
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 4623–4648
November 12-16, 2024 ©2024 Association for Computational Linguistics

KV Cache Compression, But What Must We Give in Return?
A Comprehensive Benchmark of Long Context Capable Approaches

Jiayi Yuan∗1, Hongyi Liu∗1, Shaochen (Henry) Zhong∗1,
Yu-Neng Chuang1, Songchen Li1, Guanchu Wang1, Duy Le1, 3, Hongye Jin2,

Vipin Chaudhary3, Zhaozhuo Xu4, Zirui Liu♣1, Xia Hu1

1Rice University, 2Texas A&M University,
3Case Western Reserve University, 4Stevens Institute of Technology

Abstract

Long context capability is a crucial compe-
tency for large language models (LLMs) as
it mitigates the human struggle to digest long-
form texts. This capability enables complex
task-solving scenarios such as book summariza-
tion, code assistance, and many more tasks that
are traditionally manpower-intensive. How-
ever, transformer-based LLMs face significant
challenges with long context input due to the
growing size of the KV cache and the intrin-
sic complexity of attending to extended inputs;
where multiple schools of efficiency-driven ap-
proaches — such as KV cache quantization,
token dropping, prompt compression, linear-
time sequence models, and hybrid architec-
tures — have been proposed to produce ef-
ficient yet long context-capable models. De-
spite these advancements, no existing work has
comprehensively benchmarked these methods
in a reasonably aligned environment. In
this work, we fill this gap by providing a
taxonomy of current methods and evaluating
10+ state-of-the-art approaches across seven
categories of long context tasks. Our work
reveals numerous previously unknown phe-
nomena and offers insights — as well as a
friendly workbench — for the future devel-
opment of long context-capable LLMs. The
source code is available at https://github.
com/henryzhongsc/longctx_bench.

1 Introduction

Large Language Models (LLMs) have gained sig-
nificant popularity and recognition due to their ex-
ceptional generalizability across a wide range of
intellectual tasks. Like any other tool, their most
precious utility is demonstrated when they enable
us to accomplish tasks beyond our innate capabili-
ties (Brown et al., 2020; Taylor et al., 2022; Yuan

∗Equal contribution, order determined by rolling dices.
♣Project lead and correspond to Shaochen (Henry)

Zhong <henry.zhong@rice.edu> and Zirui Liu
<zirui.liu@rice.edu>.

et al., 2023). For instance, while driving nails with
bare hands is impractical, a hammer makes it fea-
sible. Similarly, humans struggle with digesting
and retaining long information, making it essential
for LLMs to bridge this gap. The need for long-
context capable LLMs is almost universally agreed
upon, with different LLM service providers racing
to launch models with even greater context lengths.
For example, Google’s Gemini 1.5 supports a con-
text length of 128K tokens (Reid et al., 2024), and
Anthropic’s Claude 3 offers a context length of
200K tokens.

However, this powerful long context capability
comes with significantly higher costs. In long con-
text scenarios, the key-value cache (KV cache) —
which stores attention keys and values during gen-
eration to prevent re-computation — becomes the
new memory and speed bottlenecks, as its size
grows linearly with the number of tokens in the
batch. For instance, a 500B model with a batch
size of 128 and a context length of 8,192 typically
requires a 3TB KV cache, imposing a substantial
processing burden even on the most advanced hard-
ware solutions (Pope et al., 2023). Similarly, in
open-source models like QWen (Bai et al., 2023a),
the KV cache size for a 4K context is 0.91 GB,
whereas, for a 100K context, it is 22.8 GB (Fu,
2024) — which is a non-negligible growth regard-
less of the serving scenario. Given the limited
memory space available for serving the model, sup-
porting longer contexts usually requires reducing
the number of requests that can be processed, lead-
ing to higher inference costs.

Naturally, many efficiency-driven approaches
have been proposed to enable LLMs to handle long
contexts with reduced resource burdens, with a
healthy selection of them featured in Table 1. These
approaches range from quantizing the KV cache
into lower precision formats (Sheng et al., 2023;
Zhao et al., 2024; Liu et al., 2024b), evicting unim-
portant tokens to maintain a constant KV cache size

4623

https://github.com/henryzhongsc/longctx_bench
https://github.com/henryzhongsc/longctx_bench

Table 1: Featured methods in our benchmark. “KV Cache Complexity” is the complexity w.r.t. the number of input
tokens. “Sys. Supports” refers to the availability of custom CUDA kernels to support fast serving. “N/A” means it
can be directly accelerated by existing infrastructure. We note that the “No” system support for H2O (Zhang et al.,
2024d) means it lacks the FlashAttention (Dao et al., 2022) compatible CUDA kernels, making it unsuitable for
direct use in an online setting. However, it still offers performance benefits when used in the off-load setting.

Method Taxonomy KV Cache Complexity Sys. Supports?

Mamba (Gu and Dao, 2023)
Linear-time Model KV cache free

Yes
Mamba 2 (Dao and Gu, 2024) Yes
RWKV (Peng et al., 2023) Yes

RecurrentGemma (Botev et al., 2024)
Linear-time Model

Constant Yes
+ Local Attention

StreamingLLM (Xiao et al., 2023)
Token Dropping Constant

Yes
H2O (Zhang et al., 2024d) No
InfLLM (Xiao et al., 2024) Yes

LLMLingua2 (Pan et al., 2024) Prompt Compression Constant N/A

FlexGen (Sheng et al., 2023)
Quantization Linear

Yes
KIVI (Liu et al., 2024b) Yes

(Xiao et al., 2023; Zhang et al., 2024d), compress-
ing long prompt into a shorter input (Jiang et al.,
2023b; Pan et al., 2024; Chuang et al., 2024), or
exploring KV cache-free architectural designs (Gu
and Dao, 2023; Peng et al., 2023; Yang et al., 2023;
Qin et al., 2024) and its hybrids with transformers
(De et al., 2024; Lieber et al., 2024). However,
to the best of our knowledge, no prior art has
provided a comprehensive benchmark to ana-
lyze the performance retention of different long
context-capable compression methods1 (which
is also non-trivial to setup; more on this in Sec-
tion 3.2). To fill this gap, we aim to answer the
following question:

How do different long context-capable ap-
proaches perform under different long context
tasks?

This benchmark offers an accessible and repro-
ducible pipeline to evaluate a diverse set of mod-
ern long-context compression methods from var-
ious schools of thought. It assesses these meth-
ods against multiple tasks requiring different long-
context capabilities. Our main contributions are
summarized as follows:

• Comprehensive benchmarking, detailed anal-
ysis, and actionable insights: We provide a com-
prehensive evaluation report that covers 10+ long
context-capable efficient approaches under 65
different settings, against 7 categories of long

1Due to the lack of directly related work, we provide a brief
walkthrough of loosely related arts — which are often long
context datasets evaluated on vanilla baseline models with
limited focus on compression methods — in Appendix C.

context tasks (Mohtashami and Jaggi, 2023; Reid
et al., 2024; Bai et al., 2023b). We then walk
through how to digest such mass results and pro-
vide analyses and discussion upon many previ-
ously unknown phenomena. Finally, we offer
several actionable insights for future research ad-
vancement.

• Minimalistic, reproducible, yet extensible plat-
form: Given the non-trivial effort to set up the
evaluation pipeline, we open source our bench-
mark implementations for future scholars. We
intensionally make our code base in a minimal-
istic fashion for easier hacking and reproducing
needs, yet we keep it extensible to include alter-
native or future-coming approaches that are not
under in our already extensive, but certainly not
exhaustive, benchmark coverage.

2 Reviewing Different Schools of Efficient
Long Context Handling Approcahes

Before going into the details of the experiment,
we will briefly introduce different schools of long
context-capable approaches and their correspond-
ing exemplary methods. In Table 1, we present
a comprehensive overview of the school of long
context optimization methods, including their KV
cache complexities and the current support for
system-level optimization. RNN-based models
do not have a KV cache. Mixed models, token
dropping methods, and prompt compression meth-
ods have fixed-size KV caches, which are indepen-
dently configured by each method. Quantization
methods compress the KV cache by a proportion;

2
4624

thus, the KV cache complexity still increases lin-
early with sequence length. Regarding system sup-
port scenarios, to the best of our knowledge, most
methods have varying levels of system-level opti-
mization, whereas some token-dropping methods
are still under-optimized. More on this in Section 4.

2.1 Linear-Time Sequence Models and Mixed
Architecture

There is a growing body of recent works that have
developed linear-time sequence models, such as
Mamba (Gu and Dao, 2023), Mamba2 (Dao and
Gu, 2024), RWKV (Peng et al., 2023), HGRN (Qin
et al., 2024), MEGA (Ma et al., 2022), GLA (Yang
et al., 2023), and RetNet (Sun et al.). The fun-
damental difference between linear-time sequence
models and transformers lies in how they handle
context. Linear-time sequence models compress
the context into a smaller state, whereas transform-
ers store the entire context within attention mecha-
nisms. During the auto-regressive inference, every
time the model generates a new token, transformers
will “review” all previous tokens by explicitly stor-
ing the entire context (i.e., KV cache). In contrast,
there is no “reviewing” mechanism in linear-time
sequence models, as they explicitly mix the input
tokens into finite states.

From the above analysis, it is expected that pure
linear-time sequence models are not well-suited for
retrieval-related tasks, as they mix key information
with other tokens. Thus, another line of work is
to combine the linear-time sequence models and
transformers. For example, Griffin (De et al., 2024)
and RecurrentGemma (Botev et al., 2024) combine
input-dependent RNNs with local attention; and
Jamba (Lieber et al., 2024) combines full attention
layers and Mamba layers.

2.2 Quantization

A simple yet effective approach to reducing the
size of KV cache to enable a larger context is to
quantize the floating-point numbers (FPN) in the
KV cache using fewer bits. Specifically, the B-bit
integer quantization-dequantization process can be
expressed as:

Q(X) = ⌊X− zX
sX

⌉, X′ = Q(X) · sX + zX ,

where zX = minX is the zero-point, sX =
(maxX−minX)/(2B − 1) is the scaling factor,
and ⌊·⌉ is the rounding operation.

FlexGen (Sheng et al., 2023) utilized group-
wise quantization, achieving 4bit quantization com-
pared to standard 16bit with minimal accuracy loss.
Following this, several other quantization meth-
ods have been proposed specifically for the KV
cache (Zhao et al., 2024; Yang et al., 2024; Dong
et al., 2024). Recently, KIVI (Liu et al., 2024b) and
KVQuant (Hooper et al., 2024) advanced KV cache
quantization to even lower bits by introducing per-
channel quantization, which involves grouping ten-
sor elements along the channel dimension, based
on the discovery of channel outliers in the key
cache. Following this finding, some other works
continue to optimize this process (Kang et al.,
2024; Duanmu et al., 2024; Zandieh et al., 2024).
Furthermore, based on these findings, the latest
research has pushed quantization to 1bit (Zhang
et al., 2024b). The transformer-based LLM infer-
ence workflow involves two stages: i) prefill stage,
where the input prompt is used to generate KV
cache and the first output token; and ii) decoding
stage, where the model uses and updates KV cache
to generate the next token one by one. We empha-
size that for all KV cache quantization methods
evaluated in this paper, the quantized KV cache
is not used in prefill time. That means that KV
cache quantization only affects the decoding phase.

2.3 Token Dropping

Based on the observation that attention scores are
highly sparse, token dropping-based methods drop
the unimportant token — or similar attention com-
ponents — from the KV cache (Zhang et al., 2024d;
Xiao et al., 2023, 2024; Li et al., 2024a,c; Liu et al.,
2024a; Ge et al., 2023; Jiang et al., 2024). To-
ken dropping-based methods fall into two main
categories: dropping tokens during prefill or
dropping tokens after prefill. Dropping tokens
during prefill means that tokens are dropped while
generating the KV cache. In contrast, dropping
tokens after prefill means generating the full KV
cache first, then removing the unimportant tokens
from it. Given transformers inference process typi-
cally involves two phases, i.e., prefill and decoding,
while dropping tokens during prefill can typi-
cally enable longer sequence length and faster
prefill speed, we note that dropping tokens after
prefill consistently yields better results across
various settings. This is because many token-
dropping methods rely on accurate attention scores
to determine token importance, which benefits from
generating the full KV cache first. In our bench-

3
4625

mark, methods that drop tokens during prefill in-
clude StreamingLLM (Xiao et al., 2023) and In-
fLLM (Xiao et al., 2024), where H2O (Zhang et al.,
2024d) represents methods that drop tokens after
prefill. We closely follow the official or endorsed
implementation of each method, with more details
shared in Appendix B.3.

2.4 Prompt Compression
Soft Prompt Compression Most existing work
focuses on converting lengthy prompts into train-
able soft prompts optimized with specific LLMs.
One approach uses knowledge distillation to trans-
form hard prompts into soft prompts (Wingate et al.,
2022). Another leverages LLM summarization to
condense prompts by segmenting and compress-
ing information (Chevalier et al., 2023). Gist To-
ken (Mu et al., 2023) creates customized prefix
soft prompts via a virtual soft prompt predictor.
However, these methods are often model-or-even-
task-specific, requiring training tailored to specific
LLMs, and therefore come with limited adaptabil-
ity. In this work, we focus on general compression
methods for fair comparison with other KV cache
compression approaches.
Natural Language Prompt Compression Meth-
ods like LLMLingua family (Pan et al., 2024; Jiang
et al., 2023b) enhance LLM performance on long-
context tasks by converting long prompts into short
prompts while maintaining their natural language
format, and thus naturally adaptable (and often
even transferable) to all LLMs. LLMLingua em-
ploys a budget controller to dynamically allocate
compression ratios to different prompt parts, en-
suring semantic integrity. Unlike LLMLingua’s
general approach, some hard prompt compression
methods, like Nano-Capsulator (Chuang et al.,
2024), provide task-specific compression to pre-
serve long prompt performance and are therefore
excluded in our benchmark.

2.5 Other Schools of Thought: Linear
Attention, Merging, and More.

Other than the above-featured approaches, several
notable avenues for efficient long context handling
include linear attention and merging. Linear Atten-
tion is a well-explored area of transformer modifi-
cation with many impactful prior arts like LinearAt-
tention (Katharopoulos et al., 2020), MetaFormer
(Yu et al., 2022), LinFormer (Wang et al., 2020) and
more, with most of them mainly focus on vision or
natural language understanding tasks. To the best

of our knowledge, Infini-Attention by Munkhdalai
et al. (2024) is likely one of the most impactful
linear attention approaches under the LLM context.

KV cache merging is also a popular approach
due to the mainstream adaptation of GQA (Ainslie
et al., 2023), GQA and MQA (Shazeer, 2019) con-
duct merging at the transformer head dimension
to enable KV cache reuse. Similar cache-sharing
strategies have been developed at the layer or token
levels (Sun et al., 2024; Brandon et al., 2024; Wu
and Tu, 2024; Nawrot et al., 2024). Most of the
techniques proposed under this category require
intervention during the pre-training stage.

Unfortunately, we are unable to feature these
schools of thought, since our work requires scaled-
up open-source models in such designs to be avail-
able in the first place. With the lack of such avail-
ability, we cannot feature them per se in our eval-
uation. However, we are able to feature Mamba
2 (Dao and Gu, 2024) — a model family with a
generalized linear attention mechanism — at the
2.7B scale and thus provide some relevant results.
We also direct our readers’ attention to some recent
attention variants like MLA (DeepSeek-AI, 2024).

3 Benchmarking

Benchmarking such a variety of methods in a rea-
sonable manner requires significant effort in terms
of experiment design, execution, and computa-
tional resources. We first introduce the datasets
and methods covered, along with the justifications
for their selection. Then, we detail the experiment
setup and explain how to interpret our experiment
reports. Finally, we analyze the reported results by
highlighting some interesting phenomena and pro-
viding insights for future scholars. All experiments
are conducted on one or more 80G NVIDIA A100
GPUs under DGXA100 servers.

3.1 Coverage

Tasks and Models. We focus on 16 different
long context tasks under 7 major categories,
each requiring different long context handling abil-
ities and covering key application scenarios. We
provide a brief walkthrough of each task category
as follows: (1) Single-doc QA, which tests the long
context understanding ability with longer docu-
ments. (2) Multi-Doc QA, which needs to extract
and combine information from several documents
to obtain the answer; (3) Summarization, which
requires a global understanding of the whole con-

4
4626

Table 2: Performance of KV cache quantization, token eviction, prompt compression, RNNs, and hybrid methods on
our benchmark. For methods with residual full precision inputs like KIVI, we calculate the “Comp. Ratio” against
10k input length. “LB Avg.” refers to the average results on LongBench. Results are abbreviated; please refer to
Appendix D for our full report.

Model Method Comp. Ratio Single. QA Multi. QA Summ. Few-shot Synthetic Code LB Avg. Needle

M
et

a-
L

la
m

a-
3-

8B
-I

ns
tr

uc
t

Baseline 1.00× 36.8 34.8 26.8 69.1 67.0 54.2 45.2 100.0
KIVI-2bit 5.05× 36.2 34.8 26.4 69.2 67.5 48.8 44.3 100.0
KIVI-4bit 3.11× 36.8 35.0 26.9 69.3 66.5 54.7 45.3 100.0
FlexGen-4bit 3.20× 36.5 32.4 26.4 68.6 65.5 55.2 44.5 100.0
InfLLM-2x 2.00× 31.8 30.8 25.7 67.6 57.5 55.8 42.5 22.7
InfLLM-4x 4.00× 27.1 24.7 25.0 63.9 37.5 57.6 38.3 20.7
InfLLM-6x 6.00× 24.4 23.4 24.3 61.1 29.5 59.2 36.5 24.7
InfLLM-8x 8.00× 21.0 21.0 23.7 60.3 18.0 59.9 34.4 22.0
StreamLLM-2x 2.00× 26.1 28.8 24.6 66.5 34.0 55.6 38.9 29.0
StreamLLM-4x 4.00× 20.5 22.2 22.7 62.2 21.0 56.1 34.4 22.3
StreamLLM-6x 6.00× 17.4 18.7 21.4 60.1 14.5 59.0 32.3 18.0
StreamLLM-8x 8.00× 15.7 18.0 20.5 55.9 8.0 58.1 30.3 18.0
H2O-2x 2.00× 35.8 34.8 25.4 69.1 66.0 54.4 44.7 100.0
H2O-4x 4.00× 35.0 35.1 23.6 69.0 66.0 53.2 44.0 100.0
H2O-6x 6.00× 33.9 35.1 22.7 69.1 66.0 53.1 43.6 100.0
H2O-8x 8.00× 33.7 35.0 22.2 69.1 65.5 52.7 43.4 100.0
LLMLingua2-2x 2.00× 29.4 31.5 24.1 38.6 68.0 31.9 33.5 51.3
LLMLingua2-4x 4.00× 26.5 30.8 24.1 39.3 22.5 32.2 29.9 8.3
LLMLingua2-6x 6.00× 25.8 26.4 23.4 37.9 18.0 31.3 28.1 0.7
LLMLingua2-8x 8.00× 24.0 25.4 22.9 36.9 13.0 31.9 26.9 0.0

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

Baseline 1.00× 32.5 25.8 27.9 66.7 89.3 54.0 43.8 99.0
KIVI-2bit 5.05× 31.3 24.7 27.6 66.8 80.8 53.7 42.6 99.0
KIVI-4bit 3.11× 32.3 25.8 27.9 66.9 89.4 54.0 43.8 99.0
FlexGen-4bit 3.20× 33.0 24.4 27.8 66.2 83.0 53.7 43.0 98.3
InfLLM-2x 2.00× 30.7 24.8 26.8 65.1 65.8 54.2 41.1 64.3
InfLLM-4x 4.00× 25.4 23.7 25.5 63.4 41.4 54.0 37.5 29.7
InfLLM-6x 6.00× 23.8 21.0 25.0 61.6 32.6 53.4 35.6 32.3
InfLLM-8x 8.00× 22.2 19.6 24.3 62.0 26.2 53.8 34.5 27.0
StreamLLM-2x 2.00× 24.6 22.0 25.3 64.5 47.1 53.0 37.5 54.7
StreamLLM-4x 4.00× 20.1 19.9 23.3 61.3 31.6 53.9 34.2 32.0
StreamLLM-6x 6.00× 18.2 16.0 22.1 59.6 25.3 54.9 32.2 25.0
StreamLLM-8x 8.00× 17.0 15.2 21.4 58.3 16.9 54.9 30.8 19.3
H2O-2x 2.00× 31.9 25.4 26.8 66.8 87.7 53.8 43.2 97.3
H2O-4x 4.00× 30.4 23.9 25.1 67.2 82.9 53.1 41.9 93.3
H2O-6x 6.00× 29.0 22.8 24.3 66.9 82.0 52.5 41.1 85.7
H2O-8x 8.00× 27.8 21.8 23.9 67.0 79.5 52.3 40.4 80.0
LLMLingua2-2x 2.00× 28.6 23.0 26.4 45.6 54.9 31.7 32.6 41.7
LLMLingua2-4x 4.00× 25.0 21.3 24.6 39.2 14.0 33.1 27.4 9.7
LLMLingua2-6x 6.00× 21.2 17.4 23.3 38.9 8.9 34.7 25.4 0.0
LLMLingua2-8x 8.00× 19.6 16.0 22.9 38.5 8.0 35.5 24.7 0.0

Mamba
Mamba-2.8B - 7.3 6.3 19.1 39.0 1.2 47.6 20.8 10.7
Mamba-Chat-2.8B - 9.2 6.9 21.2 37.5 3.7 47.7 21.6 10.7
Mamba2-2.7B - 7.5 6.7 21.0 40.5 4.1 49.9 22.1 9.0

RWKV RWKV-5-World-7B - 9.8 5.4 18.5 52.4 4.5 34.0 22.1 3.7

R-Gemma
R-Gemma-2B-it - 18.1 8.3 20.9 46.3 4.0 53.7 26.1 23.3
R-Gemma-9B-it - 24.5 21.9 21.9 54.5 9.0 60.8 33.2 26.7

text; (4) Few-shot Learning, which is a practical
setting requiring long-context understanding over
provided examples; (5) Synthetic Task, which is
designed to test the model’s ability on specific sce-
narios and patterns; (6) Code Completion, which
is designed to test the model’s long-context abil-
ity in code auto-completion tasks; (7) Needle-in-
a-Haystack Test, which involves finding specific
information within a large volume of text.

For categories (1)-(6), we directly adopt them

from the LongBench dataset (Bai et al., 2023b).
For the (7) Needle-in-a-Haystack Test, we largely
follow the format of the original passkey retrieval
task (Mohtashami and Jaggi, 2023) while including
some modern modifications set forward by Arize-ai
and the technical report of Gemini 1.5 (Reid et al.,
2024). We refer our readers to Appendix A for
further details.

For models, we elect to cover 3 represen-
tative transformer-based LLMs and 3 pure

5
4627

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

36.4
36.6

36.8

Single-Doc QA

Multi-Doc QA
Su

mmar
iza

tio
n

Few-shot

Synthetic
Co

de

Baseline
KIVI-2bit
KIVI-4bit
Flexgen-4bit

24.9

29.9

35.0

25.2
26.0

26.9

66.4
67.9

69.3
59.5

63.5

67.5

29.4
42.3

55.2

(a)

23.8
30.3

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
InfLLM 4x
StreamLLM 4x
H2O 4x

-16.5

9.3

35.1

23.5
25.1

26.8

63.6
66.3

69.1
30.2

48.6

67.0

39.8
48.7

57.6

(b)

13.4
25.1

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Llama-3-8B
Mamba2-2.7B
R-Gemma-2B
RWKV-5-7B

11.3

23.1

34.8

20.2
23.5

26.8

46.2
57.7

69.1
16.6

41.8

67.0

38.0
46.1

54.2

(c)

26.6
31.7

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
LLMLingua2 2x
LLMLingua2 4x
LLMLingua2 6x
LLMLingua2 8x

27.3

31.0

34.8

23.6
25.2

26.8

43.3
56.2

69.1
-152.0

-42.0

68.0

35.9
45.1

54.2

(d)

Figure 1: The rador plot of different methods (a) Llama-3-8B Llama-3-8B w./ Quant. (b) Llama-3-8B w./ Token
Dropping (c) Linear-time sequence models and mixed Architecture (d) Llama-3-8B w./ Prompt compression.

34.4
35.6

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
H2O 2x
H2O 4x
H2O 6x
H2O 8x

33.9

34.5

35.1

23.1
25.0

26.8

68.5
68.8

69.1
65.8

66.4

67.0

47.5
50.9

54.4

(a) Llama-3-8B-Instruct

28.7
30.6

32.5

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
H2O 2x
H2O 4x
H2O 6x
H2O 8x

22.6

24.2

25.8

24.7
26.3

27.9

65.4
66.3

67.2
81.5

85.4

89.3

52.6
53.3

54.0

(b) Mistral-7B-v0.2-Instruct

26.3
28.7

31.1

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
H2O 2x
H2O 4x
H2O 6x
H2O 8x

21.6

22.8

24.0

21.2
24.0

26.7

62.0
62.9

63.8
28.5

29.5

30.5

32.6
45.2

57.8

(c) LongChat-7B-v1.5-32K

Figure 2: H2O with different compression ratios on three commonly used LLMs.

or hybrid linear-time sequence model families.
For transformer-based LLMs, we opt for Mistral-
7b-Instruct-v0.2 (Jiang et al., 2023a), Longchat-
7B-v1.5-32k (Li et al., 2023a) and Llama-3-8B-
Instruct (AI@Meta, 2024) to provide a coverage
of SOTA long-context capable model as well as
the most recent progress of open-source LLMs.
For linear-time sequence models and their hybrids,
we evaluated Mamba-2.8B (Gu and Dao, 2023),
Mamba2-2.7b (Dao and Gu, 2024), Mamba-Chat-
2.8B (Mattern and Hohr, 2023), RWKV-5-World
(Peng et al., 2023), and RecurrentGemma-2b/9b-
Instruct (Botev et al., 2024). We refer readers to
Appendix B for more model-related details.

Methods and Hyperparameter Settings. As
shown in Table 1, we select representative methods
ranging from KV cache-free to linear complexity
KV cache. Apart from the linear-time sequence
models and their hybrids introduced above, we opt
for the following compression methods: For quanti-
zation, we adopt KIVI (Liu et al., 2024b), INT4 per-
token quantization in FlexGen (Sheng et al., 2023);
For Token dropping, we adopt StreamingLLM
(Xiao et al., 2023), H2O (Zhang et al., 2024d), and
InfLLM (Xiao et al., 2024). For Prompt Compres-
sion, we adopt LLMLingua2 (Pan et al., 2024). We
note that although token dropping-based meth-
ods are usually designed with a constant KV
cache size in mind, we modify them to adapt
linear compression schemes for fair compari-

son with other methods. We share more method-
specific details in Appendix B.3.

3.2 Experiment Setup and Report Digestion
Given the vastly different design principles em-
ployed in different schools of long context han-
dling methods, it is, in fact, impossible to achieve
a global alignment where all covered methods are
considered fairly aligned against each other. For ex-
ample, while KV cache quantization methods like
FlexGen (Sheng et al., 2023) can adapt to different
data precision, they can never be aligned with any
KV cache-free approaches like Mamba (Gu and
Dao, 2023). Similarly, token dropping approaches
typically employ a constant size of kept tokens and
evict everything else, making their compression
gain dynamic against inputs of different lengths;
and, again, not alignable with KV cache quantiza-
tion methods nor KV cache-free approaches. Note
that the abovementioned issues are merely some
alignment hardships due to conflicts in different
long contexts when handling schools. In reality,
two long context-specific methods — even under
the same school — can also bring further compli-
cations: e.g., KIVI (Liu et al., 2024b) includes a
full precision sliding window for the most recent
tokens, while FlexGen (Sheng et al., 2023) doesn’t.
Further, known that models like Mamba (Gu and
Dao, 2023) and RWKV (Peng et al., 2023) are typ-
ically pre-trained on open-source datasets, their
architecture potentials cannot be fairly evaluated

6
4628

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 27K tokens

(a) Llama-3-8B-Instruct Baseline

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) Llama-3-8B-Instruct + KIVI-2bit

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) Llama-3-8B-Instruct + InfLLM 4x

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) LLMLingua2-4x

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 28K tokens

(e) Mamba-2.8B

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

0

(f) RecurrentGemma-9B-it

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Needle-in-a-Haystack results on Llama-3-8B-Instruct, linear-time sequence models, and mixed architec-
tures. The best method in each school of approaches is featured with comparable compression ratios. The same
length of input might convert to different numbers of tokens per different models, as noted in the upper right corners.

compared to models like Llama-3 — which are
pretrained upon proprietary data corpus and done
so with an overtrained recipe that has proven to be
beneficiary. More on this in Appendix E.

As the best alternative, we opt to compress dif-
ferent methods towards a range of available target
compression ratios shown in Table 2. For KV cache
quantization methods, we derive such compression
ratios by referring to the reduction in KV cache
memory size against full precision KV cache. For
token dropping approaches, we forgo their typical
constant kept token setup and dynamically adjust
the amount of evicted tokens upon the length of
each input request. For hard prompt compression,
we simply compress the final hard prompt to or
below the target compression ratio. We keep KV
cache-free methods in their vanilla forms as they
often have a constant memory complexity. More in
Appendix B.3.

With such efforts, our experiment report should
be reasonably comparable among similar compres-
sion ratios. Though we emphasize that our addi-
tional alignment effort will not resolve the pretrain-
ing difference among different backbone models
— where an aligned comparison here can only be

done by training different models from scratch,
which will induce drastic computation costs and
can only provide coverage on fully transparent
transformer-based LLMs like Pythia (Biderman
et al., 2023), OpenLLaMA (Geng and Liu, 2023),
or LLM360 (Liu et al., 2023), where weight-only
open-source models like Llama (Touvron et al.,
2023; AI@Meta, 2024) and Mistral (Jiang et al.,
2023a) can not be included due to the lack of repro-
ducible training procedure and resource.
3.3 Results and Discussion

We showcase our main results in a category-based
fashion in Table 2 and refer our readers to Ap-
pendix D for many more additional results.
Table 2 highlights the per-task-category perfor-
mance of different long context-capable methods
on Meta-Llama-3-8B-Instruct (AI@Meta, 2024)
and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a),
as well as several other covered linear and mixed
models. Based on all of our obtained results, we
made the following observations.

OB ❶ Keeping the prefill process uncompressed
is crucial for performance maintenance. This
is because the KV cache for all prompt tokens is

7
4629

generated during the prefill stage. If we apply any
compression at this stage, it will make the represen-
tation of said prompt in later layers inaccurate due
to lossy forward() activation, leading to worse
results when generating the output tokens. For in-
stance, KIVI (Liu et al., 2024b), FlexGen (Sheng
et al., 2023), and H2O (Zhang et al., 2024d) do not
employ any compression operation during the pre-
fill stage, which often leads to much better results
than methods which do compress within (or even
before) the prefill stage, namely StreamingLLM
(Xiao et al., 2023), InfLLM (Xiao et al., 2024), and
LLMLingua2 (Pan et al., 2024).

That being said, we note this observation is
likely limited to “long input” type of tasks, as all
evaluated tasks in our work are considered “long
input, short output” (like passkey retrieval from
Mohtashami and Jaggi (2023)), but not “long gen-
eration” (like multi-round conversation (Li et al.,
2023b; Wu et al., 2023), fiction writing (Yang et al.,
2022), or long code generation (Roziere et al.,
2023)), where compressing the input during the
prefill stage will naturally carry more influence
than compression during the decoding stage. More
on this in Section 5.

OB ❷ Quantization methods can often achieve
reliable performance across all task categories,
yet token dropping approaches excel on some
specific types of tasks (e.g., coding). We find
that KV cache quantization techniques like Flex-
Gen (Sheng et al., 2023) and KIVI (Liu et al.,
2024b) tend to perform decently across all eval-
uated tasks. This is an intuitive finding, given quan-
tization techniques do not evict any token com-
pletely, avoiding the possibility of dropping task-
influential tokens by accident (e.g., one can imag-
ine forging tokens around the needle insertion in
the needle-in-the-haystack tasks (Mohtashami and
Jaggi, 2023) will surely be damaging, especially if
such eviction happens during the prefill stage). The
trade-off of such globally acceptable performance
of KV cache quantization methods is their mem-
ory footprints must grow with the sequence length,
unlike token dropping approaches or linear-time se-
quence models, where a constant memory footprint
is possible.

On the other hand, several featured token
dropping methods showcased excellent perfor-
mance on some specific subtasks. For exam-
ple, StreamingLLM (Xiao et al., 2023) and H2O
(Zhang et al., 2024d) tend to perform exceptionally

well on code-related tasks, with Figure 2 and Fig-
ure 25 demonstrating perfect performance retention
across various compression ratios upon the major-
ity of featured LLMs; whereas InfLLM (Xiao et al.,
2024) — another token dropping methods that ba-
sically does KV cache retrieval of middle tokens
on top of StreamingLLM — tend to deliver a more
steady performance across all tasks without dras-
tic shortcoming, with an extra advantage of being
stronger under the needle test than StreamingLLM.

Conversely, hard prompt compression methods
like LLMLingua2 (Pan et al., 2024) perform the
worst on the needle test across all KV cache-
required methods — which is, once again, a well-
expected finding as if one deletes the needle infor-
mation within the input, the LLM will certainly not
be able to answer the retrieval-required question
correctly. LLMLingua2 performs modestly behind
all featured KV cache-required methods in terms of
LongBench (Bai et al., 2023b) tasks, though with
the advantage of being model agnostic and can be
theoretically applicable to black-box models with
limited access.

OB ❸ Mixing with attention can greatly im-
prove the long context capability of linear-time
sequence models. We observe that hybrid mod-
els like RecurrentGemma (Botev et al., 2024) can
result in good performance improvement over pure
linear-time sequence models like Mamba (Gu and
Dao, 2023) or Mamba-Chat (Mattern and Hohr,
2023) in terms of all evaluated tasks (Table 2). This
indicates the potential of hybrid architectures due
to the promising performance gain with an often
acceptable increase in memory footprint.

OB ❹ Needle-in-a-haystack test remains chal-
lenging for KV cache-free or prefill time com-
pression methods. As demonstrated in Figure 3,
which features the best methods from each school
of approaches: KIVI by Liu et al. (2024b) (quan-
tization), InfLLM by Xiao et al. (2024) (token
dropping), LLMLingua2 by Pan et al. (2024)
(prompt compression), Mamba-2.8B by Gu and
Dao (2023) (linear-time sequence models), and
RecurrentGemma-9B-it by Botev et al. (2024)
(mixed architectures), we observe that compres-
sion during prefill or KV cache-free methods often
struggle to maintain good retrieval performance as
the baseline methods. While we believe different
architectural or method designs do play a role here,
we emphasize that unaligned pretraining recipes
among different models, as well as the disparity of

8
4630

model sizes, are also certainly some strong influ-
encing factors. For example, while not featured in
our work, LongMamba (Zhang, 2024) — a fine-
tuned version of Mamba-2.8B (Gu and Dao, 2023)
with long context focuses - tends to have much
better needle performance.

Additionally, we note that we purposely decide
to feature InfLLM (Xiao et al., 2024) instead of
H2O (Zhang et al., 2024d) in Figure 3 as a represen-
tation of the token dropping school, despite H2O
having an objectively much better needle result in
Table 2 (100% vs 20.7% for 4× compression). This
decision is made because our needle test requires
the model to correctly answer a 7-digit passkey,
where the ending of the instruction prompt is “What
is the pass key? The pass key is ” (Ap-
pendix A.2), leading the model-in-question likely
to answer the first several digits of the passkey as
the first generated token. This, combined with the
fact that H2O does not evict tokens during prefill
time, often means an H2O-powered model can get
the first several digits (usually at least three, due to
the design of tokenizers) of the passkey right for
free, as no compression has happened for decoding
the first token, and most transformer-based base-
line models — like the Llama-3-8B-Instruct fea-
tured in Figure 3 — are able to get the full 7-digit
passkey right under no compression. We confirmed
H2O’s perfect needle performance on Llama-3-8B-
Instruct showed in Table 2 and Figure 13 is indeed
more of a product of this prompt template and the
7-digit passkey task configuration instead of its in-
nate excellence in retrieval capability; as should we
expand the passkey length to 64-digit while keep-
ing everything else the same, H2O’s performance
drops drastically (from 100% to 35.0% for 4× com-
pression), where methods like KIVI (Liu et al.,
2024b) and InfLLM (Xiao et al., 2024) tend not to
experience such significant of a performance drop
(100% to 91.0% for KIVI-2bit; 20.7% to 19.0% for
InfLLM 4× compression), as shown in Figure 20,
21, and 22. Due to page limitations, we analyze
more observations in Appendix E.

4 Challenges and Opportunities

In this section, we share our insights regarding dif-
ferent long context challenges and highlight several
opportunities derived from our benchmarking ob-
servations.

How to effectively reduce prefill time and foot-
print? Based on our empirical observations,

most KV cache compression methods struggle to
make the prefill stage efficient without compro-
mising performance (OB ❶), which calls for in-
vestments in more performant prefill-time com-
pression methods. However, other than the per-
formance requirement on accuracy-like metrics,
prefill-time compression methods are entangled
with non-trivial technical comparability challenges.
Recall that FlashAttention (FA) (Dao et al., 2022)
is inevitable during the prefill stage to improve
hardware utility, with the key spirit of FA being
to avoid the generation of a full attention matrix.
Thus, methods that rely on the availability of a
full attention matrix cannot be easily integrated.
Therefore, we advocate future research on prefill-
time compression methods with FA compatibility
in mind.

How to build efficient yet long context-capable
architectures? We empirically observe that pure
linear-time sequence models that mix input tokens
together struggle with information retrieval (OB
❸), where some sort of attention mechanism pro-
vides visible improvements (OB ❷). Therefore, an
important future direction is to explore how to ef-
ficiently combine attention layers with linear-time
sequence model layers and determine the optimal
number of attention layers needed to achieve an
ideal performance-efficiency balance.

How to cash-in real-world efficiency? Different
methods often have varying levels of optimization
while being comparable in theoretical efficiency,
meaning whether a method is practically efficient
in real-world application is highly related to fac-
tors like the Ease of Optimization (e.g., quantiza-
tion is well-studied and easy to optimize, while
some unstructured methods will involve extra chal-
lenges (Liu and Wang, 2023)) and Compatibility
with Established Software or Hardware Frame-
works (e.g., compatibility with FlashAttention, as
mentioned above). Based on these factors, it is
challenging to provide a fair apple-to-apple com-
parison regarding efficiency. Researchers should
keep this challenge in mind and develop efficient
yet long context-capable methods.

5 Conclusion

Our benchmark fills a critical gap by evaluating
10+ methods across 65 settings, uncovering new
insights on long context-capable approaches. We
also provide a minimalistic and extensible package
for reproducible research.

9
4631

Acknowledgments

This research was partially supported by NSF
Awards ITE-2429680, IIS-2310260, OAC-
2112606, and OAC-2117439. Furthermore, this
work was supported by the US Department of
Transportation (USDOT) Tier-1 University Trans-
portation Center (UTC) Transportation Cybersecu-
rity Center for Advanced Research and Education
(CYBER-CARE) grant #69A3552348332.

This work also made use of the High Perfor-
mance Computing Resource in the Core Facility
for Advanced Research Computing at Case West-
ern Reserve University (CWRU). We give special
thanks to the CWRU HPC team for their prompt
and professional help and maintenance. The views
and conclusions in this paper are those of the au-
thors and do not represent the views of any funding
or supporting agencies.

Limitations and Potential Risks

Despite our best efforts to cover a wide range of
long context-capable approaches across many back-
bone models, our benchmark work will inevitably
lack the inclusion of some eligible and interesting
methods, certain worthwhile tasks, or particular
setups that are reflective of our benchmarking goal
due to limited manpower and computing resources.
Specifically, we recognize that we only benchmark
on models with <10B parameters2 and our tasks
are more focused on long input but not long genera-
tion, with the latter also being an important, though
less mature aspect of long context evaluation due
to the open-ended nature of prolonged generation
tasks.

In terms of potential risks, while we aim to pro-
vide a comprehensive view of feature methods and
tasks, we caution our readers to directly adopt our
empirical conclusion without proper evaluation un-
der high-stake scenarios.

References

AI@Meta. 2024. Llama 3 model card.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

2Though part of it is to align with linear-time sequence
models, which are often ≤8B.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023a. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023b. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Aleksandar Botev, Soham De, Samuel L Smith,
Anushan Fernando, George-Cristian Muraru,
Ruba Haroun, Leonard Berrada, Razvan Pascanu,
Pier Giuseppe Sessa, Robert Dadashi, et al. 2024.
Recurrentgemma: Moving past transformers for
efficient open language models. arXiv preprint
arXiv:2404.07839.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. 2024. Reducing transformer key-value cache
size with cross-layer attention. arXiv preprint
arXiv:2405.12981.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Danqi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E
Gonzalez, et al. 2024. Chatbot arena: An open plat-
form for evaluating llms by human preference. arXiv
preprint arXiv:2403.04132.

Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang,
Zirui Liu, Xun Chen, and Xia Hu. 2024. Learning to
compress prompt in natural language formats. arXiv
preprint arXiv:2402.18700.

10
4632

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Tri Dao and Albert Gu. 2024. Transformers are SSMs:
Generalized models and efficient algorithms through
structured state space duality. In Forty-first Interna-
tional Conference on Machine Learning.

Soham De, Samuel L Smith, Anushan Fernando, Alek-
sandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Srivat-
san Srinivasan, et al. 2024. Griffin: Mixing gated
linear recurrences with local attention for efficient
language models. arXiv preprint arXiv:2402.19427.

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang.
2024. Qaq: Quality adaptive quantization for llm kv
cache. arXiv preprint arXiv:2403.04643.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei
Duan, Xingcheng Zhang, and Dahua Lin. 2024.
Skvq: Sliding-window key and value cache quan-
tization for large language models. arXiv preprint
arXiv:2405.06219.

Yao Fu. 2024. Challenges in deploying long-context
transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive kv cache compression for
llms. arXiv preprint arXiv:2310.01801.

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Contextual position en-
coding: Learning to count what’s important. arXiv
preprint arXiv:2405.18719.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant:
Towards 10 million context length llm inference
with kv cache quantization. arXiv preprint
arXiv:2401.18079.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. 2024. Ruler: What’s the real context size of
your long-context language models? arXiv preprint
arXiv:2404.06654.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. arXiv.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-
ating pre-filling for long-context llms via dynamic
sparse attention. arXiv preprint arXiv:2407.02490.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023b. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
2024. Gear: An efficient kv cache compression
recipefor near-lossless generative inference of llm.
arXiv preprint arXiv:2403.05527.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International conference on machine
learning, pages 5156–5165. PMLR.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024.
Same task, more tokens: the impact of input length on
the reasoning performance of large language models.
arXiv preprint arXiv:2402.14848.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma,
and Hao Zhang. 2023a. How long can context length
of open-source llms truly promise? In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023b. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008.

Jingyao Li, Han Shi, Xin Jiang, Zhenguo Li, Hong
Xu, and Jiaya Jia. 2024a. Quickllama: Query-aware
inference acceleration for large language models.
Preprint, arXiv:2406.07528.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024b. Long-context llms strug-
gle with long in-context learning. arXiv preprint
arXiv:2404.02060.

11
4633

https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=ztn8FCR1td
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://arxiv.org/abs/2406.07528
https://arxiv.org/abs/2406.07528

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024c. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Co-
hen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai
Shalev-Shwartz, et al. 2024. Jamba: A hybrid
transformer-mamba language model. arXiv preprint
arXiv:2403.19887.

Shiwei Liu and Zhangyang Wang. 2023. Ten lessons we
have learned in the new" sparseland": A short hand-
book for sparse neural network researchers. arXiv
preprint arXiv:2302.02596.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, et al. 2023.
Llm360: Towards fully transparent open-source llms.
arXiv preprint arXiv:2312.06550.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2024a. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time.
Advances in Neural Information Processing Systems,
36.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024b. Kivi: A tuning-free asymmet-
ric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian
He, Liangke Gui, Graham Neubig, Jonathan May,
and Luke Zettlemoyer. 2022. Mega: moving av-
erage equipped gated attention. arXiv preprint
arXiv:2209.10655.

Justus Mattern and Konstantin Hohr. 2023. Mamba-
chat. GitHub.

Amirkeivan Mohtashami and Martin Jaggi. 2023.
Landmark attention: Random-access infinite con-
text length for transformers. arXiv preprint
arXiv:2305.16300.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. arXiv preprint arXiv:2404.07143.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski,
David Tarjan, and Edoardo M Ponti. 2024. Dynamic
memory compression: Retrofitting llms for acceler-
ated inference. arXiv preprint arXiv:2403.09636.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin
Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor
Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao,
Lili Qiu, and Dongmei Zhang. 2024. LLMLingua-
2: Data distillation for efficient and faithful task-
agnostic prompt compression. In Findings of the
Association for Computational Linguistics ACL 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Huanqi Cao, Xin Cheng,
Michael Chung, Matteo Grella, Kranthi Kiran GV,
et al. 2023. Rwkv: Reinventing rnns for the trans-
former era. arXiv preprint arXiv:2305.13048.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen,
Dong Li, Weigao Sun, and Yiran Zhong. 2024.
Hgrn2: Gated linear rnns with state expansion. arXiv
preprint arXiv:2404.07904.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. Retentive network: A successor to transformer
for large language models (2023). URL http://arxiv.
org/abs/2307.08621 v1.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. arXiv
preprint arXiv:2405.05254.

12
4634

https://github.com/havenhq/mamba-chat
https://github.com/havenhq/mamba-chat

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Guanchu Wang, Junhao Ran, Ruixiang Tang, Chia-
Yuan Chang, Yu-Neng Chuang, Zirui Liu, Vladimir
Braverman, Zhandong Liu, and Xia Hu. 2024a. As-
sessing and enhancing large language models in
rare disease question-answering. arXiv preprint
arXiv:2408.08422.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Yicheng Wang, Jiayi Yuan, Yu-Neng Chuang, Zhuoer
Wang, Yingchi Liu, Mark Cusick, Param Kulkarni,
Zhengping Ji, Yasser Ibrahim, and Xia Hu. 2024b.
Dhp benchmark: Are llms good nlg evaluators?
arXiv preprint arXiv:2408.13704.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and con-
trastive conditioning for controllability and toxic-
ity reduction in language models. arXiv preprint
arXiv:2210.03162.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv
cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao,
Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song
Han, and Maosong Sun. 2024. Infllm: Unveiling the
intrinsic capacity of llms for understanding extremely
long sequences with training-free memory. arXiv
preprint arXiv:2402.04617.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

June Yong Yang, Byeongwook Kim, Jeongin Bae,
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung
Kwon, and Dongsoo Lee. 2024. No token left be-
hind: Reliable kv cache compression via importance-
aware mixed precision quantization. arXiv preprint
arXiv:2402.18096.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan
Klein. 2022. Re3: Generating longer stories with
recursive reprompting and revision. arXiv preprint
arXiv:2210.06774.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2023. Gated linear attention
transformers with hardware-efficient training. arXiv
preprint arXiv:2312.06635.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen
Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. 2022. Metaformer is actually what you need for
vision. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10819–10829.

Jiayi Yuan, Ruixiang Tang, Xiaoqian Jiang, and Xia Hu.
2023. Large language models for healthcare data
augmentation: An example on patient-trial matching.
In AMIA Annual Symposium Proceedings, volume
2023, page 1324. American Medical Informatics As-
sociation.

Amir Zandieh, Majid Daliri, and Insu Han. 2024.
Qjl: 1-bit quantized jl transform for kv cache
quantization with zero overhead. arXiv preprint
arXiv:2406.03482.

Lei Zhang, Yunshui Li, Ziqiang Liu, Jiaxi yang, Jun-
hao Liu, Longze Chen, Run Luo, and Min Yang.
2024a. Marathon: A race through the realm of
long context with large language models. Preprint,
arXiv:2312.09542.

Peiyuan Zhang. 2024. Longmamba. https://github.
com/jzhang38/LongMamba.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali
Shrivastava. 2024b. Kv cache is 1 bit per channel: Ef-
ficient large language model inference with coupled
quantization. arXiv preprint arXiv:2405.03917.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al.
2024c. ∞bench: Extending long context eval-
uation beyond 100k tokens. arXiv preprint
arXiv:2402.13718.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2024d.
H2o: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, 36.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate llm serv-
ing. Proceedings of Machine Learning and Systems,
6:196–209.

13
4635

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2312.09542
https://arxiv.org/abs/2312.09542
https://github.com/jzhang38/LongMamba
https://github.com/jzhang38/LongMamba

A Details about Datasets

A.1 Details Regarding LongBench

For the aforementioned task (1)-(6), we adopt the
implementation and benchmark setting of Long-
Bench (Bai et al., 2023b); here’s a more detailed
introduction of tasks.

The long context benchmarking tasks are cate-
gorized into several types: Multi-document QA,
Single-document QA, Summarization, Few-shot
learning, Synthetic tasks, and Code tasks. Each
task has specific metrics for evaluation, such as
the F1 score, ROUGE-L, and Accuracy. The av-
erage length of most tasks ranges from 5k to 15k,
and each task has 200 datapoints, except for Mul-
tiFieldQA (150), LCC (500), and RepoBench-P
(500).

Single-document QA tasks include Multi-
FieldQA, NarrativeQA, and Qasper, each requiring
the comprehension and extraction of information
from lengthy texts. Multi-document QA tasks like
HotpotQA, 2WikiMQA, and Musique require an-
swering questions based on multiple documents.
Summarization tasks, such as GovReport, Multi-
News, and QMSUM, involve condensing long
documents into concise summaries evaluated us-
ing Rouge-L. Few-shot tasks, including TriviaQA,
SAMSum, and TREC, provide limited examples to
guide the model in answering questions or catego-
rizing data. Synthetic tasks like PassageRetrieval
and PassageCount simulate real-world scenarios
where models must identify relevant paragraphs
or count distinct passages within a repetitive text.
Code tasks such as LCC and RepoBench-P assess
the model’s ability to predict subsequent lines of
code in various programming languages, emphasiz-
ing the use of cross-file dependencies.

Overall, LongBench’s diverse tasks are metic-
ulously designed to push the boundaries of long-
context processing, providing a robust benchmark
for assessing advanced language models.

In our benchmark, we purposely omit the results
of PassageCount, as LLMs often do not count cor-
rectly even in relatively short contexts (Golovneva
et al., 2024). All models and methods exhibit poor
performance (i.e., less than 10% accuracy), making
the average performance unreliable with such an
outlier included.

A.2 Details Regarding Needle-in-a-Haystack
Test

Needle-in-a-haystack (NIAH) is a style of synthet-
ically generated stress test aiming to evaluate the
information retrieval capability of language models.
NIAH tasks often introduce a piece of key informa-
tion that is inserted into unrelated background texts
of various lengths and at various positions. To the
best of our knowledge, the first two widely adopted
versions of this task are proposed by Mohtashami
and Jaggi (2023) and Greg Kamradt. Specifically,
Mohtashami and Jaggi (2023) inserts a piece of
key information formatted like “The pass key
is <PASS KEY>. Remember it. <PASS KEY>
is the pass key” into the different lengths of
unrelated background texts filled by repetition of
“The grass is green. The sky is blue. The
sun is yellow. Here we go. There and
back again.” — this task is often known as the
passkey retrieval task. Yet, Greg Kamradt’s version
of NIAH inserts a sentence like “The best thing
to do in San Francisco is eat a switch and
sit in Dolores Park on a sunny day.” Under
both tasks, the LLM-in-question is then asked to
answer a question that would require it to retrieve
such a piece of inserted information successfully.

Given the vast variants of such NIAH tasks
(gkamradt, Arize-ai, Levy et al. (2024); Mo-
htashami and Jaggi (2023); Reid et al. (2024);
Hsieh et al. (2024)) existing in the community, we
clarify the formation of our needle task as the fol-
lowing, which largely follows the passkey retrieval
prompt template of Mohtashami and Jaggi (2023);
Wang et al. (2024a) but using 7-digit passkey and
Paul Graham Essays3 as the background filler, as
set forth in Arize-ai and Reid et al. (2024):
There is an important info hidden inside a lot of

irrelevant text. Find it and memorize them. I will

quiz you about the important information there.

<prefix filled by Paul Graham Essays>

The pass key is <7-DIGIT PASS KEY>. Remember it.

<7-DIGIT PASS KEY> is the pass key.

<suffix filler>

What is the pass key? The pass key is

B Detailed Experiment Setup

B.1 LongBench Setting

For baseline (no compression) performance, we
follow the truncation settings in the LongBench

3https://paulgraham.com/articles.html

14
4636

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://paulgraham.com/articles.html

official implementation as below in Table 3.

Table 3: Maximal prompt length in LongBench of dif-
ferent benchmarks.

Model max_length

Meta-Llama-3-8B-Instruct 7,500
Mistral-7B-Instruct-v0.2 31,500
longchat-7b-v1.5-32k 31,500

We note that following the official implementa-
tion of LongBench (Bai et al., 2023b), for prompts
that exceed the max_length specified in Table 3,
they will be middle-truncated by preserving the
first and last max_length/2 tokens.

For a fair comparison, the LongBench inputs
of prefill-time compression methods like InfLLM
(Xiao et al., 2024) and StreamingLLM (Xiao et al.,
2023) are not truncated, but their maximum cache
budget is capped at the respective base model
max_length × compression ratio. Namely, sup-
pose InfLLM is evaluated on LongBench tasks with
a base model of Mistral-7B-Instruct-v0.2 and under
a compression ratio of 2×, its maximum KV cache
budget would be equivalent to 31, 500/2 = 15, 750
tokens (or the full prompt length/compression ra-
tio, if such given prompt has a lower length than
31,500 tokens). The difference lies in that meth-
ods like InfLLM can decide where to allocate
such budget across the full, non-truncated prompt,
whereas methods like H2O (Zhang et al., 2024d)
and KIVI (Liu et al., 2024b) are only given the
middle-truncated prompt at the first place due to
such method do not conduct compression during
the prefill stage. We refer our readers to Appendix
B.3 for detailed settings regarding each compres-
sion method.

B.2 Needle-in-a-Haystack Setting

Following the designs of Mohtashami and Jaggi
(2023) and Hsieh et al. (2024), we adopt the
passkey retrieval task formulated in Appendix A.2
as our needle test. For granularity, we evaluate
the LLM-in-question against 10 different sequence
lengths uniformly spanning from 512 to 20480
words and in 10 different depths from the start to
the end of the input. For each length-depth combi-
nation, we iterate the test 3 times with 3 randomly
generated <7-DIGIT PASS KEY>. We highlight the
length of our needle test — 20480 — is in terms
of the number of words, but not the number of to-
kens, as different models might employ tokenizers

with different efficiency, where an aligned input
construction should be maintained for proper cross
model comparison (which is inevitable given the in-
volvement of linear-time sequence models and their
hybrids). 20480 words in our needle test usually
converts to roughly 30.6k tokens with the tokenizer
utilized in models like longchat-7b-v1.5-32k (Li
et al., 2023a), but only 27.2k tokens in models like
Meta-Llama-3-8B-Instruct (AI@Meta, 2024) with
a more efficient tokenizer.

We evaluated our needle test against three pop-
ular transformer-based language models (Mistral-
7b-Instruct-v0.2 (Jiang et al., 2023a), Longchat-
7B-v1.5-32K (Li et al., 2023a), Llama-8B-Instruct
(AI@Meta, 2024)) as well as several other liner-
time sequence models and hybrid architectures
mentioned in Section 3.1. Given that Mistral-
7b-Instruct-v0.2 and Longchat-7B-v1.5-32K come
with a context window of 32k tokens, we feed our
needle inputs into such models in a vanilla fash-
ion, whereas for Llama-8B-Instruct, we enlarge its
RoPE base theta (θ) (Su et al., 2024) setting to 32×
of its original size due to its limited 8k off-the-shelf
context window.

B.3 Method-specific Setting

Linear-time sequence models and mixed archi-
tecture In our paper, we benchmark five pure or
hybrid linear-time sequence models. While such
models can theoretically achieve infinite context
lengths, model performance is still expected to de-
grade when the context length exceeds the effec-
tive context length, which is typically the length
used during the pretraining phase. The context
lengths used in benchmarking LongBench (Bai
et al., 2023b) are provided in Table 4. For our
Needle-in-a-Haystack task (Mohtashami and Jaggi,
2023; Hsieh et al., 2024) defined in Appendix A.2,
we uniformly set the maximum context length to
20480 words to ensure consistency and fair com-
parison across tasks.

Table 4: Effective context length and model size of the
five linear time sequence models benchmarked in our
paper.

Model Eff. context length

Mamba-2.8B 2k
Mamba-Chat-2.8B 2k
RWKV-5-World-7B 4k
RecurrentGemma-2B-it 8k
RecurrentGemma-9B-it 8k

15
4637

Quantization We benchmark two popular KV
cache quantization methods: one 2bit quantization
(KIVI-2) and two 4bit quantizations (KIVI-4 and
FlexGen). For KIVI (Liu et al., 2024b), we use the
official implementation4, and for FlexGen (Sheng
et al., 2023), we follow the group-wise quantization
in the official codebase5. The group size for both
KIVI and FlexGen is set to 32. We further set the
residul length, which is unique to KIVI, as 128.

Token Dropping We evaluate three popular to-
ken dropping methods used for handling long
contexts: StreamingLLM (Xiao et al., 2023), In-
fLLM (Xiao et al., 2024), and H2O (Zhang et al.,
2024d). In H2O, there are two parameters for con-
trolling the token dropping ratio: the heavy ratio
and the recent ratio. The recent ratio controls the
number of tokens preserved within the local win-
dow, while the heavy ratio controls the number of
heavy-hitter tokens outside the local window. We
set both the heavy ratio and recent ratio to the same
values of 25%, 12.5%, 8.3%, and 6.25% of the total
token length to achieve compression gains of 2×,
4×, 6×, and 8×, respectively, following the set-
ting6 set forth in H2O’s official implementation7.

We emphasize that under this linear compres-
sion scheme utilized in H2O, the KV cache size
scales linearly with the input prompt length. On the
other hand, StreamingLLM maintains a constant
window size of “attention sinks” (i.e., front-most
tokens) and recent tokens, making the size of the
KV cache constant at all times (irrelevant to input
length) in its original design. Thus, to hit a consis-
tent compression rate that is reasonably comparable
to other methods, we modify the total number of
tokens retained in the StreamingLLM pipeline as
the product of the target compression rate and the
input length — i.e., for a prompt of 1,000 tokens,
a StreamingLLM-empowered LLM with 2× com-
pression rate would have a 500 tokens KV cache
budget to distribute among its attention sink and
most recent tokens. We ensure the ratio of attention
sinks to recent tokens within the KV cache matches
the ratio of 2% and 98%, according to its official
configurations8.

In addition to the attention sink and recent to-
4https://github.com/jy-yuan/KIVI
5https://github.com/FMInference/FlexGen
6https://github.com/FMInference/H2O/blob/main/

h2o_hf/README.md
7https://github.com/FMInference/H2O
8e.g., https://github.com/thunlp/InfLLM/blob/

main/config/mistral-stream-llm.yaml

kens, InfLLM (Xiao et al., 2024) incorporates the
most relevant tokens from the middle of the context
into the kept KV cache. We, therefore, preserve the
ratio of attention sinks, middle tokens, and recent
tokens as 2%, 32%, and 66%, respectively, again
being faithful to its official configurations9.

We borrowed our implementations of
StreamingLLM and InfLLM from InfLLM’s
(Xiao et al., 2024) official repository10 as this is
the official implementation of InfLLM, yet it is
endorsed by the lead author of StreamingLLM due
to overlapped authorships.

Prompt Compression We evaluate LLMLin-
gua11 (Pan et al., 2024) on four different compres-
sion rates. K× for K ∈ {2, 4, 6, 8} denotes that
the compressor is restricted to compress the length
into 1/K of the original length of long inputs.

C Related Works

The evaluation of LLM has been well studied (Chi-
ang et al., 2024; Wang et al., 2024b). Given the
importance of long context-capable LLMs, many
related works try to quantify such capabilities, usu-
ally via means of purposing new, long context-
focused datasets. For example, LongBench (Bai
et al., 2023b) — which is also utilized in our
work — provides a bilingual, multitask bench-
mark for long context understanding. Datasets
like InfiniBench (Zhang et al., 2024c), LongI-
CLBench (Li et al., 2024b), Marathon (Zhang et al.,
2024a), and Ruler (Hsieh et al., 2024) all contribute
their perspective in terms of long context evalua-
tion via different collections of real or synthetic
tasks.

Our work differs from the abovementioned prior
arts as such arts mainly focus on producing long
context evaluation datasets, where the included
benchmarks — if any — are mostly evaluated on
vanilla baseline models without any compression
methods applied; where our work presents compre-
hensive results primarily highlighting the compar-
ison among different efficient but long context-
capable approaches. We cover 10+ long context-
capable approaches under 60+ different settings. To
the best of our knowledge, no prior art has bench-
marked similar coverage of compression methods
under a long context scenario as we do.

9e.g., https://github.com/thunlp/InfLLM/blob/
main/config/llama-3-inf-llm.yaml

10https://github.com/thunlp/InfLLM
11https://github.com/microsoft/LLMLingua

16
4638

https://github.com/jy-yuan/KIVI
https://github.com/FMInference/FlexGen
https://github.com/FMInference/H2O/blob/main/h2o_hf/README.md
https://github.com/FMInference/H2O/blob/main/h2o_hf/README.md
https://github.com/FMInference/H2O
https://github.com/thunlp/InfLLM/blob/main/config/mistral-stream-llm.yaml
https://github.com/thunlp/InfLLM/blob/main/config/mistral-stream-llm.yaml
https://github.com/thunlp/InfLLM/blob/main/config/llama-3-inf-llm.yaml
https://github.com/thunlp/InfLLM/blob/main/config/llama-3-inf-llm.yaml
https://github.com/thunlp/InfLLM
https://github.com/microsoft/LLMLingua

D Extended Experimental Results

In this section, we present additional experimental
results for LongBench and the needle tasks.

Table 5 shows all the LongChat-7B results on
LongBench and the needle experiment. We present
FlexGen (Sheng et al., 2023) results on three differ-
ent LLMs in Figure 6. Additional H2O (Zhang
et al., 2024d) results for different compression
ratios on Llama-3-8B, LongChat-7B-v1.5, and
Mistral-7B-v0.2 can be found in Figure 13, 14
and 15 respectively.

We provide more visualization results on the
needle task. For baseline performance for the three
models in Figure 4. For InfLLM results on the
LongChat and Mistral models, the results are listed
in Figure 8 and 9. Figure 23 and 24 show the
performance of quantization, token dropping, and
prompt compression on Mistral and LongChat, re-
spectively. Figure 25, 26 and 27 illustrates the
effectiveness of different compression ratios across
various subtasks in LongBench.

Finally, Table 6, 7, 8 and 9 show the detailed
results for each task in LongBench.

We additionally have Figure 20, 21, and 22 to
showcase the performance drop of H2O (Zhang
et al., 2024d) under the needle test with a 64-digit
passkey as mentioned in OB ❹, in comparison to
other methods.

E Extended Results and Discussion

A note on the “overtraining” recipe. In sec-
tion 3.2, we briefly mentioned an “overtrained
recipe”. This is mostly referring to Llama-3-8B,
which is trained on 15T tokens and is way beyond
the optimal point according to Chinchilla scaling
law (Hoffmann et al., 2022). This overtraining
recipe is considered a main contributor to Llama-
3’s performance improvement.

We highlight it because most RNN/hybrid archi-
tectures are trying to outperform some fully trans-
parent LLMs (ones we can reproduce the pretrain-
ing, in contrast to just having access to the trained
weights) at a certain parameter scale with an iden-
tical training recipe — e.g., Mamba (Gu and Dao,
2023) to Pythia (Biderman et al., 2023) — where
such LLMs-in-comparison do not employ this over-
training ingredient. This presents a gap in directly
comparing the performance of weight-only open-
sourced LLMs with fully transparent RNN/hybrids,
and we alert our readers to be vigilant in drawing
direct, numerical comparisons.

A note on LLMLingua2 and coding tasks.
LLMLingua2 (Pan et al., 2024) performs signif-
icantly worse on LCC vs on RopeBench-P (Ta-
ble 2 and Table 5). We hypothesize this is because
LCC is a single file code completion task, where
RopeBench-P prefixes the code modules according
to the important statements of a certain file at a
repo level. This potentially gives RopeBench-P a
natural “outline,” which can be favorable cues for
hard prompt compression approaches like LLM-
Lingua2 as these cues may drive the compression
of different parts accordingly.

A note on Mamba-Chat. While Mamba-Chat
(Mattern and Hohr, 2023) is presented as an
instruction-tuned version of Mamba (Gu and Dao,
2023), it does not deliver much better performance
than the original Mamba. Though much of this
can be attributed to the particular instruction tuning
recipe of Mamba-Chat, it suggests that supervised
finetuning SSM models might require some extra
considerations and careful monitoring.

A note on InfLLM with models utilizing con-
densing rotary embeddings. We noticed a sig-
nificant performance improvement in InfLLM
(Xiao et al., 2024) on models utilizing con-
densing rotary embeddings (e.g., InfLLM on
Longchat (Li et al., 2023a) in Table 5 between
the first and current version of our work). Upon
investigation, we realize that the original In-
fLLM implementation does not take into account
of the condensing rotary embedding technique
(namely, position_ids/ratio) — a simple RoPE-
variant (Su et al., 2024) with long context handling
in mind, often utilized in Longchat and Vicuna
(Chiang et al., 2023) family of models — as they
then shifted their focus out of the Vicuna family in
their later versions. Upon updated implementation,
we observe a decent performance boost on InfLLM
with Longchat (Table 5).

17
4639

Table 5: Performance of KV cache quantization, token eviction, and prompt compression methods on LongChat-7B
in our benchmark.

Model Method Comp. Ratio Single. QA Multi. QA Summ. Few-shot Synthetic Code LB Avg. Needle

lo
ng

ch
at

-7
b-

v1
.5

-3
2k

Baseline 1.00× 31.1 23.9 26.7 63.8 30.5 54.9 38.5 96.3
KIVI-2bit 5.05× 30.3 23.1 26.5 63.6 32.2 53.9 38.0 85.3
KIVI-4bit 3.11× 31.1 24.2 26.8 63.9 31.5 54.3 38.5 96.3
FlexGen-4bit 3.20× 31.3 23.8 27.0 62.8 31.5 53.4 38.2 94.7
InfLLM-2x 2.00× 29.2 23.3 25.8 51.8 19.5 51.9 34.2 58.7
InfLLM-4x 4.00× 24.2 24.0 24.4 49.7 9.5 46.8 31.4 34.0
InfLLM-6x 6.00× 21.1 23.5 23.5 48.9 10.0 46.5 30.2 35.0
InfLLM-8x 8.00× 20.1 21.7 22.6 45.3 6.0 46.2 28.5 25.7
StreamLLM-2x 2.00× 23.9 21.8 24.2 51.2 25.0 49.3 32.5 47.7
StreamLLM-4x 4.00× 19.9 22.1 22.3 49.0 13.5 52.0 30.5 32.3
StreamLLM-6x 6.00× 19.6 21.4 20.7 47.5 10.5 51.4 29.4 21.3
StreamLLM-8x 8.00× 17.5 21.4 19.5 44.4 10.0 51.9 28.2 19.7
H2O-2x 2.00× 27.6 22.1 24.6 62.6 30.5 57.8 37.1 56.7
H2O-4x 4.00× 26.2 21.9 21.9 61.9 28.5 55.2 35.7 28.7
H2O-6x 6.00× 25.7 21.3 21.0 62.1 28.0 53.3 35.0 19.7
H2O-8x 8.00× 25.1 21.0 19.8 61.6 28.5 51.5 34.3 14.3
LLMLingua2-2x 2.00× 25.7 22.3 25.4 35.4 19.5 32.6 27.4 28.7
LLMLingua2-4x 4.00× 23.8 20.6 23.5 31.6 5.5 31.9 24.5 3.3
LLMLingua2-6x 6.00× 22.6 20.2 22.6 32.3 5.0 31.9 24.1 0.6
LLMLingua2-8x 8.00× 21.3 19.5 21.9 32.9 6.5 32.5 23.9 0.0

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) Llama-3-8B-Instruct

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(b) Mistral-7B-v0.2-Instruct

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) LongChat-7B-v1.5-32k

Figure 4: Baseline performance under needle test on three commonly used LLMs

18
4640

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 27K tokens

(a) Llama-3 + KIVI-2bit

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) Llama-3 + KIVI-4bit

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) LongChat-7B + KIVI-2bit

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(d) LongChat-7B + KIVI-4bit

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 30K tokens

(e) Mistral-7B + KIVI-2bit

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(f) Mistral-7B + KIVI-4bit

Figure 5: KIVI performance under needle test on three commonly used LLMs with 2-bit and 4-bit quantization

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) Llama-3-8B-Instruct

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(b) Mistral-7B-v0.2-Instruct

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) LongChat-7B-v1.5-32k

Figure 6: FlexGen performance under needle test on three commonly used LLMs

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) 8x Compression

Figure 7: InfLLM on Llama-3-8B-Instruct with 4 different compression rates under needle test

19
4641

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 31K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(d) 8x Compression

Figure 8: InfLLM on LongChat-7B-v1.5-32k with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(d) 8x Compression

Figure 9: InfLLM on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) 8x Compression

Figure 10: StreamingLLM on Llama-3-8B-Instruct with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(d) 8x Compression

Figure 11: StreamingLLM on LongChat-7B-v1.5-32k with 4 different compression rates under needle test

20
4642

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 30K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(d) 8x Compression

Figure 12: StreamingLLM on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) 8x Compression

Figure 13: H2O on Llama-3-8B-Instruct with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(d) 8x Compression

Figure 14: H2O on LongChat-7B-v1.5-32k with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(d) 8x Compression

Figure 15: H2O on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test

21
4643

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0
De

pt
h

20K words 31K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 31K tokens

(d) 8x Compression

Figure 16: LLMLingua on LongChat-7B-v1.5-32k with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 30K tokens

(d) 8x Compression

Figure 17: LLMLingua on Mistral-7B-v0.2-Instruct with 4 different compression rates under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) 2x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) 4x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) 6x Compression

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) 8x Compression

Figure 18: LLMLingua on Llama-3-8B-Instruct with 4 different compression rates under needle test

22
4644

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h
20K words 28K tokens

(a) Mamba-2.8B

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 28K tokens

(b) Mamba-Chat-2.8B

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) RWKV-5-World-7B

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

0

(d) RecurrentGemma-9B-it

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

0

(e) RecurrentGemma-2B-it

Figure 19: Linear-time sequence models under needle test

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) Llama-3-8B-Instruct (99.3%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) Llama-3 + KIVI-4bit (99.3%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) Llama-3 + KIVI-2bit (91.0%)

Figure 20: Llama-3-8B-Instruct with no compression, as well as with 4bit and 2bit KIVI under needle test with
64-digit passkey. Overall accuracies are noted within parentheses.

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) 2x Compression (67.3%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(b) 4x Compression (35.0%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) 6x Compression (22.0%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) 8x Compression (18.7%)

Figure 21: H2O on Llama-3-8B-Instruct with 4 different compression rates under needle test with 64-digit passkey.
Overall accuracies are noted within parentheses.

23
4645

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(a) 2x Compression (17.7%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0
De

pt
h

20K words 27K tokens

(b) 4x Compression (19.0%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(c) 6x Compression (19.0%)

0.5
K 2K 4K 7K 9K 11

K
13

K
16

K
18

K
20

K

Word Count

0.0
0.11
0.22
0.33
0.44
0.56
0.67
0.78
0.89

1.0

De
pt

h

20K words 27K tokens

(d) 8x Compression (19.3%)

Figure 22: InfLLM on Llama-3-8B-Instruct with 4 different compression rates under needle test with 64-digit
passkey. Overall accuracies are noted within parentheses.

26.1
29.6

33.0

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
KIVI-2bit
KIVI-4bit
Flexgen-4bit

20.3

23.0

25.8

26.4
27.2

28.0

64.1
65.5

66.9
55.1

72.2

89.4

53.8
53.9

54.0

(a)

22.6
27.5

32.5

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
InfLLM 4x
StreamLLM 4x
H2O 4x

21.1

23.4

25.8

24.2
26.1

27.9

43.7
55.4

67.2
43.1

66.2

89.3

53.3
53.7

54.0

(b)

22.2
27.4

32.5

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
LLMLingua2 2x
LLMLingua2 4x
LLMLingua2 6x
LLMLingua2 8x

18.0

21.9

25.8

23.9
25.9

27.9

44.1
55.4

66.7
24.2

56.8

89.3

36.2
45.1

54.0

(c)

Figure 23: Mistral-7B-v0.2-Instruct with different compression methods (a) with Quantization; (b) with Token
Dropping (c) with prompt compression.

27.2
29.3

31.3

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
KIVI-2bit
KIVI-4bit
Flexgen-4bit

19.8

22.0

24.2

25.0
26.0

27.0

59.5
61.7

63.9
25.2

28.8

32.2

53.7
54.3

54.9

(a)

22.1
26.6

31.1

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
InfLLM 4x
StreamLLM 4x
H2O 4x

15.6

19.8

24.0

22.9
24.8

26.7

52.0
57.9

63.8
13.7

22.1

30.5

21.4
38.3

55.2

(b)

23.3
27.2

31.1

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
LLMLingua2 2x
LLMLingua2 4x
LLMLingua2 6x
LLMLingua2 8x

20.4

22.2

24.0

22.9
24.8

26.7

38.1
50.9

63.8
10.1

20.3

30.5

36.5
45.7

54.9

(c)

Figure 24: Longchat-7B-v1.5-32K with different compression methods (a) with Quantization; (b) with Token
Dropping (c) with prompt compression.

24
4646

20.0
28.4

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
StreamLLM 2x
StreamLLM 4x
StreamLLM 6x
StreamLLM 8x

21.4

28.1

34.8

21.7
24.2

26.8

58.5
63.8

69.1
19.8

43.4

67.0

39.9
49.4

59.0

(a) Llama-3-8B-Instruct

20.1
26.3

32.5

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
StreamLLM 2x
StreamLLM 4x
StreamLLM 6x
StreamLLM 8x

17.3

21.6

25.8

22.7
25.3

27.9

60.0
63.4

66.7
31.4

60.4

89.3

47.3
51.1

54.9

(b) Mistral-7B-v0.2-Instruct

20.3
25.7

31.1

Single-Doc QA
Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
StreamLLM 2x
StreamLLM 4x
StreamLLM 6x
StreamLLM 8x

21.9

22.9

24.0

21.0
23.9

26.7

48.3
56.0

63.8
14.1

22.3

30.5

50.4
52.6

54.9

(c) LongChat-7B-v1.5-32K

Figure 25: StreamingLLM with different compression ratios on three commonly used LLMs.

24.2
30.5

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
InfLLM 2x
InfLLM 4x
InfLLM 6x
InfLLM 8x

23.7

29.3

34.8

24.3
25.5

26.8

62.1
65.6

69.1
27.8

47.4

67.0

37.2
48.5

59.9

(a) Llama-3-8B-Instruct

24.3
28.4

32.5

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
InfLLM 2x
InfLLM 4x
InfLLM 6x
InfLLM 8x

20.8

23.3

25.8

25.0
26.5

27.9

62.6
64.7

66.7
38.8

64.1

89.3

51.1
52.6

54.2

(b) Mistral-7B-v0.2-Instruct

22.3
26.7

31.1

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
InfLLM 2x
InfLLM 4x
InfLLM 6x
InfLLM 8x

14.6

19.3

24.0

23.4
25.1

26.7

49.0
56.4

63.8
10.9

20.7

30.5

47.9
51.4

54.9

(c) LongChat-7B-v1.5-32K

Figure 26: InfLLM with different compression ratios on three commonly used LLMs.

26.6
31.7

36.8

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
LLMLingua2 2x
LLMLingua2 4x
LLMLingua2 6x
LLMLingua2 8x

27.3

31.0

34.8

23.6
25.2

26.8

43.3
56.2

69.1
-152.0

-42.0

68.0

35.9
45.1

54.2

(a) Llama-3-8B-Instruct

22.2
27.4

32.5

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
LLMLingua2 2x
LLMLingua2 4x
LLMLingua2 6x
LLMLingua2 8x

18.0

21.9

25.8

23.9
25.9

27.9

44.1
55.4

66.7
24.2

56.8

89.3

36.2
45.1

54.0

(b) Mistral-7B-v0.2-Instruct

23.3
27.2

31.1

Single-Doc QA

Multi-Doc QA

Su
mmar

iza
tio

n

Few-shot

Synthetic

Co
de

Baseline
LLMLingua2 2x
LLMLingua2 4x
LLMLingua2 6x
LLMLingua2 8x

20.4

22.2

24.0

22.9
24.8

26.7

38.1
50.9

63.8
10.1

20.3

30.5

36.5
45.7

54.9

(c) LongChat-7B-v1.5-32K

Figure 27: LLMLingua with different compression ratios on three commonly used LLMs.

25
4647

Table 6: Performance of different compression methods on Llama-3-8B-Instruct across all datasets in LongBench

LLM

Method

Dataset
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NarrativeQA

Qasper

MultiF
ieldQA

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

Passa
geRetrie

val

LCC

RepoBench-P

M
et

a-
L

la
m

a-
3-

8B
-I

ns
tr

uc
t

Baseline 21.7 44.3 44.5 46.6 36.4 21.5 29.9 22.6 27.7 74.0 90.6 42.7 67.0 57.2 51.2 45.2
KIVI-2bit 21.4 43.1 44.2 46.8 37.0 20.6 29.8 22.1 27.5 74.5 90.5 42.5 67.5 50.8 46.7 44.3
KIVI-4bit 21.0 44.8 44.6 47.0 36.5 21.4 30.1 22.5 28.0 74.5 90.3 43.1 66.5 57.3 52.0 45.3
FlexGen-4bit 20.9 44.0 44.5 43.3 33.5 20.5 29.7 22.0 27.7 73.0 90.5 42.2 65.5 59.7 50.7 44.5
InfLLM-2x 19.7 38.5 37.3 40.9 30.8 20.9 29.9 20.7 26.5 69.0 91.2 42.5 57.5 57.6 54.0 42.5
InfLLM-4x 18.1 28.0 35.1 36.6 23.0 14.4 29.6 19.8 25.5 61.0 88.8 42.0 37.5 56.9 58.3 38.3
InfLLM-6x 19.3 24.1 29.8 35.9 19.3 15.0 28.8 19.4 24.6 56.0 85.4 41.8 29.5 60.2 58.3 36.5
InfLLM-8x 14.2 22.0 27.0 33.1 20.5 9.3 27.5 19.1 24.4 58.0 82.0 40.9 18.0 61.4 58.4 34.4
StreamLLM-2x 17.3 33.5 27.6 37.0 30.3 19.0 28.1 20.1 25.5 68.0 90.4 41.1 34.0 55.0 56.2 38.9
StreamLLM-4x 17.4 23.0 21.1 29.8 24.7 12.0 25.9 19.5 22.6 60.5 85.7 40.5 21.0 55.0 57.2 34.4
StreamLLM-6x 15.7 18.7 17.8 26.1 19.3 10.7 24.7 18.6 20.7 58.0 82.2 40.2 14.5 59.4 58.5 32.3
StreamLLM-8x 13.1 16.6 17.4 25.7 18.5 9.8 23.4 18.2 19.9 55.5 72.3 39.9 8.0 60.4 55.8 30.3
H2O-2x 21.5 42.6 43.2 46.4 36.5 21.5 28.1 22.1 26.0 74.0 90.6 42.8 66.0 57.2 51.6 44.7
H2O-4x 21.8 41.2 41.8 46.8 36.9 21.5 25.7 21.4 23.7 74.0 90.6 42.4 66.0 55.1 51.2 44.0
H2O-6x 21.5 38.3 41.8 46.8 36.8 21.7 24.5 21.1 22.5 74.0 90.5 42.6 66.0 55.1 51.1 43.6
H2O-8x 21.3 37.8 42.1 46.6 36.9 21.5 23.7 21.1 21.9 74.0 90.5 42.9 65.5 54.6 50.8 43.4
LLMLingua2-2x 8.0 39.1 41.0 42.5 33.9 18.1 25.8 19.8 26.6 15.5 63.9 36.5 68.0 25.8 37.9 33.5
LLMLingua2-4x 13.0 33.2 33.3 43.8 24.2 24.4 25.3 22.4 24.7 4.4 79.1 34.4 22.5 19.9 44.6 29.9
LLMLingua2-6x 17.1 34.0 26.2 40.2 20.4 18.5 25.0 21.7 23.6 2.8 76.8 34.1 18.0 17.5 45.2 28.1
LLMLingua2-8x 19.8 28.9 23.4 35.2 23.4 17.5 24.1 21.6 22.9 0.0 76.1 34.6 13.0 16.1 47.7 26.9

Table 7: Performance of different compression methods on Mistral- 7b-Instruct-v0.2 across all datasets in LongBench

LLM

Method

Dataset
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NarrativeQA

Qasper

MultiF
ieldQA

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

Passa
geRetrie

val

LCC

RepoBench-P

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

Baseline 21.0 29.4 47.1 36.4 21.9 19.1 32.5 24.2 27.1 71.0 86.2 43.0 89.3 55.1 53.0 43.8
KIVI-2bit 20.6 28.4 44.9 35.5 20.7 17.9 32.5 23.5 26.7 71.0 86.0 43.5 80.8 54.7 52.8 42.6
KIVI-4bit 21.0 29.5 46.6 36.2 21.7 19.6 32.9 24.0 26.9 71.0 86.2 43.4 89.4 54.9 53.0 43.8
FlexGen-4bit 22.2 29.9 47.0 34.8 21.6 16.9 32.4 24.0 26.9 69.5 86.4 42.6 83.0 54.4 53.0 43.0
InfLLM-2x 21.6 24.2 46.1 35.0 20.9 18.3 31.0 23.4 25.9 67.5 86.7 41.2 65.8 54.8 53.6 41.1
InfLLM-4x 20.9 16.8 38.4 33.9 19.2 18.2 29.6 22.2 24.7 60.5 88.3 41.3 41.4 52.8 55.3 37.5
InfLLM-6x 19.9 14.6 36.9 31.8 16.4 14.7 29.1 22.1 23.8 57.0 87.4 40.4 32.6 53.2 53.6 35.6
InfLLM-8x 20.9 12.8 33.0 29.1 16.2 13.3 27.9 21.2 23.8 60.0 86.0 40.1 26.2 54.1 53.5 34.5
StreamLLM-2x 20.7 20.6 32.6 32.3 19.0 14.7 29.9 21.6 24.4 66.5 87.0 40.0 47.1 52.3 53.7 37.5
StreamLLM-4x 19.7 15.1 25.4 27.7 17.4 14.6 27.4 20.2 22.1 61.0 83.7 39.2 31.6 51.8 55.9 34.2
StreamLLM-6x 17.8 12.8 24.1 24.7 13.2 10.0 25.4 20.3 20.5 59.0 81.8 38.0 25.3 52.9 56.8 32.2
StreamLLM-8x 16.8 11.3 22.9 22.8 12.0 10.7 24.6 19.8 19.7 56.5 79.6 38.8 16.9 53.8 56.0 30.8
H2O-2x 21.4 27.4 47.0 36.1 20.8 19.3 31.2 23.5 25.8 71.0 86.2 43.2 87.7 54.7 52.9 43.2
H2O-4x 21.6 24.9 44.8 35.0 19.0 17.5 28.6 22.8 24.2 71.0 86.7 43.8 82.9 53.9 52.3 41.9
H2O-6x 21.5 22.7 42.9 34.5 17.2 16.6 27.1 22.5 23.2 71.0 86.4 43.5 82.0 53.1 51.9 41.1
H2O-8x 20.9 21.4 41.1 32.8 16.8 15.9 26.2 22.6 23.0 71.0 86.3 43.8 79.5 52.8 51.8 40.4
LLMLingua2-2x 20.2 26.8 38.9 34.7 16.8 17.7 29.9 23.6 25.8 19.0 81.2 36.5 54.9 21.9 41.5 32.6
LLMLingua2-4x 18.0 22.1 35.0 31.6 16.4 15.9 26.9 22.7 24.1 3.5 80.0 34.0 14.0 18.9 47.3 27.4
LLMLingua2-6x 15.7 18.4 29.5 25.7 15.5 11.0 26.0 21.2 22.7 2.0 80.7 34.0 8.9 19.1 50.3 25.4
LLMLingua2-8x 15.3 16.7 26.9 23.9 15.1 8.9 25.2 21.4 22.1 0.5 81.5 33.5 8.0 19.3 51.7 24.7

Table 8: Performance of different compression methods on Longchat- 7B-v1.5-32k across all datasets in LongBench

LLM

Method

Dataset
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NarrativeQA

Qasper

MultiF
ieldQA

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

Passa
geRetrie

val

LCC

RepoBench-P

L
on

gC
ha

t-
7b

-v
1.

5-
32

K

Baseline 20.9 29.4 43.1 33.0 24.1 14.7 30.8 22.8 26.6 66.5 84.0 40.9 30.5 52.9 56.8 38.5
KIVI-2bit 20.9 29.0 41.0 32.8 22.8 13.7 30.7 22.4 26.4 66.5 83.2 41.2 32.2 52.4 55.4 38.0
KIVI-4bit 21.0 28.9 43.3 33.1 24.9 14.7 31.1 22.7 26.5 67.0 83.9 40.8 31.5 52.2 56.3 38.5
FlexGen-4bit 20.5 30.4 43.2 33.7 23.8 13.9 31.7 22.9 26.5 66.0 81.5 40.9 31.5 50.4 56.3 38.2
InfLLM-2x 19.1 28.4 40.0 30.1 26.6 13.2 31.1 21.7 24.6 60.0 84.1 11.3 19.5 48.9 54.9 34.2
InfLLM-4x 17.6 21.2 33.9 32.4 25.4 14.4 29.4 21.5 22.3 55.0 84.3 9.9 9.5 41.4 52.1 31.4
InfLLM-6x 16.5 17.0 29.8 30.6 24.6 15.2 28.4 21.0 21.1 55.5 82.4 8.7 10.0 41.4 51.6 30.2
InfLLM-8x 14.9 16.5 29.1 26.4 23.1 15.4 26.6 20.7 20.5 48.5 78.8 8.7 6.0 41.6 50.8 28.5
StreamLLM-2x 18.8 26.3 26.6 29.1 24.8 11.5 28.5 20.8 23.3 61.0 82.9 9.6 25.0 43.9 54.6 32.5
StreamLLM-4x 18.1 19.1 22.4 29.5 25.1 11.6 25.5 20.9 20.4 54.5 81.1 11.4 13.5 49.7 54.2 30.5
StreamLLM-6x 17.7 17.7 23.3 26.0 26.8 11.5 23.4 20.4 18.2 54.5 78.1 9.9 10.5 49.5 53.4 29.4
StreamLLM-8x 13.9 16.7 21.9 24.3 26.4 13.6 21.6 19.8 17.1 49.0 73.9 10.4 10.0 52.4 51.4 28.2
H2O-2x 20.9 27.1 35.0 30.8 22.6 12.8 28.0 21.9 24.0 66.0 82.1 39.8 30.5 59.5 56.0 37.1
H2O-4x 21.4 25.3 32.1 30.6 22.9 12.2 23.0 21.7 21.1 65.5 80.6 39.7 28.5 56.2 54.3 35.7
H2O-6x 21.1 23.7 32.1 29.7 21.6 12.7 21.5 21.4 19.9 65.5 81.0 39.7 28.0 53.2 53.4 35.0
H2O-8x 20.4 22.4 32.7 29.3 21.2 12.3 20.1 20.9 18.5 65.5 80.5 38.8 28.5 50.2 52.7 34.3
LLMLingua2-2x 13.3 27.5 36.3 28.5 25.4 13.0 28.5 22.3 25.6 6.0 65.3 34.8 19.5 16.1 49.0 27.4
LLMLingua2-4x 14.4 26.3 30.7 27.2 24.0 10.7 25.1 22.0 23.4 1.0 61.9 32.0 5.5 16.0 47.7 24.5
LLMLingua2-6x 14.7 25.6 27.6 24.3 24.7 11.7 23.8 21.6 22.4 0.0 64.4 32.6 5.0 15.2 48.6 24.1
LLMLingua2-8x 14.6 24.4 24.9 23.8 23.5 11.2 23.1 21.4 21.4 0.5 66.6 31.5 6.5 16.7 48.3 23.9

Table 9: Linear-time sequence models and mixed architecture across all datasets in LongBench

LLM

Method

Dataset
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

NarrativeQA

Qasper

MultiF
ieldQA

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum

Passa
geRetrie

val

LCC

RepoBench-P

Mamba
Mamba-2.8B 2.7 5.8 13.3 6.2 9.2 3.6 17.9 16.6 22.9 50.0 54.4 12.5 1.2 50.6 44.5 20.8
Mamba-Chat-2.8B 3.2 6.3 17.9 7.3 9.5 4.0 21.5 18.5 23.5 45.5 43.2 23.9 3.7 50.5 45.0 21.6
Mamba2-2.7B 2.6 5.6 14.4 7.9 8.7 3.5 20.3 17.8 24.8 45.0 58.2 18.4 4.1 54.4 45.5 22.1

RWKV RWKV-5-World-7B 3.3 9.8 16.2 6.5 7.6 2.2 21.5 16.2 17.9 61.0 77.2 18.9 4.5 36.2 31.8 22.1

R-Gemma
R-Gemma-2B-it 12.0 16.2 26.0 9.8 10.8 4.3 20.7 20.0 22.1 52.0 63.3 23.6 4.0 57.0 50.3 26.1
R-Gemma-9B-it 15.4 25.8 32.3 25.4 27.3 13.0 24.6 18.1 23.0 60.5 70.5 32.3 9.0 64.1 57.5 33.2

26
4648

