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Abstract

While large language models (LLMs) have
made notable advancements in natural lan-
guage processing, they continue to struggle
with processing extensive text. Memory mech-
anism offers a flexible solution for manag-
ing long contexts, utilizing techniques such
as compression, summarization, and structur-
ing to facilitate nuanced and efficient han-
dling of large volumes of text. However, ex-
isting techniques face challenges with static
knowledge integration, leading to insufficient
adaptation to task-specific needs and missing
multi-segmentation relationships, which hin-
ders the dynamic reorganization and logical
combination of relevant segments during the
response process. To address these issues, we
introduce a novel strategy, Question then Re-
flection Memory Mechanism (QRMEM), in-
corporating a dual-structured memory pool.
This pool synergizes static textual content with
structured graph guidance, fostering a reflec-
tive trial-and-error approach for navigating and
identifying relevant segments. Our evalua-
tion across multiple-choice questions (MCQ)
and multi-document question answering (Multi-
doc QA) benchmarks showcases QRMEM’s
enhanced performance compared to existing
approaches. Our code is available at https:
//github.com/wang202111/qrmem.

1 Introduction

Large language models (LLMs) have achieved sig-
nificant advancements in natural language process-
ing. Nevertheless, they encounter difficulties han-
dling extensive information, underscoring the ne-
cessity for efficient long-context processing. Ex-
panding the context window size is a crucial way
to handle the problem, including positional em-
bedding and key-value cache (Beltagy et al., 2020;
Zaheer et al., 2020; Chen et al., 2023b). However,
the inclusion of more information inevitably results
in the accumulation of irrelevant document content.

Query-oriented Structured Memory as Guidance
Iter 1 Iter 2 Iter 3

Original Segmentation as Long-term Static Memory

Figure 1: Question then Reflection Memory mechanism
is divided into two parts. The upper part, Structured
Memory, is a graph constructed from entities and rela-
tions extracted from the text. The lower part, Original
Segmentation, is the original segmentation. These two
parts are linked by the co-occurrence relationships of
entities appearing in the segments. QRMEM starts from
the core entity of the question and expands on the Struc-
tured Memory to find the most relevant next entity node.
It uses this to expand and revise the segment sets until
the corresponding segment set can answer the question.

Retrieval-based methods aim to filter relevant
parts from the original long documents (Zhang
et al., 2023; Yu et al., 2023c). They achieve this
through various retrieval operations, such as dense,
sparse, and reranking, between the text and the
query. Another line of approaches, known as mem-
ory mechanism methods (Liang et al., 2023), takes
the source as a memory pool. These methods offer
a solution for managing long contexts and provide
an opportunity to handle extraneous documents ef-
fectively. Existing memory mechanisms employ
several strategies for indexing extensive informa-
tion. The strategies include storing most recentest
acquired information (Liang et al., 2023; Ebbing-
haus, 2013), selecting contents based on their rele-
vance, importance, and topics (Zhong et al., 2024;
Park et al., 2023), and handling long contexts
through techniques such as compression (Pan et al.,
2024), summarization (Chen et al., 2023a), and
structuring (Hu et al., 2023a).

Despite the existing strategies, several critical
issues still persist due to limitations in the accuracy
of retrieval modules or other memory construct
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tools. First, the memory mechanism is built primar-
ily on human prior knowledge or predefined struc-
ture, which may not always align perfectly with
the nuanced needs of real-world applications. This
results in the gap between the practical scenario
queries and the predefined indexing that occurs in
the memory mechanism, making it challenging to
find relevant information. Additionally, tools or
LLMs could be employed to manage extensive in-
formation in the memory through processes such as
compression, structuring, or other methods, which
can lead to error propagation or information loss.
Consequently, this can result in biased answers
based on memory. Moreover, pinpointing the exact
relevant information within these long contexts is
inherently challenging. This difficulty is exacer-
bated by the needs for multi-hop reasoning, long-
distance dependencies, and distinguishing between
similar segments, which requires tracing informa-
tion across multiple steps or layers of data, making
it difficult to directly locate the segments needed
for answering questions.

Socratic inquiry involves asking questions to
stimulate critical thinking and illuminate ideas. In-
spired by this, we propose a Question then Re-
flection based Memory Mechanism, which guides
thinking through questioning and directs the next
steps through reflection on the current state, shown
in Figure 1. This mechanism enables the utiliza-
tion of structured knowledge as guidance to mine
the supporting segment. To mitigate the gap be-
tween practical scenario queries and predefined
indexing, the query-oriented structured memory
is constructed by dynamically aligning with the
query’s needs. The structured memory is formed
as a graph with entities and open relations as nodes
and edges, which could be a guide to mine the sup-
porting segment. To address information bias dur-
ing memory construction, we additionally include
the original segments as a long-term static memory.
These segments are associated with the entity to
leverage structured memory for further utilization.
Thus, only the filtered segments are used to ensure
information fidelity when answering the final ques-
tion. As for addressing the challenge of pinpoint-
ing dispersed relevant segments, we propose three
strategies, ENTITY TRIAL achieves comparable re-
sults by navigating through only the information of
entities and segments in the memory. GRAPH EX-
PANSION SEARCH uses the relationships between
entity nodes as guidance, thereby alleviating com-
plex issues during the retrieval process. QRMEM

reflects on error information from past experiences
during multiple iterations, which makes the subse-
quent steps more effective in finding the relevant
segmentation. To summarize, our main contribu-
tions are as follows:
• A query-oriented method is proposed to bridge

the gap between predefined memory and queries
while a dual-structure memory pool is built to
mitigate the influence of reorganizing memory.

• Three distinct methodologies are explored utiliz-
ing the memory pool, including QRMEM, EN-
TITY TRIAL, and GRAPH EXPANSION SEARCH.
These methodologies adopt different strategies in
the interaction process with memory.

• Experimental results on multiple-choice ques-
tions (MCQ) and multi-document question an-
swering (Multi-doc QA) show that our model
achieves superior results with the various meth-
ods, validating the effectiveness of our approach.

2 Methodology
The components of QRMEM are divided into Dual-
structure Memory Construction and Reflection-
based Relevant Segments Navigation.

2.1 Dual-structure Memory Construction
The approach involves partitioning the memory
component into two distinct sections, structured
and long-term static memory. The construction is
depicted in Figure 2. The structured aspects of the
memory resemble human memory anchors, assist-
ing in finding more relevant chunks related to the
query as one’s understanding deepens. The Struc-
tured Memory serves only as guidance to avoid
error accumulation during the graph construction
process, while the Original Segmentation is used to
answer questions, further preventing information
loss or misinterpretation.

Query-oriented Graph Initialization: The doc-
ument D is divided into K segmentation {S1, S2,
..., SK}, which is used as the static memory to keep
the original information. And the structured mem-
ory is constructed by the graph Gk = {Ek, Rk},
where Ek is the set of nodes and Rk is the set of
edges. The entities in the original document, which
serve as nodes in the graph, are crucial for identi-
fying the relevant segmentation. We first prompt
LLM to extract the key entities according to ques-
tion Q, then combine with the schema-based tool1

to get the topic entities Ek = {e′k,1, e
′
k,2, ..., e

′
k,Nk
}

in Sk, where Nk is the number of entities in Sk.
1https://stanfordnlp.github.io/CoreNLP
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Figure 2: Dual-structure Memory Construction pipeline in QRMEM, where e is the entity inside each graph. 1⃝ For
each segment, the sub-graph Gk is initialized according to the question Q to be answered, then updated
by the further generated questions Q to the current graph. 2⃝ Sub-graphs are combined into global graph
G through entity disambiguation and relation fusion. All the segmentation Sk is linked with the entity
that appeared to construct the dual-structured memory pool.

The requirement for a fixed schema in Rela-
tion Extraction (RE) significantly constrains do-
main specificity, making it challenging to adapt
to complex scenarios. Consequently, we adopt an
approach akin to Open Information Extraction (Jia
et al., 2022) for relation extraction. Instead of re-
lying on segments from the original document, de-
scriptive relation representations {rk,(i,j) ∈ Rk}
between ek,i and ek,j are generated through LLM.
Thus, the edges in the graph Gk are obtained.

Doubt serves as a fundamental catalyst for
the acquisition of knowledge. We advance
the methodology of knowledge graph updates
through a mechanism predicated on question gen-
eration. This mechanism is formalized as Qk =
LLM(T,Sk,Ek,Rk), where Qk denotes the gener-
ated question leveraging a Large Language Model
(LLM) and the T represents the summary of the
entire document. To ensure the diversity of the
generated questions, a novel question is incorpo-
rated into the question pool only if its ROUGE-L
similarity score with any existing question is less
than 0.6.2 Entities and relations are further sup-
plemented through similar techniques based on the
questions Qk during the initial stage.

Global Graph Combination: In the process
of integrating sub-graphs {G1, G2, ..., GK} into a

2Excessive number of questions could introduce further
noise, we empirically selected 0.6 as threshold.

comprehensive global graph G, we further apply
the entity disambiguation and relation merging. Af-
ter entity disambiguation, entities associated with
distinct segments are further elaborated into triples
of the form ek,j = {e′k,j ,Mk,j ,Nk,j}, thereby fa-
cilitating the update of paragraph indices. Here,
Mk,j and N represent the sets of entity mentions
and segment indices, respectively. After merging
entity pairs (en,i, ek,i′) and (en,j , ek,j′) into con-
solidated entities e(n,k),i and e(n,k),j , Following
the initial setup phase, we generate questions for
merging relationships Qs according to the entities
and their original segments, which could benefit
from rethinking the relation between entity pairs.
Consequently, relations rn,(i,j) and rk,(i′,j′) are
amalgamated into a unified relation r(k,n),(i,j) =
LLM(rn,(i,j),Sn, rk,(i′,j′),Sk, Qs, Q, T ). Static
segments will be associated with the entity nodes,
thereby organizing the connection between the
structured and long-term parts in the memory pool,
as shown in Figure 2.

2.2 Reflection-based Segments Navigation

To accurately determine the segments relevant to
question Q, three segment-searching algorithms are
proposed to explore the impact of different focuses.
The approaches begins by extracting the initial set
of entities Es and the associated segments Rs from
the query. Subsequently, segments corresponding
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Figure 3: Strategies for KNOWLEDGE-DIRECTED NAVIGATION in QRMEM. Navigation starts with a subgraph
containing only the target entity from the question and its linked segments. The subgraph is then expanded based
on the relevance of relationship edges connected to the current entity. The process will continue until the linked
segments are sufficient to answer the question.

to the initial entity set Es are extracted and designed
as important segments Simp.

ENTITY TRIAL. To enable multiple explorations
in complex scenarios and allow the model to find
more relevant segments based on previous itera-
tions, we employ a straightforward ENTITY TRIAL

approach. This method iteratively updates the en-
tity set without the guidance of relations to enhance
the relevance of text segments, using a bipartite
graph structure composed solely of entities and
segment nodes in the memory pool. After obtain-
ing the initial answer from the model, we utilize its
reasoning capability to verify whether the current
entity set E can sufficiently answer the question. If
the model cannot answer the question, it iterates by
updating E← LLM(E, R, Simp, Q). This process
continues until the model can answer the question
or reaches the current window length limit.

GRAPH EXPANSION SEARCH. As the number
of nodes increases, the model’s ability to filter
nodes and the window length both fall short of
meeting the need of ENTITY TRIAL. GRAPH EX-
PANSION SEARCH further leverages the structured
part of the memory pool, G, to enhance exploration
from segments. Es is first expanded by incorporat-
ing adjacent nodes within the graph. The expansion
is guided by the computation of similarity scores
between the given query Q and the Rs, retaining
nodes E′ with high similarity. The entity set E is

updated through E ← E′ ∪ E following each ex-
pansion iteration. The expansion process continues
until either a predefined threshold of expansion iter-
ations is reached or no new edges with sufficiently
high similarity scores are found. The resultant
expanded set of entities E is then to generate the
elaborated query through Q = LLM(E,R, Q). Q
is utilized to retrieve relevant segments, which are
constructed into c to subsequently address Q. c is
the concatenation of the original question and the
generated question used to retrieve all relations.

QRMEM. To trace the experience across multi-
ple iterations, QRMEM utilizes a reflection-based
navigation strategy that dynamically traverses the
graph G, which is shown in Figure 3. Initially,
QRMEM sets up an additional segmentation set,
Sadd, as ∅ for further navigation. For each iter-
ation, the real relevant segments Smix is formed
by combination of Simp and Sadd. Then the LLM
is employed to evaluate whether Smix can answer
the question Q by the feedback of the question
Q and the reason R for the failure is identified if
not. While the Smix is insufficient for the current
query, the first-order adjacent nodes Eadj of the
current entities and all connecting edges R are col-
lected. Drawing upon the lessons learned from the
previous iteration, the query, reason, and current
entities [Q;R;Es] are used to select the next ex-
panded node. Contriever(Izacard et al., 2022) is
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used for calculating the similarity score between
the [Q;R;Es] and each edge in R. After the most
relevant adjust node e is selected and merged with
the new entity e into the entity set E, the segments
corresponding to the new entity e are collected. All
segments not present in Smix are added to Sadd with
the similarity score. Allowing for thorough updates
to Sadd, a crucial step is to ensure that the context
window remains sufficient after updates. Sadd is
processed and filtered according to the similarity
score while adhering to the window constraints.
This iterative segment combination, window check-
ing, question evaluation, and sub-graph expansion
process continues until the question Q is satisfacto-
rily answered. The detail of the algorithm is shown
in Algorithm 1.

3 Experiment

3.1 Baselines

To evaluate the effectiveness of the proposed
method, we compare the QRMEM with several
methods. Retrieval Methods. We use dense
retrievers Contriever (Izacard et al., 2022) and
BM25 for all datasets. Vanilla, we use the model
with 4096 context windows, including LLaMa-
70BChat (Touvron et al., 2023) and GPT-3.5-
turbo. Summary, we summarize the long con-
text to fit the context window size. DECOM(Fu
et al., 2021) simplifies complex questions into
sub-questions, answers them sequentially. LLM-
Lingua (Pan et al., 2024), compresses prompts
to speed up inference and enhance response effi-
ciency in large language models. Long context
model, including Vicuna-7b-32k, Vicuna-13b-16k,
Longchat-7b-32k, Longchat-13b-16k,Llama-70b-
32k. MEMWALKER (Chen et al., 2023a), which
utilize a tree of summary nodes.

3.2 Experiment Setting

The official LLaMa-70B-Chat and GPT-3.5-turbo
are used for the majority of our experiments. The
two models both have a maximum 4,096 token con-
text length. We utilize the model in a zero-shot
prompting fashion without further fine-tuning or
using few-shot examples for our tasks. For both
memory tree construction and generating action
and reasoning for navigation, we use top-p sam-
pling. The temperature is initially set to 0, but if
the output cannot be parsed, we increase the tem-
perature to 0.7 and retry up to four times. The
segment size is set to 600 for all datasets.

3.3 Dataset & Metrics

The evaluation datasets predominantly comprise
sections on multiple-choice questions (MCQ) and
multi-hop question-answering (Multi-Doc QA).
QuALITY (Pang et al., 2022) is employed for the
MCQ component, which comprises extended nar-
ratives derived from Project Gutenberg, coupled
with questions annotated by expert human annota-
tors. For our experimental analysis, we selected a
subset consisting of 222 examples, and accuracy is
used for evaluation. To evaluate the capability of
short-context models in comprehending extended
texts, we opted against using the original multi-hop
QA dataset. Instead, we employed Multi-Doc QA
derived from LongBench (Bai et al., 2023), with
an average length exceeding 8,000 tokens, ensur-
ing suitability for evaluating the understanding of
extensive textual information. The datasets incor-
porate the Wikipedia passages encompassed ver-
sion of HotpotQA (Yang et al., 2018), 2WikiMul-
tihopQA (Ho et al., 2020) and MuSiQue (Trivedi
et al., 2022). Consistent with previous works (Yang
et al., 2018; Bai et al., 2023), exact match (EM)
and F1 is selected for evaluation.

3.4 Main Result

We evaluate the proposed model QRMEM under
the long context question-answer setting. Table 1
shows the comparison results of QRMEM with dif-
ferent navigation methods on QuALITY and three
Multi-doc QA datasets against all baseline meth-
ods. ENTITY TRIAL is only tested on QuALITY
due to the excessive number of entities present on
Multi-Doc QA. We can see that:

1) Our study presents significant advancements
over retrieval methods on the QuALITY dataset, on
both the LLaMa-70B-Chat and GPT-3.5-turbo mod-
els. Detailed results related to retrieval methods are
referred to in Appendix B. Notably, our approach,
when compared to models utilizing longer context
windows, outperforms other models designed for
long-text comprehension, including GPT-3.5-16k.
This highlights the effectiveness of our method in
selecting relevant segments, promoting a compre-
hensive understanding of complex documents.

2) Furthermore, our methods demonstrated ex-
ceptional performance on Multi-Doc QA datasets.
Specifically, on the 2WikiMultihopQA and
MuSiQue datasets, our approach achieved remark-
able results and yields comparable results to ex-
isting retrieval models on the HotpotQA dataset.
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QuALITY HotpotQA 2WikiMultihopQA MuSiQue
Method Acc EM F1 EM F1 EM F1

Long Context Model
Vicuna-7b-16k 0.4175 0.2750 0.2316 0.2750 0.1779 0.0700 0.0928
Vicuna-13b-16k 0.5191 0.2800 0.3074 0.3400 0.2674 0.1150 0.1315
Longchat-7b-32k 0.2938 0.3750 0.2932 0.3750 0.2012 0.1400 0.1256
Longchat-13b-16k 0.3250 0.3000 0.2465 0.2850 0.1945 0.1100 0.1335
Llama-2-70b-32k 0.5765 0.4000 0.3372 0.4200 0.3725 0.1750 0.1605

GPT-3.5-16k 0.7162 0.3900 0.4415 0.4050 0.4278 0.1550 0.1888

LLaMa-70B-Chat
BM25 (top 3) 0.6055 0.4800 0.4418 0.4000 0.3285 0.1750 0.1697
Contriever (top 3) 0.6098 0.3900 0.3552 0.4500 0.3632 0.1300 0.1640
Vanilla (keep left) 0.6131 0.3750 0.2966 0.4050 0.2393 0.1000 0.0898
Vanilla (keep right) 0.6251 0.2950 0.2655 0.3400 0.2185 0.1200 0.1202
MEMWALKER† 0.6302 0.4350 0.2046 0.3850 0.3462 0.1600 0.1628
LLMLINGUA 0.4636 0.2750 0.2662 0.2750 0.2439 0.0600 0.0334
DECOM 0.4515 0.4250 0.3938 0.3350 0.3136 0.1300 0.1277
QRMEM (TE) 0.6351 - - - - - -
QRMEM (GES) 0.6441 0.4550 0.4032 0.4650 0.3044 0.1800 0.1933
QRMEM (KN) 0.6531 0.4650 0.4211 0.4700 0.3314 0.2000 0.1996

GPT-3.5-turbo
BM25 (top 3) 0.6359 0.3850 0.4511 0.3200 0.3471 0.0850 0.1476
Contriever (top 3) 0.6275 0.3650 0.3950 0.4100 0.4523 0.1350 0.1948
Vanilla (keep left) 0.6448 0.3650 0.4229 0.3350 0.3615 0.0650 0.1020
Vanilla (keep right) 0.6687 0.2550 0.3098 0.2550 0.2691 0.0750 0.1213
MEMWALKER† 0.6622 0.3350 0.4113 0.4050 0.4432 0.0950 0.1323
LLMLINGUA 0.5360 0.3200 0.3393 0.2600 0.2817 0.1000 0.0811
DECOM 0.5495 0.3850 0.3933 0.3750 0.3939 0.1000 0.1086
QRMEM (TE) 0.6936 - - - - - -
QRMEM (GES) 0.6801 0.4150 0.4731 0.4250 0.4432 0.1850 0.1931
QRMEM(KN) 0.7207 0.4200 0.4632 0.4250 0.4698 0.1900 0.2094

Table 1: Mian results on QuALITY and Multi-doc QA datasets, †denotes that the results are reproduced based
on the original paper. TE denotes the ENTITY TRIAL, GES denotes the GRAPH EXPANSION SEARCH, and KN
denotes the QRMEM. We bold the highest scores and underline the second-highest scores for each block.

Even though BM25 obtained a satisfactory result
on HotpotQA, it still struggles with complex tasks
like QuALITY and MuSiQue. Across all three
datasets, our method outperformed long-document
comprehension models. This indicates our ap-
proach’s adaptability to multi-hop tasks that re-
quire the understanding of entity relationships, cap-
turing these relationships more effectively than
long-document models. The lesser improvement
on fewer inference steps HotpotQA questions
and more significant advancements on the com-
plex MuSiQue and QuALITY tasks illustrate our
method’s effectiveness in organizing original para-
graphs for complex tasks. GPT-3.5-16k tends to
focus more on the overall context, while GPT-3.5-
turbo pays closer attention to details. This is also
why GPT-3.5-16k shows better performance on
QuALITY datasets.

3) Three strategies proposed in our study out-
performed retrieval-enhanced and direct truncation
strategies. ENTITY TRIAL’s performance improve-
ment demonstrates the effectiveness of iterative ex-

ploration. By using entities as anchors and leverag-
ing the reflective iterative exploration of segments,
it shows the impact of reflective iteration in ac-
quiring relevant segments. GRAPH EXPANSION

SEARCH, although lacking an iterative navigation
process, still utilizes structured memory to guide
the LLM. This indicates that our query-based struc-
tured memory provides better guidance and rele-
vance compared to predefined indexing. QRMEM
achieves the best performance. It combines the
strengths of both ENTITY TRIAL and GRAPH EX-
PANSION SEARCH, using the graph to guide the
model and leveraging past errors to inform future
steps. This approach allows the model to utilize
specific structured knowledge while retaining the
ability to iteratively combine different segments.

3.5 Ablation Study

In this section, we study the effectiveness of
each proposed module by removing them from
QRMEM on QuALITY Datasets. Results in Table
2 show that removing any component decreases
performance, which observe their individual contri-
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Method Overall Easy Difficult

QRMEM 0.7207 0.7000 0.7450
-w/o GRAPH UPDATE 0.6846 0.7166 0.6470
-w/o OPEN ENTITY 0.6621 0.7083 0.6078
-w/o REFLECTION 0.6801 0.6833 0.6764
-w/o NAVIGATION 0.6351 0.6750 0.5882

Table 2: Ablation study on Quality dataset through GPT-
3.5-turbo. Quality is annotated with difficult levels, and
we report the results on different levels.

butions to performance. GRAPH UPDATE denotes
the additional question generation and graph up-
date during initialization. OPEN ENTITY refers
to the entity recognition method through LLM.
When these two components are removed, we ob-
served improved performance on the easy level
but a significant decline in performance on the
difficult level. This phenomenon indicates that
query-oriented structured memory is crucial for
addressing complex problems. REFLECTION in-
volves adding reasoning as a reflection when calcu-
lating similarity with relations. Without leveraging
past experiences and only relying on the query to
traverse the graph, there is a significant loss in per-
formance. This demonstrates that our reflection
mechanism provides more precise guidance. NAV-
IGATION refers to the navigation stage. Without
NAVIGATION, we simply use the start entity to lo-
cate the segments and then answer the query. This
approach loses the iterative navigation process, re-
sulting in an overall decline in performance. Our
technique of reorganizing paragraphs helps to miti-
gate this issue and compensates for this deficiency.

3.6 Performance over Different Max Trials

Figure 4: Accuracy on QuALITY datasets with different
max trials number.

In this study, we introduce a constraint on the
number of updates allowed for entity set E during
the search process, which is shown as Figure 4.
Once the maximum number of updates is reached,
the search is terminated, then the answer is gener-

ated based on the current state of E. Our results
indicate a significant enhancement in performance
transitioning from the first to the second update,
underscoring the effectiveness of the navigation
strategy. Upon undergoing a series of iterative trial
and error processes, it has been observed that the
performance of the model reaches a plateau, indi-
cating a deceleration in the rate of improvement.
The model could still gain profit from the naviga-
tion. Experimental observations indicate that trail
number could be a trade-off between efficiency and
effectiveness.

3.7 The impact of irrelevant information

Head Middle Tail
Datasets

EM F1 EM F1 EM F1

Vicuna-7b-16k
Hotpot 0.3150 0.2283 0.2650 0.1889 0.3250 0.2257
2Wiki 0.3850 0.2387 0.2700 0.1749 0.3150 0.2043
Musique 0.0750 0.0896 0.0500 0.0733 0.1950 0.2060

Vicuna-13b-16k
Hotpot 0.3750 0.3444 0.3050 0.2643 0.3650 0.3282
2Wiki 0.3400 0.2584 0.3550 0.2864 0.3900 0.3052
Musique 0.0900 0.0783 0.0700 0.0680 0.1000 0.0725

Table 3: Result on Multi-Doc QA datasets, the support-
ing segments are positioned at the beginning, middle,
and tail of the document.

To further investigate the influence of irrelevant
documents, we conducted additional tests on cross-
document multi-hop questions. In this section, we
retained the original wiki support text from the
Long Bench dataset without chunking the long text,
enabling us to more clearly identify the impact of
irrelevant documents. Following (Liu et al., 2023),
we investigated the impact of varying the place-
ment of supporting segments within a document,
and the result is shown in Table 3. Specifically,
we positioned the corresponding support segments
at the beginning, middle, and tail of the overall
document. Our findings are consistent with those
reported by Liu et al. (2023), indicating that the
placement of information can significantly affect
the model’s performance on the Multi-Doc QA
task. Therefore, in our subsequent experiments,
we placed the multi-hop support text at both the
beginning and end of the document, ensuring that
the supporting segments remain in these positions
to avoid any positional impact.

Irrelevant documents utilized to increase the dis-
tance are retained, represented as [S1;Snon;S2],
where S1 and S2 are the supporting segments, and
Snon represent sequences of non-relevant segments.
The outcomes are depicted in Figure 5. The results
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Figure 5: The performance over different distances be-
tween the supporting segments.

indicate that although the model exhibits height-
ened attention to the positions at the beginning and
end of the text, its performance is still impacted
by the distance between documents. Effectiveness
consistently declines as distance increases on both
the HotpotQA and MuSiQue datasets.

In summary, tasks of increasing complexity ne-
cessitate the aggregation of relevant documents,
where the effects can even surpass the influence of
the locations of the supporting documents. Long
context understanding requires high capability in
capturing long-distance dependencies that demand
complex reasoning. The case study in Appendix C
illustrates our ability to find relevant documents
in complex situations. QRMEM constructs struc-
tured knowledge for each segment, mitigating the
impact of long-distance dependencies. By utilizing
structured knowledge to reorganize the segments,
our approach facilitates the close integration of text
with dependency relationships, which leads to su-
perior effectiveness on Multi-Doc tasks compared
to the long context windows model.

4 Related Work

4.1 Memory Mechanism

Except for the LLMs with extended context win-
dow size (Press et al., 2022; Guo et al., 2022;
Ainslie et al., 2023) and vanilla retrieve augment
generation methods (Shi et al., 2023; Zhang et al.,
2023; Yu et al., 2023b; Chevalier et al., 2023), nu-
merous attempts have been made to enhance the
memory capabilities of neural models(Chen et al.,
2023a). Memory mechanisms could be predefined
representations, including raw natural languages
(Zhong et al., 2024; Hu et al., 2023a), structured
information (Chen et al., 2023a) such as tuples,
databases, etc., and paramterized representations
(Yu et al., 2023a; Tang et al., 2024). To leverage
the constructed memory, the method stores all the
information of the agent-environment interaction
history based on long-context strategies, maintains
the most recently acquired memories (Liang et al.,

2023; Packer et al., 2023; Ebbinghaus, 2013), and
selects memory contents based on their relevance,
importance, and topics (Zhong et al., 2024; Park
et al., 2023). However, these memory-based al-
gorithms do not allow the preparation of specific
memory structures for different queries, and fur-
ther memory integration is also ignored. We use
the Knowledge-directed Navigation method to re-
organize the context adjustably.

4.2 KG augmented Language Modeling

Knowledge Graphs (KGs) offer dynamic, struc-
tured knowledge representation, enhancing Large
Language Models (LLMs) through explicit struc-
tured knowledge, as demonstrated by early studies
such as (Zhang et al., 2019; Peters et al., 2019; Ya-
mada et al., 2020; Wang et al., 2021b,a; Hu et al.,
2023b). Methods include generating SPARQL
query backbones (Li et al., 2023a), sampling entity-
related triples (Baek et al., 2023), decomposing (Li
et al., 2023b), and employing a retriever-reader-
verifier(Wang et al., 2023). Other approaches like
(Jiang et al., 2023) enable LLMs to navigate KGs
through greedy search, indicating a trend towards
interactive KG exploration and reasoning (Sun
et al., 2023), graph-driven context retrieval (Baner-
jee et al., 2024), and the formulation of examina-
tions to assess LLM comprehension (Wan et al.,
2024). Previous methods primarily incorporate
graphs into the response in various ways or intro-
duce external knowledge graphs. Our approach
directly utilizes the original documents to construct
graphs and employs the original paragraph infor-
mation during the answer generation process. This
strategy effectively circumvents the propagation of
errors that may arise during the extraction process.

5 Conclusion

In this study, we propose the Question-then-
Reflection Memory mechanism, which enables the
utilization of structured knowledge to guide the
mining of supporting segments. QRMEM aligns
with the query’s needs by using structured memory
for guidance, and original segments are included
as long-term static memory to avoid information
bias. We introduce ENTITY TRIAL, GRAPH EX-
PANSION SEARCH, and QRMEM as methodolo-
gies to navigate through structured memory and
find relevant segments. QRMEM reflects on er-
rors from past experiences during multiple itera-
tions, allowing the model to learn from its mistakes
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and improve performance. Experimental results
on MCQ and Multi-doc QA demonstrate that our
model achieves superior results with various meth-
ods, validating the effectiveness of our approach.

6 Limitations

In this paper, we propose a Question then Reflec-
tion Memory Mechanism method for iteratively
select the relevant segments. The limitations of the
proposed method are as follows: 1) The computa-
tional cost of initializing and updating the knowl-
edge in processing the long context, may restrict
its system applicability in scenarios where there
is a need to quickly build additional knowledge
bases. 2) Given the constraints imposed by the size
of the model window, reliance on entity resolution
is utilized to bridge distinct paragraphs during the
extraction of pertinent knowledge in constructing
the structure knowledge. The segmentation of text
into paragraphs potentially impacts the efficacy of
connections within the graph’s structure.

In future work, we plan to mitigate the method’s
computational cost by developing more efficient
pipelines. We aim to limit the updates of the graph
to a very small local range to reduce the cost of up-
dating the graph structure or explore the incorpora-
tion of external knowledge sources to mitigate this
limitation and enhance the model’s performance.
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A Navigation strategy

To better describe our navigation strategy, the detailed algorithm of navigation is shown as Algorithm 1

Algorithm 1 Reflection-Based Navigation Strategy

Require: Query Q, Initial Entity Set Es, Initial Relation Set Rs, Segment Set Sadd ← ∅, Context Windows
Size L

Ensure: Answer to the question Q
1: Simp ← Extract segments corresponding to Es
2: Smix ← Simp ∪ Sadd
3: while not answered(Q) do
4: if LLM can answer Q with Smix then
5: return Answer
6: else
7: R← LLM(Smix, Q)
8: Eadj ← First-order adjacent nodes of Es
9: R← Connecting edges of Eadj

10: S ← Similarity([Q;R;Es],R)
11: e← MaxS(R)
12: E← E ∪ {e}
13: Snew ← Extract segments corresponding to e
14: Sadd ← Sadd ∪ (Snew \ Smix)
15: end if
16: Smix ← Simp ∪ Sadd
17: if LEN(Smix) > L then
18: Sadd ← Filter Sadd according to S
19: Smix ← Simp ∪ Sadd
20: end if
21: end while

B Retrieval Result

We progressively incorporated the content retrieved into the original document in the retrieval experiments.
"Max" indicates including retrieved content in the prompt until the length limit is reached. For the multi-
doc QA dataset, we reported Exact Match (EM), and for the QuALITY dataset, we reported Accuracy.
The results are shown in the table 4. Since performance does not improve with the inclusion of more data,
we selected the top 3 with the higher average values for comparison in our paper.

Table 4: Results about the Retrieval Methods

Method Hotpot 2wiki Musique Quality

BM25(top 1) 0.3800 0.2450 0.1150 0.5288
BM25(top 2) 0.4450 0.3600 0.1500 0.5705
BM25(top 3) 0.4800 0.4000 0.1750 0.6055
BM25(Max) 0.4550 0.4050 0.1750 0.6208

Contriever(top 1) 0.3350 0.2800 0.1000 0.5292
Contriever(top 1) 0.3850 0.3950 0.1600 0.5959
Contriever(top 3) 0.3900 0.4600 0.1300 0.6098
Contriever(max) 0.4300 0.4450 0.1550 0.6385

RKDN(ours) 0.4650 0.4700 0.2000 0.6531
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C Case Study

As illustrated in Table 5, when crucial entities are absent in the query, we can employ an iterative
navigation process to search for and identify the relevant entities gradually. Although irrelevant segments
may be included, the noise introduced is less than that of retrieval methods. The first two segments rank
lower in retrieval, indicating that for complex reasoning tasks, it is essential to construct memory based
on the query and reorganize the text to bridge the gap with the query. This validates the effectiveness of
QRMEM.

Segments Rank Contain

Valencia CF had a successful season, finishing in the top four of La Liga and thus qualifying for the
UEFA Champions League, thanks to the extension of the competition to include more teams from
the top leagues. Valencia also won the Copa del Rey, ending a long trophy drought and marking a
successful end to Italian coach Claudio Ranieri’s first spell at the club.

7

José Daniel Valencia (born 3 October 1955) is an Argentine former professional footballer who
played as an attacking midfielder. He is perhaps most famous for having been part of the 1978 World
Cup winning squad.Valencia started his club career at Gimnasia y Esgrima de Jujuy but was soon
transferred to Talleres de Córdoba, the club at which he would play most of his career. At Talleres,
Valencia suffered the disappointment of finishing runner-up in Nacional 1977, finishing third in
Metropolitano 1980, and losing the semi-finals on four occasions.

5

Higinio Ortúzar Santamaría (10 January 1915 – 8 November 1982) was a Chilean footballer who
made his entire career in Spain. The first Chilean in Spanish football, he made his debut for Erandio
Club in 1935, and next he played for Barakaldo CF, Athletic Bilbao, Valencia CF, Real Valladolid,
and Real Sociedad. He was loaned to Racing de Santander in 1936 for 4,500 pesetas, but he couldn’t
play due to the Spanish coup of July.

1

José Raúl Aveiro Lamas (born 18 July 1936) is a Paraguayan former professional footballer who
played as a striker. Born in Asunción, Aveiro played for Sportivo Luqueño, Valencia, Valencia
Mestalla, Elche, Ontinyent, and Constància. He was also a member of the Paraguay national team
between 1957 and 1959.

2

Claudio Javier López (Spanish pronunciation:, born 17 July 1974) is an Argentine former footballer,
who played as a forward. Nicknamed Piojo (louse), he is best known for his spells with Valencia in
Spain and Lazio in Italy. López also had a notable impact in the Argentina national team, participating
in two World Cups.

3

Question: Which retired Argentine footballer who played as a forward was a main player for Valencia CF?
Golden Answer: Claudio Javier López
Retriever Answer: Mario Alberto Kempes Chiodi
Compressed Answer: Mario Alberto Kempes Chiodi
QRMEM Answer: Claudio Javier López

Table 5: Case studies of solving Mulri-Doc QA task. For the question, we show the rank of each segment. “ "
denotes the segment is contained in the final set of QRMEM, “ " denotes the segment is not contained in the final
set of QRMEM.

D Computational Complexity Analysis

We compared various methods for handling long texts using several requests, using the GPT-3.5 model
to evaluate performance on QuALITY metrics. The experiments were conducted with a window size of
4096. SLIDINGWINDOW apply a sliding window in five requests to ensure the entire text is covered. Our
method achieved optimal results in comparison to others, as summarized in Table 6.

E Prompt in QRMeM

The prompt used in this paper is shown as follows, the blue text denotes the part to be filled with the
different documents.
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Table 6: Computational Complexity Comparison of Different Methods for Long Text Processing

Method QuALITY Number of Requests

GIST (Lee et al., 2024) 0.7005 4.32
MEMWALKER (Chen et al., 2023a) 0.6622 3.71
SLIDINGWINDOW 0.6891 5.00
QRMEM 0.7207 3.96

The prompt used for asking the LLM weather could answer the question

Read the text in triple quotes and answer a question:
"""
[Concatenated Segments]
"""
Question:
[Qeustion and possible Choice]
If the answer CANNOT be inferred from the text above, reply with action -1.
If the answer CAN be inferred from the text above, reply with action -2, and provide your reasoning and the final answer.
You are ONLY allowed to reply with action -2 or -1.
#######################
Reasoning: ...
Action: -2/-1, ...
#######################

The prompt used for Entity Recognition

# Task Definition
This project aims to extract key entities from the given text to help answer related questions. Please follow the following
steps when performing this task:
1. Understand the content: Before starting entity extraction, carefully read and understand the text’s content. Pay attention to
the story plot, themes, and context.
2. Identify key entities: Focus on important entities in the text, including but not limited to characters, locations, times,
organizations, etc. These entities are usually crucial for answering questions.
3. Contextual relevance: When annotating entities, consider their roles and importance in the text. Note how entities are
interconnected with events, plots, or other entities in the text. 4. Avoid subjective interpretation: Only annotate based on
textual content and avoid adding personal interpretations or assumptions.
5. Review and verify: After completing the initial annotation, carefully review to ensure no omissions or errors have occurred.
The background information is
[Document Summary]
# Requirement
Extract the key point. Named entities from the document below are inside the triple quote and only appear in the document.
"""
[Segment Context]
"""
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The prompt used for Relation Extraction

# Task Definition
This task aims to associate the extracted entities according to the text to help answer specific questions.
1. Describe the relationship in one clear paragraph;
2. Avoid false inferences: extract relationships based only on the clear information in the text, and avoid false inferences
based on assumptions or external knowledge.
3. Analyze the relationships between entities: Study the mutual relationships identified by the research institute. Pay attention
to how they interact and describe the relationships between entities in a concise text.
4. Record the context of the relationship: When extracting the relationship, record the specific context of the relationship,
which is important for understanding the whole picture of the relationship.
# Main text
"""
[Segment Content]
"""
# Extracted entities
"""
[Segment Content with marked entities]
"""
Extract relations from the document according to the given entities, and give me the entity pair and the description for each
relation.

The prompt used for Summary

# Task Definition
Summary the context into shortened text, and retain as much relevant information as possible about the original characters,
person, events, location, etc., in the summary. The context is
"""
[Segment Context]
"""
# Requirement Summary the segments into a short paragraph.

The prompt used for Relation Update

# Task Definition
The task is to merge the corresponding relationships based on two segments, and each segment contains a corresponding
relationship. In order to merge these two relationships, we may need to pay attention to some issues and generate some
corresponding questions to assist in merging these two relationships, including entities that need attention, relationships, time,
temporal relations, etc.
1. Ensure entities in both segments refer to the same real-world objects or concepts and compare their attributes.
2. Verify that relationships between entities in the first segment are compatible with those in the second segment and identify
any conflicts or discrepancies.
3. Check for consistent and correctly aligned time references and consider the impact of temporal relations on the merging
process.
4. Refer to the document for specific guidelines or criteria for merging relationships, and review any examples or case studies
that illustrate successful merging.
5. Understand how the contexts of the relationships in each segment influence the merging process and consider any external
factors or conditions mentioned in the segments.
Question
[Question to be answered]
Document
[Document summary]
Relation #1
Segments
[Segment #1]
Relations
[Relations #1 to be merged]
Relation #2
Segments
[Segment #2]
Relations
[Relations #2 to be merged]
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