRUCTURE
benchmark as shown in Table 3. Current MLLMs,
whether open-source or proprietary, demonstrate
some level of concept understanding, but their abil-
ity to comprehend conceptual structures remains
limited. The top-performing model, GPT-4o-0513,
achieved an average score of only 0.621, with even
lower average scores of 0.498 across the three con-
ceptual structure reasoning tasks. There is signifi-
cant variability in performance across different rea-
soning tasks, and all MLLMs struggle particularly

Answer: A

Question: Is the concept depicted in the image bovidae? 

A. Yes B. No

Model Predictions

Image  Question & Answer

GPT-4o: B. No, the picture shows a sheep, belonging to the family Ariidae and not belonging to the 
family Bovidae.

GPT-4V: B. No, the animal shown in the picture is a sheep, which belongs to a family other than the 
bovidae family, namely the Ovis family. Bovidae animals usually include cattle, buffalo, bison, 
rhinoceros, and so on.

Gemini-1.5-pro: B. No, the picture shows a sheep, which belongs to the Ovis family of animals, not the 
Bovidae family of animals.

Qwen-VL-Max: Yes. The picture shows a sheep, which belongs to the Bovidae family. The Bovidae 
family includes various domestic animals such as cattle, sheep, and deer. 

Qwen-VL-Chat: The animal shown in the picture is a sheep, belonging to the family Bovidae.

LLaVA-1.5-7B: Yes.

BLIP2: B.

Figure 3: Case study of Atomic Concept Understanding
Task.

with Common Ancestor Reasoning, indicating its
ongoing challenges. Overall, GPT-4o-0513 and
GPT-4-vision-preview stand out among API-based
models. Although API-based models generally out-
perform open-source models, open-source models
like BLIP2 and Qwen-VL-Chat achieve compet-
itive results, surpassing models such as Gemini.
This indicates that open-source approaches are ca-
pable of producing high-performing models in cer-
tain areas.

Results on Atomic Concept Understanding.
MLLMs generally perform well on the atomic con-
cept understanding task. Among the API-based
models, GPT-4o achieves nearly 90% accuracy, in-
dicating a robust understanding of visual concepts
across different levels. In the open-source models,
both BLIP2 and Qwen-VL-Chat achieve a score
of 0.794, surpassing most API-based models and
only slightly behind GPT-4o. We observe that mod-
els performing well in the atomic concept under-
standing task also tend to excel in the other three
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reasoning tasks, demonstrating a positive correla-
tion between atomic concept understanding and
concept structure reasoning performance. Instruct-
BLIP, however, performs poorly across most tasks,
frequently outputting incorrect answers or gibber-
ish. VisualGLM also struggles, often disregarding
task instructions and merely generating descrip-
tions of the images. Figure 3 below illustrates the
performance of different MLLMs on an atomic con-
cept understanding task. In the example, GPT-4o,
GPT-4V, and Gemini-1.5-pro correctly identified
the image as a sheep but incorrectly answered that
a sheep is not a bovine animal (when, in fact, it is).
However, Qwen-VL-Max and Qwen-VL-Chat cor-
rectly identified that a sheep belongs to the bovine
family. This indicates that not all MLLMs possess
comprehensive knowledge of concept structures.

Results on Concept Abstraction Reasoning. In
the concept abstraction reasoning task, GPT-4V
achieved the highest score of 0.748, followed by
Gemini-1.5-pro with 0.657. Among open-source
models, Chinese_LLaVA performed the best, scor-
ing 0.531. Figure 6 presents the responses of dif-
ferent MLLMs to a specific question in this task.
In this example, GPT-4V, Qwen-VL-Chat, LLaVA-
1.5, and BLIP2 all provided correct answers. How-
ever, both GPT-4o and Gemini-1.5-pro answered
incorrectly, misunderstanding the concept abstrac-
tion and hierarchical relationship (i.e. waterbirds
include both swimming birds and wading birds).

Results on Concept Concretization Reasoning.
In the concept concretization reasoning task, GPT-
4o once again achieved the highest score of 0.663,
followed by Qwen-VL-Max with a score of 0.631.
Among the open-source models, Qwen-VL-Chat
performed the best with a score of 0.543, with
BLIP2 coming in second at 0.442. Figure 7 il-
lustrates the performance of different MLLMs on
a specific question in this task. In this exam-
ple, Gemini-1.5-Pro and BLIP2 answered correctly.
Gemini-1.5-Pro provided the correct reasoning pro-
cess, while the other models answered incorrectly:
GPT-4o gave an incorrect response without engag-
ing in reasoning, GPT-4v misidentified the concept
in the image (it’s a Mahi Mahi or dolphinfish, not a
saury pike), and Qwen-VL-Max selected an overly
broad option due to conservative answering.

Results on Common Ancestor Reasoning. In the
common ancestor reasoning task, all MLLMs strug-
gled, indicating it as the most challenging task for
MLLMs in concept structure reasoning. The best
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Figure 4: Distribution of Error Types for GPT-4o and
Gemini-1.5-Pro.

performer was claude3_sonnet, achieving a score
of 0.397. GPT-4V and GPT-4o scored 0.241 and
0.145, respectively. Among the open-source mod-
els, BLIP2 scored 0.326, surpassing both GPT-4V
and GPT-4o but falling short of claude3_sonnet.
Figure 8 illustrates the performance of different
MLLMs on a specific question in this task. In this
example, the image represents the structural for-
mula of a chemical compound, acetamide. The
question requires the model to adhere to two con-
straints: 1) it must differ from the concept shown
in the image, and 2) it must also be a “compound”.
Only Qwen-VL-Chat provided the correct answer
in the example. GPT-4o and Gemini-1.5-pro cor-
rectly identified that option B’s “solution” is a mix-
ture rather than a “compound” (a pure substance),
but they provided an incorrect answer in the final
step of reasoning, revealing inconsistency in their
reasoning process. GPT-4V gave a hallucinative
answer, and its reasoning process was also incor-
rect. Qwen-VL-Max’s answer did not meet the first
requirement. Therefore, we observe that MLLMs
perform poorly in tasks like Common Ancestor
Reasoning due to various reasons, such as errors in
understanding images or concepts, inconsistency
in generation or reasoning processes, and others.

4.3 Analysis

Error Type Analysis. To further analyze the er-
ror type distribution of MLLMs, we examined two
models: GPT-4o and Gemini-1.5-Pro. As shown
in Figure 4, we finally categorize errors into seven
types, focusing on the capabilities of MLLMs re-
garding images, concepts, and language. The er-
ror types are as follows: 1) Image-Irrelevance:
This error occurs when models provide answers
that do not take the content of the provided im-
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ages into account. 2)Image-Object Detection: This
refers to models failing to recognize key objects
or misidentifying them. For example, a cow might
be incorrectly detected as an antelope. 3)Concept-
Hierarchies: models have difficulties in understand-
ing hierarchical relationships between concepts
and identifying which one is in a higher level.
4) Concept-Meaning: models fail to comprehend
the meanings of options because they don’t know
which concepts include the objects in the images.
5) Concept-Siblings: models have difficulties in
recognizing sibling relationships between concepts.
For example, the models doesn’t recognize that
“antelopes” and “yaks”, which are hyponyms of
“bovine animals”, are sibling nodes, distinct from
“deer”. 6) Constraint Violation: models have diffi-
culties in understanding the constraints of a given
task. Most of errors in common ancestor reasoning
fall into this category. 7) Inconsistent Answers:
models produce conflicting answers or multiple
answers inside the analysis of answers, unable to
reach a definitive conclusion.

Analyzing the Impact of Concept Abstraction
Levels. We analyze the impact of conceptual ab-
straction levels on model performance in under-
standing conceptual structures. We find that as the
level of concept abstraction increases, the model
performance declines. See detailed analyses in Ap-
pendix A.3.

4.4 CoT Reasoning and Finetuning

This section explores CoT reasoning and fine-
tuning methods to enhance the reasoning abilities
of MLLMs. We conducted experiments on the last
three reasoning tasks in our CONSTRUCTURE
benchmark. We will first present the overall results,
followed by a detailed discussion of each experi-
mental setting.

Overall Results. As shown in Table 5, across the
three concept structure reasoning tasks, GPT-4V
emerged as the top performer among all baselines,
achieving an average score of 0.537, followed by
GPT-4o at 0.498. We conducted separate experi-
ments with Zero-shot CoT prompting and Few-shot
CoT prompting based on GPT-4o. The results re-
vealed that Few-shot CoT significantly enhanced
GPT-4o’s concept structure reasoning capabilities,
increasing its average score from 0.498 to 0.699—
an improvement of over 20 points. This improve-
ment surpassed GPT-4v by more than 16 points.
Notably, in the Common Ancestor Reasoning task,

the score rose from 0.145 to 0.529, marking an
impressive increase of nearly 38 percentage points.
Conversely, Zero-shot CoT did not yield significant
improvements. Furthermore, through fine-tuning
on the constructed training and validation sets,
we achieved the most substantial performance en-
hancement with Qwen-VL-Chat, reaching a score
of 0.74. This performance surpassed even the best
baseline, GPT-4V, which scored 0.537. We also
conduct experiments using four non-multimodal
LLMs with a known ground truth concept that spec-
ifies the concept present in the image. As observed,
these non-multimodal LLMs demonstrate signifi-
cantly poor performance, often falling below ran-
dom guessing levels (~0.25). This stark difference
highlights that the capability for concept structure
reasoning is significantly enhanced by multimodal
input, as these ‘blind’ LLMs lack the contextual
integration provided by multimodal data.

Zero-shot CoT. We evaluate and report on two em-
pirically derived zero-shot CoT prompts and two
multimodal zero-shot CoT prompts. Our experi-
ments reveal that these prompts do not enhance
model performance on conceptual structure rea-
soning tasks. Specifically, we randomly sample
200 error cases from the GPT-4o conceptual struc-
ture reasoning tasks and apply five empirically de-
signed zero-shot CoT prompts.(see detailed prompt
in Appendix B). Based on the error correction rate,
we select the two best-performing zero-shot CoT
prompts for evaluation on the full test set and report
the results. As shown in Table 5, although these
zero-shot CoT prompts achieve up to a 30% er-
ror correction rate in the sampled error cases, they
lead to a performance decline when applied to the
full test set, with scores dropping from 0.498 to
0.479 and 0.451, respectively. This indicates that
while these prompts slightly improve performance
on error cases, particularly in the Common An-
cestor reasoning task (from 0.145 to 0.165), they
negatively impact Concretization Reasoning (from
0.662 to 0.575 and 0.495), leading to an overall
decline in performance. This suggests that prompts
like “Let’s think step by step.” do not significantly
help with concept structure reasoning problems.

For the multimodal CoT prompt, we evaluate
using the m-cot and v-cot methods (Singh et al.,
2023; Chen et al., 2024). As shown in the results,
the multimodal CoT with m-cot achieved the high-
est score of 0.507 in zero-shot settings. However,
the improvement over the zero-shot method (0.498)
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is minimal, and the score remains significantly
lower than the few-shot CoT performance (0.699).
This result demonstrates that even multimodal zero-
shot CoT methods struggle to assist with concept
structure reasoning tasks. We speculate that this
is because these tasks primarily evaluate MLLMs’
understanding of relationships between concepts,
which requires a more refined reasoning process
to solve the inference between visual inputs and
conceptual relationships. Since the model has not
learned to reason from multimodal inputs to con-
cepts or to infer the transitions between different
levels of concepts, zero-shot CoT fails to be effec-
tive.

Few-shot CoT. We use few-shot CoT prompts writ-
ten by human experts for each question type (de-
tailed prompts can be found in the Appendix B).
The human-designed few-shot CoT samples thor-
oughly address issues identified in previous error
analyses, such as GPT-4o not following question
instructions and having inconsistent reasoning pro-
cesses. The CoT prompts instruct the model to
answer questions according to the given instruc-
tions and to analyze each option one by one. In
the samples, the prompts first break down the mul-
tiple constraints of the question and then analyze
whether each option meets these constraints. By
guiding GPT-4o through this reasoning paradigm,
its ability to solve conceptual structure reasoning
problems is significantly enhanced. This demon-
strates that following a proper reasoning process
and possessing strong reasoning capabilities are
crucial for improving the model’s concept structure
reasoning.

Fine-tuning. Additionally, we conduct fine-
tuning experiments on several MLLMs (including
mPLUG-owl, LLaVA-1.5, and Qwen-VL-Chat) us-
ing our training and validation sets. The fine-tuned
models, trained on the specialized concept struc-
ture reasoning dataset, achieve significant improve-
ments of 20-30 percentage points, with Qwen-VL-
Chat achieving a top performance score of 0.740.
The results show that fine-tuning can improve con-
cept structure reasoning capabilities, indicating that
MLLMs may lack certain concept-related knowl-
edge. To further understand the impact of atomic
concept understanding data, we perform an abla-
tion study by removing the atomic concept under-
standing subset from the training data and training
for the same number of epochs. These results show
a decrease in model performance, demonstrating

that the inclusion of atomic concept understanding
data is beneficial for enhancing the model’s concept
structure reasoning abilities.

Discussion. We summarize three key insights from
experiments on enhancing MLLMs’ concept struc-
ture reasoning abilities: 1) Zero-CoT prompting
does not significantly improve MLLMs’ perfor-
mance in concept structure reasoning. This may
be because step-by-step reasoning prompts can in-
crease the likelihood of the model focusing on
erroneous interference items, leading to reason-
ing errors. 2) Few-shot CoT prompting that in-
tegrates human expert reasoning process pri-
ors can significantly enhance MLLMs’ concept
structure reasoning abilities. The few-shot CoT
used specifically designed problem-solving pro-
cesses as prompts, providing more explicit reason-
ing guidance compared to the general CoT prompts
used in v-cot and m-cot. We hypothesize that multi-
modal concept structure reasoning requires deeper
visual concept metacognition, which cannot be eas-
ily addressed by generic problem-solving processes
like v-cot and m-cot. Instead, it requires profound
conceptual knowledge and related reasoning abili-
ties. Proper conceptual reasoning prompts can bet-
ter guide MLLMs in concept structure reasoning.
3) Fine-tuning based on concept structure rea-
soning data can significantly improve MLLMs’
performance. This indicates that MLLMs may
lack certain concept structure-related knowledge,
highlighting the significant value of our proposed
concept structure reasoning dataset.

5 Conclusion

We introduce the CONSTRUCTURE benchmark,
which evaluates MLLMs’ cognitive and reasoning
abilities in tasks like atomic concept understanding,
concept abstraction reasoning, concept concretiza-
tion reasoning, and common ancestor reasoning.
Our findings highlight significant challenges in
concept structure reasoning for MLLMs. The top-
performing model, GPT-4o, achieved an average
score of 0.621, indicating room for improvement.
We summarize current evaluations of MLLMs in
concept structure reasoning, analyze reasons for
their underperformance, and provide key insights
from experiments using CoT prompting and fine-
tuning to enhance their abilities. Our discoveries
offer crucial guidance for advancing MLLMs’ cog-
nitive capabilities in concept structure reasoning.

4962



Limitation

Since our concept chains are based on a Chinese
taxonomy, there may be some language bias during
translation into English. Despite extensive manual
checks, our data annotations might still contain a
few inaccuracies due to errors in the raw data, in-
fluenced by the annotators’ understanding of the
correct answers. Additionally, we primarily eval-
uate the capabilities of MLLMs within a Chinese
context. Given the varying proficiency of different
models in Chinese and English, the results may
exhibit some variations.
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A Appendix

A.1 Dataset Statistics
Dataset statistics details are shown in Table 4. The
top-level concept frequency distribution is shown
in Figure 5.

A.2 Case Study of Zero-shot Evaluation
See case study of concept abstraction reasoning
task in Figure 6. See case study of concept con-
cretization reasoning task in Figure 7. See case
study of common ancestor reasoning task in Fig-
ure 7.

A.3 Evaluation Analylis Details.
Since each question in our benchmark is gener-
ated based on concepts within a conceptual chain,
effectively examining the conceptual structure sur-
rounding a specific level of abstraction, including
superordinate, subordinate, and sibling concepts.
To quantify this, we designate the most abstract
concept level as 0, with subsequent subordinate
levels labeled as 1, 2, 3, and so on, up to a maxi-
mum of 5. Based on this framework, we categorize
the questions into five types, each corresponding
to a different level of conceptual abstraction. We
then evaluate and compare the performance of both
API-based models and open-source models across
these abstraction levels. Figures 9 and 10 show
the performance of API-based MLLMs and open-
source MLLMs on questions at different levels of
conceptual abstraction, respectively. We observed
a consistent trend across both types of models: as
the level of concept abstraction increases, model
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Answer: A

Please choose the most abstract and general concept from the following options that 
accurately describes the concept in the image. 

A. waterbirds B. crane

C. wader D. singing birds

Model Predictions

Image  Question & Answer

GPT-4o: The most abstract and general concept that can accurately describe the concept in the picture is: C. [[wader]] 

wader include various birds living in shallow water environments, such as cranes, storks, egrets, etc. They are more abstract and general than 
waterbirds or specific bird species (such as cranes). The singing birds is a type of bird that attracts mates or declares its territory by singing, which 
is not completely corresponding to the wading bird in the picture.

GPT-4V: The picture shows a bird species. From the given options, it is important to choose a concept that accurately describes the concepts in the 
diagram while also being the most abstract and broad. According to the image content: 

- Option A ”Waterbirds" is a general classification that refers to birds living by the water's edge. 

- Option B "Crane" specifically refers to a specific bird belonging to the crane family. 

- Option C " wader" refers to birds that forage in shallow water areas. This classification is broader than "cranes" but more specific than " wader". 

- Option D " singing bird" refers to birds that emit a chirping sound, and this description is not specific to any specific living environment or 
family genus. 

Considering this point, although there is not enough information to determine whether the bird is making a sound, it can be considered that 
"waterbirds" (option A) is the most general category.

Gemini-1.5-pro: Answer: C. wader \nExplanation:

Wader is the most abstract and general concept because it covers all birds that are adapted to wading in shallow water to feed.

Waterbirds is a more limited category than wader referring to all birds that live near or in water.

Cranes are a specific type of wader, belonging to the order Gruiformes.

Singing birds describe a behavioral trait of birds, not a category, and many species of birds sing.

Therefore, wader is the most abstract and general description of the concept in the picture.

Qwen-VL-Max: C. wader.

Qwen-VL-Chat: A. waterbirds.

LLaVA-1.5-7B: A.

BLIP2: A.

Figure 6: Case study of Concept Abstraction Reasoning
Task.

Subset # of Concepts # of Chains Avg. Chain Length # of Images

Train 1,312 638 4.94 636
Valid 1,144 534 4.93 521
Test 1,280 615 4.91 604
Total 1,315 646 4.93 644

Table 4: Detail Statistics of CONSTRUCTURE.

performance declines. This result indicates that
MLLMs perform better in understanding and rea-
soning about more abstract concepts compared to
more concrete ones. Based on prior analysis, mod-
els struggle with recognizing and reasoning about
the hierarchical structure of fine-grained, concrete
concepts, often lacking the necessary knowledge
or understanding of these detailed concepts. This
finding highlights a direction for further improving
MLLMs by enhancing their capability to perceive
and comprehend the structure of fine-grained con-
cepts.

Answer: C

Please choose the most specific and accurate concept from the 
following options that accurately describes the concept in the 
image. 

A. bony fish B. fish 

C. Acanthopterus fish D. saury pike

Model Predictions

Image  Question & Answer

GPT-4o: Based on the characteristics of the fish in the picture, the most specific and accurate description should be: 
A. Bony fish.

GPT-4V: Answer: D. Saury pike 

This picture shows a saury pike, which is judged based on its unique body shape and characteristics.

Gemini-1.5-pro: Answer:  C. Acanthopterus fish

Explanation: 

A. Bony fish: Too broad. The fish in the picture is indeed a bony fish, but bony fish contain a wide variety 
of species. 

B. Fish: is too broad. Similar to bony fish, the range is too large. 

C. Acanthopterus fish: This is the most specific and accurate answer. Acanthopterus fish is an order 
under the order Perciformes, which includes most common fish. The fish in the picture have typical 
characteristics of Acanthopterus fish. 

D. saury pike : Error. The saury pike belongs to the order Nototheniformes, with a slender body shape that 
differs greatly from the fish in the picture. \Therefore, C. Acanthopterus fish is the most specific and accurate 
option to describe the concept in the figure.

Qwen-VL-Max: Based on the content of the picture, it can be determined that this is an image of a fish. However, it 
is impossible to determine the specific species or classification position of this fish. Therefore, the most 
specific and accurate concept should be "fish", which is option B. 

Qwen-VL-Chat: D. saury pike 

LLaVA-1.5-7B: A.

BLIP2: C.

Figure 7: Case study of Concept Concretization Rea-
soning Task.

A.4 Experimental Results of CoT

See Experimental Results of Chain-of-Thoughts
Reasoning in Table 5.

B Prompts

We present specific CoT reasoning prompts. For
Zero-shot CoT in Table 5, prompt_1 is the first one
in the list, and prompt_2 is the last one in the list.

Zero CoT Prompts.

1. Let’s think step by step.

2. Let’s analyze each option one by one.

3. Let’s analyze each option according to the
requirements of the question.

4. Let’s first identify the possible concepts in the
image, and then analyze them one by one.
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Model Abstraction Reasoning Concretization Reasoning Common Ancestor Avg. Score

MLLMs (Zero-shot)
gpt-4-vision-preview 0.748 0.602 0.241 0.537
gpt-4o-0513 0.657 0.662 0.145 0.498
Qwen-VL-Max 0.543 0.631 0.143 0.444
mPLUG-Owl 0.216 0.241 0.237 0.225
Qwen-VL-Chat 0.316 0.543 0.245 0.372
LLaVA-1.5 0.347 0.337 0.246 0.310
BLIP2-flant5-xl 0.484 0.442 0.326 0.419

LLMs + Oracle Concept
LLaMA2 0.045 0.039 0.036 0.040
LLaMA3-Instruct 0.204 0.037 0.313 0.181
Qwen-Chat 0.122 0.065 0.089 0.093
Qwen1.5-Chat 0.018 0.010 0.020 0.016

Zero-shot CoT
gpt-4o-0513 + prompt_1 0.669 0.575 0.165 0.479
gpt-4o-0513 + prompt_2 0.669 0.495 0.165 0.451
gpt-4o-0513 + v_cot 0.649 0.544 0.150 0.456
gpt-4o-0513 + m_cot 0.726 0.574 0.192 0.507
Qwen-VL-Chat + v_cot 0.182 0.303 0.163 0.217
Qwen-VL-Chat + m_cot 0.365 0.466 0.192 0.345

Few-shot CoT
gpt-4o-0513(1-shot) 0.859 0.695 0.529 0.699
gpt-4o-0513(2-shot) 0.826 0.723 0.493 0.686

Finetuning
mPLUG-owl-sft 0.595 0.419 0.353 0.446
LLaVA-1.5-sft 0.724 0.618 0.627 0.639
Qwen-VL-Chat-sft 0.857 0.720 0.622 0.737
Qwen-VL-Chat-sft w. atomic 0.859 0.716 0.636 0.740

Table 5: Results of Chain-of-Thoughts Experiments.

5. Let’s analyze by comparing the image with
each option.

6. Let’s analyze by comparing the image with
each option according to the requirements of
the question.

Few CoT Prompt for Concept Abstraction Rea-
soning.

“<img>This is an image of a silver fox.</img>
Prompt: Please select from the following options
the one that correctly describes the concept in the
image and is the most abstract and general concept.
A. Bear
B. Fox
C. Vixen
D. Canid
Answer: Let’s analyze each option according to the
prompt requirements. First, the prompt requires
1) selecting an option that correctly describes the
concept in the image, and 2) is the most abstract
and general concept. Next, we analyze each option:
A. Bear - The concept in the image is a silver fox,
which is different from a bear, so this option does
not meet the requirements.

B. Fox - The concept in the image is a silver fox,
which is a type of fox, so this option meets the first
requirement.
C. Vixen - The concept in the image is a fox, but it’s
difficult to determine if it’s a vixen or a male fox,
so this option does not meet the first requirement.
D. Canid - The concept in the image is a fox, which
belongs to the Canidae family, so this option meets
the first requirement. Now, between option B. Fox
and option D. Canid, we select the most abstract
and general concept. A fox belongs to the Canidae
family, so Canid is the more abstract concept.
Therefore, the correct answer is D. Canid.”

Few CoT Prompt for Concept Concretization
Reasoning.

“<img>This is an image of a humpback
whale.</img>
Prompt: Please select from the following options
the one that correctly describes the concept in the
image and is the most specific and accurate con-
cept.
A. Sirenians
B. Cetaceans
C. Aquatic mammals
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Answer: C

Please select a concept from the following options that is different from the concept 
depicted in the image but still falls under the category of \"compound\". 

A. explosive compound B. solution 

C. carbon tetrachloride D. organic compound

Image  Question & Answer

GPT-4o: The chemical structure shown in the picture is a molecule (compound), specifically acetamide, an organic compound. Based on this, the option that is similar to acetamide is 
"organic compound". 

A. Explosive compound - still a compound, but with different properties

B. Solution - not a single compound

C. Carbon tetrachloride - a compound, but not an organic compound

D. Organic compound - similar to the chemical structure in the picture

Therefore, the correct answer should be B. Solution.

GPT-4V: The picture shows the structural formula of an organic compound, specifically a compound containing an amino group (-NH2) and a carbonyl group (>C=O), which looks 
similar to the structure of an amino acid. Among the options, explosive compounds, carbon tetrachloride, and organic compounds are all specific types of compounds, while 
a solution is a uniform mixture of two or more substances, and it is not a compound. Therefore, the concept that is different from the picture but also belongs to the category 
of “compound” is Solution. 

Answer: B. Solution.

Gemini-1.5-pro: Correct answer: B. Solution \nExplanation: \nThe chemical structure in the figure represents a specific compound, which is a pure substance composed of different 
elements in a fixed ratio. 

A. Explosive compound is a class of explosive compounds, but this describes the properties of the compound, not a different concept from the compound in the figure. 

B. Solution is a uniform mixture of two or more substances, which is not a pure substance, so it is different from the concept of the compound in the figure. 

C. Carbon tetrachloride is a specific compound, which, like the compound in the figure, belongs to the general concept of "compound". 

D. Organic compound is a class of compounds mainly composed of carbon and hydrogen elements, and the compound in the figure also belongs to organic compounds. 

Therefore, the concept that is different from the concept in the figure but belongs to "compound" is **B. Solution**.

Qwen-VL-Max: According to the picture content, we can determine that the molecular formula in the picture is CH3CONH2, that is, acetamide. Therefore, the concept that is different 
from it but also belongs to "compound" is D. organic compound.. 

Qwen-VL-Chat: C. Carbon tetrachloride

LLaVA-1.5-7B: A.

BLIP2: D

Model Predictions

Figure 8: Case study of Common Ancestor Reasoning
Task.

D. Baleen whales
Answer: Let’s analyze each option according to the
prompt requirements. First, the prompt requires 1)
selecting an option that correctly describes the con-
cept in the image, and 2) is the most specific and
accurate concept. Next, we analyze each option:
A. Sirenians - The concept in the image is a hump-
back whale, not a sirenian, so this option does not
meet the first requirement.
B. Cetaceans - The concept in the image is a hump-
back whale, which is a cetacean, so this option
meets the first requirement.
C. Aquatic mammals - The concept in the image is
a humpback whale, which is an aquatic mammal,
so this option meets the first requirement.
D. Baleen whales - The concept in the image is a
humpback whale, which is a type of baleen whale,
so this option meets the first requirement. Now, be-
tween options B. Cetaceans, C. Aquatic mammals,
and D. Baleen whales, the most specific concept is
Baleen whales.
Therefore, the correct answer is D. Baleen whales.”

Few CoT Prompt for Common Ancestor Rea-
soning.

“<img>This is an image of a butterfly-
fish.</img>
Prompt: Please select from the following options
the concept that is different from the image but be-
longs to the same ‘Perciformes’ group.
A. Sturgeon
B. Surgeonfish
C. Crocodile

D. Perciformes
Answer: Let’s analyze each option according to the
prompt requirements. First, the prompt requires se-
lecting a concept that 1) is different from the image,
and 2) belongs to the ’Perciformes’ group. Next,
we analyze each option:
A. Sturgeon - The concept in the image is a butter-
flyfish, which is different from a sturgeon, so this
option meets the first requirement, but sturgeon
belongs to the order Acipenseriformes, not Perci-
formes, so this option does not meet the second
requirement.
B. Surgeonfish - The concept in the image is a but-
terflyfish, not a surgeonfish, so this option meets the
first requirement. Surgeonfish belong to the order
Acanthuriformes, which is not Perciformes, so this
option does not meet the second requirement.
C. Crocodile - Crocodiles are reptiles and do not
belong to Perciformes, so this option does not meet
the second requirement.
D. Perciformes - The concept in the image is a but-
terflyfish, which belongs to the Perciformes order,
so this option meets the second requirement. Now,
between options A. Sturgeon and D. Perciformes,
we select the concept that is different but belongs
to the same group, which is D. Perciformes.
Therefore, the correct answer is B. Surgeonfish.”
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Figure 9: Level-wise Accuracy of API-based MLLMs.
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Figure 10: Level-wise Accuracy of Open-source MLLMs.
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