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Abstract

Recent advancements in Large Language Mod-
els have transformed ML/AI development, ne-
cessitating a reevaluation of AutoML princi-
ples for the Retrieval-Augmented Generation
(RAG) systems. To address the challenges
of hyper-parameter optimization and online
adaptation in RAG, we propose the AutoRAG-
HP framework, which formulates the hyper-
parameter tuning as an online multi-armed ban-
dit (MAB) problem and introduces a novel two-
level Hierarchical MAB (Hier-MAB) method
for efficient exploration of large search spaces.
We conduct extensive experiments on tuning
hyper-parameters, such as top-k retrieved docu-
ments, prompt compression ratio, and embed-
ding methods, using the ALCE-ASQA and Nat-
ural Questions datasets. Our evaluation from
jointly optimization all three hyper-parameters
demonstrate that MAB-based online learning
methods can achieve Recall@5 ≈ 0.8 for sce-
narios with prominent gradients in search space,
using only ∼ 20% of the LLM API calls re-
quired by the Grid Search approach. Addition-
ally, the proposed Hier-MAB approach outper-
forms other baselines in more challenging op-
timization scenarios. The code will be made
available at https://aka.ms/autorag.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) (Brown et al., 2020; Ouyang et al.,
2022; OpenAI, 2023) represent a significant shift
in the development of ML/AI solutions. Tradi-
tionally, scenario-specific models were trained for
most ML/AI applications. However, in the LLM
era, foundational models serve as the base, with
supplementary modules added for practical appli-
cations. This transformation significantly affects
the automation of ML/AI solution development,
previously known as AutoML (Hutter et al., 2019;
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Bergstra et al., 2011a), necessitating a reevaluation
of AutoML concepts in the context of LLMs.

Retrieval-Augmented Generation (RAG) has
emerged as a prominent framework for building
ML/AI solutions with LLMs (Lewis et al., 2020).
While the standard RAG framework includes an
information retrieval component to ground LLM’s
output in relevant data, numerous variants now in-
tegrate additional modules such as query rewriting
(Ma et al., 2023), prompt compression (Jiang et al.,
2023a; Pan et al., 2024), and query routing (Ding
et al., 2024) to enhance performance.

The increased complexity of RAG systems
presents two main challenges. First, the multitude
of modules and hyper-parameters within the mod-
ules complicates the identification of optimal set-
tings. Second, as we often receive online feedback
from users (e.g., via thumb up/down feature), ef-
fectively utilizing those feedback to continuously
tune the system is also crucial.

To address these challenges, we propose the de-
velopment of an autonomous and self-optimizing
system for RAG, termed AutoRAG, in line with
the principles of AutoML. As the first step, this
study focuses on hyper-parameter tuning in RAG
(AutoRAG-HP). While there exist prior works dis-
cussing hyper-parameter tuning in RAG, they tend
to either focus on tunable hyper-parameters in LLM
API calls (Wang et al., 2023a) or assess the per-
formance and impacts of RAG hyper-parameters
through manual tuning (Lyu et al., 2024). In this
work we focus on the optimization methods that
can be applied in the online fashion. Specifically,
we frame hyper-parameter selection as an online
multi-armed bandit (MAB) problem (Lai and Rob-
bins, 1985; Vermorel and Mohri, 2005; Li et al.,
2010) and explore several variants in MAB. More-
over, to efficiently explore large search space when
tuning multiple hyper-parameters simultaneously,
we introduce a novel two-level Hierarchical MAB
(Hier-MAB) method, wherein a high-level MAB
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guides the optimization of modules, while several
low-level MABs search for optimal settings within
each module. Our evaluation demonstrates that the
MAB-based online learning methods are effective
for scenarios with prominent gradients in search
space, and the proposed Hier-MAB approach out-
performs other baselines in more challenging opti-
mization scenarios.

Our contributions can be summarized as follows:

• We introduce the AutoRAG-HP framework to
address the pressing needs for optimal hyper-
parameter tuning in RAG. To our best knowl-
edge, we are the first to discuss the automatic
online hyper-parameter tuning in RAG.

• We formulate the online hyper-parameter
search in RAG as a multi-armed bandit prob-
lem and propose a novel two-level hierarchi-
cal multi-armed bandit method to efficiently
explore large search space.

• The efficacy of our approach is validated
across several scenarios using public datasets.

2 Related Work

2.1 AutoML and LLMs

In the process of developing ML/AI solutions, Au-
toML (Hutter et al., 2019; Bergstra et al., 2011a)
has streamlined automation across three key areas:
feature engineering, model construction, and hyper-
parameter optimization. Over the past decade,
AutoML has achieved remarkable success with
heavily-utilized open-source frameworks like Au-
toSklearn (Feurer et al., 2015), TPOT (Olson et al.,
2016), Auto-Keras (Jin et al., 2023), Auto-PyTorch
(Zimmer et al., 2021), and FLAML (Wang et al.,
2019). However, with the emergence of LLMs,
a notable shift has occurred where LLMs are fre-
quently chosen as base models, bypassing the tra-
ditional model design and training stages.

The research community has started to inves-
tigate the opportunities and challenges of apply-
ing AutoML to optimize pre-training, fine-tuning,
and inference processes in the lifecycle of LLMs.
A recent paper (Tornede et al., 2024) presents a
timely survey discussing the potential symbiotic re-
lationship between AutoML and LLMs, while also
providing a future-oriented vision. Particularly,
in leveraging AutoML for LLMs, existing efforts
have primarily focused on hyper-parameter opti-
mization during the pre-training and fine-tuning

stages (Liu and Wang, 2021; Treviso et al., 2022;
Tornede et al., 2024). LLaMA-NAS (Sarah et al.,
2024) also explored efficient neural architecture
search for LLMs. For the inference stage, EcoOpti-
Gen (Wang et al., 2023a) represents a pioneering
step towards applying AutoML to optimize LLM
inference for text generation. This work targets
tuning of hyper-parameters in OpenAI completion
headers like temperature and max tokens. Another
work (Pryzant et al., 2023) explored gradient decent
and MAB in automatic optimization of prompts.

2.2 Hyper-parameter Optimization

Common hyper-parameter optimization techniques
include methods such as Grid Search (Lecun
et al., 1998), Random Search (Bergstra and Ben-
gio, 2012a), Bayesian Optimization (Bergstra et al.,
2011b) and manual tuning to identify optimal
hyper-parameters. Grid search involves exhaustive
searching within a predefined hyper-parameters
grid, testing every possible combination to find the
best fit. While straightforward, this approach can
incur substantial computational costs, especially
with expansive hyper-parameters spaces. Ran-
dom search selects hyper-parameters through ran-
domized sampling, yet its results may lack sta-
bility. Manual tuning, on the other hand, ad-
justs hyper-parameters based on domain knowl-
edge or experience. While flexible, this method
is time-consuming and challenging to standardize.
These hyper-parameter optimization approaches of-
ten overlook the evaluation costs, particularly in
evaluating solutions based on LLMs. BlendSearch
(Wang et al., 2021) introduces an economic budget
to enhance cost efficiency. However, these methods
are not inherently learning-based and may not be
well-suited for scenarios requiring adaptive opti-
mization over time.

2.3 Hyper-parameter Tuning in RAG

Significant attention has been directed towards re-
fining models within individual modules such as
indexing, retrieval, and generation independently
(Izacard et al., 2022; Jiang et al., 2023b; Ma et al.,
2023; Wang et al., 2023b). However, in terms of
hyper-parameters, these studies typically only re-
port those leading to the best results, often chosen
through manual tuning by experts during experi-
mentation. Consequently, there has been scant ex-
ploration aimed at tuning hyper-parameters within
each module, let alone collectively tuning various
hyper-parameters across RAG modules.
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CRUD-RAG (Lyu et al., 2024) has delved into
the manual tuning of RAG hyper-parameters and
assessed the performance and impacts of differ-
ent components of the RAG system, such as the
retriever and context length. While such studies
offer valuable insights for optimizing RAG tech-
nology, their applicability across diverse scenarios
or real-world applications is limited. Additionally,
a project (Marker-Inc-Korea, 2024) mentions opti-
mization via a greedy approach, initially generating
all possible combinations of modules and hyper-
parameters in each node.

3 Methodology

3.1 Problem Formulation
We formulate the hyper-parameter tuning prob-
lem in RAG as a multi-armed bandit (MAB) prob-
lem (Lai and Robbins, 1985), drawing an analogy
to the scenario of a player selecting from a slot ma-
chine with multiple arms in a casino. The player’s
objective is to choose the arm that offers the highest
expected gain. Each time the player pulls an arm
and receives a gain or not, they update their estima-
tion of the arm’s potential gain. The MAB problem
involves making sequential decisions, requiring the
agent to balance the exploration of different arms to
learn their reward probabilities and the exploitation
of arms that are expected to yield higher rewards
based on past observations. Given that MAB is
an online learning method, it is well-suited for the
online setting of AutoRAG-HP.

Query

…
Top-k

Embedding

Compressor

Compression Ratio

LLM

Answer

Figure 1: A RAG system with tunable hyper-parameters.

As an illustration, we present an example RAG
system in Figure 1, which comprises a retrieval
module, a prompt compression module, and a
prompt construction module (not shown) that as-
sembles the final prompt sent to LLMs for answer
generation. In the retrieval module, we introduce
two tunable hyper-parameters: the top-k (K) docu-
ment chunks retrieved from an external knowledge
base and the embedding model (E) used for rank-
ing these retrieved chunks. With the top-k chunks

retrieved, the prompt compression module then
compresses tokens in each chunk to eliminate irrel-
evant information and save token cost (Jiang et al.,
2023a; Pan et al., 2024). Since excessive compres-
sion may also remove relevant information, leading
to decreased performance, it is crucial to find an op-
timal compression ratio (C). Below, we introduce
the terms in MAB in the context of AutoRAG-HP.
Arm In this context, an arm refers to a specific
combination of hyper-parameters that we aim to
optimize. For instance, if we are optimizing the top-
k parameter, an arm can represent a candidate value
for top-k (e.g., K = 3). When optimizing multi-
ple hyper-parameters simultaneously, an arm corre-
sponds to a combination of these hyper-parameters,
as defined in the standard formulation of the MAB
problem. Note that since arms are discrete, the
search space must first be discretized.
Trial A trial is a single iteration in which the al-
gorithm selects an arm, observes the associated
reward, and updates its estimation. In the RAG
system, a trial can involve evaluating a group of
queries with batch size B for the current selec-
tion of hyper-parameter combinations (i.e., arms).
Optimal settings may be determined after a prede-
termined number of iterations, T , or upon meeting
a specific stopping criterion.
Reward The reward function represents the user’s
objective and guides arm selection during the op-
timization process. For AutoRAG-HP, common
goals include the maximization of response accu-
racy while paying less attention to the cost of LLM
API calls (quantified by input token count), or bal-
ancing these objectives. For simplicity, we formu-
late the reward function as a linear combination of
response accuracy and input token length:

Reward = w · acc− (1− w) · t

tmax
, (1)

where w is the balance weight, t denotes the input
token length and normalized by the maximal input
token length tmax, and acc represents the LLM’s
response accuracy.
Optimization Algorithm Several optimization al-
gorithms in MAB can guide arm selection based
on the given reward function. One common
choice is the Upper Confidence Bound (UCB)
algorithm (Auer et al., 2002), which effectively
balances exploration and exploitation by select-
ing arms based on their upper confidence bounds.
These bounds are derived from confidence intervals
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representing the estimated ranges of arm values.
The UCB selection of arms is shown below:

At = argmax
a∈A

(
Qt(a) + α

√
ln(t)

Na(t)

)
, (2)

where At is the selected arm, i.e., the selected
hyper-parameter or its combination, at timestep t,
and Qt(a) is the estimated value of arm a at t. The
square-root term quantifies the uncertainty. Na(t)
represents the number of times arm a has been
selected, and α is the hyper-parameter adjusting
the balance between exploration and exploitation.
During the iteration, both Q and the upper confi-
dence bound (the square-root term) for each arm
are updated to guide the selection of arms.

Thompson Sampling (TS) (Chapelle and Li,
2011) is another popular optimization algorithm
in MAB. It balances exploration and exploitation
by sampling from the posterior distribution of each
arm’s reward. Arms are chosen based on the high-
est sampled reward.

In summary, the objective of MAB is to maxi-
mize the total reward over a series of selections,
even when the probability distribution of rewards
for each arm is unknown. After a number of tri-
als, the arm with the highest cumulative reward
becomes the desired RAG hyper-parameter. This
approach is particularly suitable for cold start prob-
lems, where prior estimation of user data is unavail-
able, and leveraging the MAB framework enables
rapid tuning of hyper-parameters in RAG.

3.2 Two-level Hierarchical MAB

Applying the above standard formulation of MAB
to hyper-parameter tuning in RAG can lead to the
issue of having too many arms when jointly opti-
mizing several hyper-parameters, resulting in an
excessively large search space since it requires flat-
tening the search space to obtain discrete arms. To
mitigate this issue, we propose a two-level hier-
archical MAB (Hier-MAB) where we first select
which hyper-parameter to tune and then select one
of its possible values.

In Figure 2, we show an example of two-level
Hier-MAB in the context of jointly tuning of top-k
(K), embedding model (E), and compression ra-
tio (C) hyper-parameters. The high-level arm is
responsible for selecting which hyper-parameter to
tune, while the lower-level arms control the hyper-
parameter selection within the search space of each

Top-k Embedding Compression Ratio

…
k=1 k=3 k=K

…
c=0.3 c=1.0mpnet ada

…

High-level Arm

Low-level Arm

Top-k

k=3

Reward

Figure 2: An example of two-level hierarchical MAB.

hyper-parameter. Thus, instead of having a sin-
gle MAB, we now have four MABs: one for the
high-level arm selection and the other three for
the individual hyper-parameters. This hierarchical
structure ensures that each MAB has a reasonable
number of arms to select from, while all MABs
combined can cover a large search space. This
contrasts with the single MAB approach, which
needs to enumerate all possible combinations when
tuning multiple hyper-parameters.

The optimization process of Hier-MAB can be
demonstrated by the trial shown in Figure 2. A
high-level arm (top-k) is pulled, and within this
hyper-parameter, the K = 3 arm is pulled (with
other hyper-parameters remaining the same as in
the previous trial). After pulling the two-level arms
and observing the associated reward, the algorithm
updates its estimate of the selected arm’s reward
distribution using the new information, i.e., updat-
ing the mean reward estimation and the confidence
interval based on the observed reward. For the
example in Figure 2, the positive reward updates
the reward distribution of the pulled arms to re-
flect a higher estimated reward. Meanwhile, the
reward distributions of other high- and low-level
arms pulled in previous iterations also get updated.
This process repeats for a predetermined number
of iterations or until a stopping criterion is met.

4 Evaluation

4.1 Experiment Setup
Dataset We utilize the ALCE-ASQA (Gao
et al., 2023) and Natural Questions (NQ)
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datasets (Kwiatkowski et al., 2019) for our main
experiments. Both datasets are in QA format and
include candidate document chunks for each ques-
tion. We use their evaluators to assess the accuracy
of generated responses while adopting the prompts
provided in Appendix F.

To accurately evaluate the capabilities of RAG
systems in handling context-dependent queries, we
exclude questions that can be correctly answered
by LLMs without the need for external context, re-
lying solely on their intrinsic knowledge. Although
we also conducted experiments without this data
filtering, which yielded comparable performance
(see Appendix D for detailed results), the primary
experimental results presented here are based on
a sample of 350 questions from each benchmark
after applying the data filtering process.

Note that to highlight the generalizability of our
approach, we explored another RAG task, Text-
to-SQL. More details on this can be found in Ap-
pendix A, due to space constraints in the main text.
Base LLMs We adopt GPT3.5-Turbo and GPT-4
models as base LLMs. Although the API parame-
ters are tunable (Wang et al., 2023a), we opt to fix
them by setting the temperature to zero and using
default settings for all other parameters.
Search Space We examine the RAG setting as
demonstrated in Figure 1. In the retrieval module,
we evaluate the effects of the top-k hyper-parameter
(K) and the embedding model (E) by considering
three different choices, i.e., “mpnet” (Song et al.,
2020), “ada_002” (OpenAI, 2022), and “contriever”
(Izacard et al., 2021). The compression module
is implemented using the method outlined in the
LLMLingua-2 work (Pan et al., 2024), with the
compression ratio denoted as C. Specifically, we
consider two optimization tasks based on the num-
ber of hyper-parameters:

• Joint optimization of (K, C): They take dis-
crete values from K ∈ [1, 3, 5, 7, 9] and
C ∈ [0.3, 0.5, 0.7, 0.9, 1] while the embedding
model is fixed to “mpnet”.

• Joint optimization of (K, C, E): We allow the
embedding model to be tuned from the list of
[“mpnet”, “ada_002”, “contriever”], maintain-
ing the same settings for K and C as in the two-
parameter case.

Reward Setting As outlined in the Methodology
section, we introduce the weight parameter w to

balance the tradeoff between token length and accu-
racy. Our experiments evaluate three values of w=
0.1, 0.5, and 0.9, corresponding to “cost-central”,
“balance”, and “accuracy-central” regimes, respec-
tively. The maximal token length tmax is set to be
1585 (2205) for ASQA (NQ) dataset. For better
fit with MAB, we impose penalty for inaccurate
response, i.e., setting the accuracy acc to be -1.
Hier-MAB Setting We adopt UCB as the optimiza-
tion algorithm for each arm selection in Hier-MAB,
naming the approach as Hier-UCB. The parameter
α for high-level and low-level arm selection with
UCB are denoted as αh and αl, respectively, and
are fixed at 1. To reduce sample variance during
optimization, we use a batch size of B = 4.
Baseline Methods To compare with the proposed
Hier-UCB approach, we evaluate three other online
learning methods as follows:

• UCB (Auer, 2002): In this standard form, the
search space is flattened out and a single UCB-
based MAB is used for optimal hyper-parameter
search. For consistency, α is also set to 1.

• Thompson Sampling (Agrawal and Goyal,
2013): TS samples arms from the posterior
distribution of arms’ rewards, with no pre-
determined parameters.

• Random Search (Bergstra and Bengio, 2012b):
This baseline selects arms uniformly at random,
ensuring even exploration but without leverag-
ing past rewards for guidance.

Ground-Truth and Evaluation Metric The
ground-truth parameter combinations are deter-
mined using the Grid Search method (Lecun
et al., 1998), which exhaustively evaluates all
hyper-parameter combinations on the entire dataset.
Grid Search serves as an offline benchmark against
which the online learning methods are evaluated.

For the evaluation metric at a given timestamp
t, we identify the top x hyper-parameter combina-
tions from the evaluation method and calculate the
percentage of these combinations that match the
top x hyper-parameter combinations identified by
Grid Search. Similar to metrics used in recommen-
dation systems, we refer to this metric as Recall@x.
Specifically, Recall@3 is used for the evaluation
of the optimization of (K, C) and Recall@5 is used
for the (K, C, E) case. To mitigate statistical fluc-
tuations, we conduct each experiment setting 10
times with different random seeds.
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4.2 Experiment Result
Due to space constraints, we mainly present the
experimental results for GPT-4 and leave the re-
sults for GPT-3.5-Turbo in the Appendix C. The
following observations are similar for both cases.

Before diving into the evaluation results of vari-
ous optimization methods, we first discuss the com-
plexity of each optimization task.To illustrate this,
we show the Grid Search results for ASQA dataset
in Figure 3, presenting the accuracy and reward
values across different weight settings for all three
hyper-parameter combinations in search space. To
show the sample variance during online learning,
we plot the standard deviations of the accuracy and
reward values across all batches as error bars.

Figure 3: Grid search results for ASQA with GPT-4.
Error bars represent the standard deviations of accuracy
and reward values across all batches.

By inspecting Figure 3 and the other Grid Search
results in Figure 11 (shown in Appendix B) for the
NQ dataset, we make the following observations:

• The top-k and compression ratio have prominent

w Param. Dataset Complexity Recall@x Recall@x
(All Avg.) (Hier-UCB)

0.1
(K, C) ASQA Easy 0.83 0.76

NQ Easy 0.82 0.83

(K, C, E) ASQA Easy 0.87 0.84
NQ Medium 0.68 0.72

0.5
(K, C) ASQA Hard 0.20 0.10

NQ Hard 0.24 0.17

(K, C, E) ASQA Medium 0.59 0.64
NQ Hard 0.25 0.32

0.9
(K, C) ASQA Hard 0.31 0.30

NQ Hard 0.38 0.47

(K, C, E) ASQA Medium 0.38 0.6
NQ Hard 0.27 0.3

Table 1: Complexity of optimization task for the GPT-4
case. The evaluation metrics Recall@3 when T ×B =
2000 and Recall@5 when T ×B = 6000 are used for
(K, C) and (K, C, E), respectively. The fifth column
reports the metrics averaged over all methods, while the
last column for the Hier-UCB only.

impact on the response accuracy, while the effect
of embedding model is more evident in ASQA
as compared to NQ. This highlights the necessity
of tuning those hyper-parameters, especially for
the “accuracy-central” scenario (i.e., w = 0.9).

• By factoring in more weights for token length,
the overall landscape of reward function changes.
For the “cost-central” scenario (w = 0.1), the
preferred optimal settings would be small values
of K and C. Due to reduced dependence on re-
sponse accuracy, sample variance becomes much
smaller and the reward function over (K, C) ex-
hibits steeper gradients. This indicates that the
tuning over (K, C) when w = 0.1 can be rela-
tively easy to achieve.

• With higher weights on accuracy (w = 0.5 and
0.9), reward function over (K, C) becomes less
steep, accompanied by increased sample vari-
ance. This leads to many hyper-parameter com-
binations achieving similarly high rewards, a
phenomenon known as search space degeneracy,
which complicates the search for optimal set-
tings. For instance, in the two-parameter case
with w = 0.9, the panel in the last row and
column of Figure 3 illustrates that the higher re-
ward parameter region is relatively “flat”, with
clustered (K, C) combinations yielding similar
rewards. Further tuning on the embedding model
E in ASQA mitigates parameter degeneracy by
enabling the distinction of (K, C) combinations
with similar rewards. Conversely, in NQ, where
the embedding model is less influential, adding
it exacerbates the problem.

Based on the qualitative analysis, we catego-
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rize the optimization tasks by complexity (“Easy”,
“Medium” and “Hard”), as outlined in Table 1.
Although the experiments are conducted on spe-
cific scenarios derived from various reward settings
within two datasets, generalizing these scenarios by
complexity levels provides insights into the broader
applicability of the optimization method. In the fol-
lowing discussion, we will primarily reference the
scenarios according to their complexity.

In Table 1 we also show the average evaluation
result across all optimization methods (i.e., Hier-
UCB, UCB, TS and Random) as well as the result
solely for Hier-UCB. The average Recall@x values
(the 5th column) align well with our qualitative as-
sessment of task complexity, i.e., achieving ∼ 0.8
for “Easy” tasks, ∼ 0.5 for “Medium” tasks, and
≲ 0.3 for “Hard” tasks. The iteration process con-
cludes when T × B = 2000 (for the 2-parameter
case) or 6000 (for the 3-parameter case), with the
number of LLM API calls being roughly 20% of
those required for Grid Search.

Figure 4: Evolution of Recall@3 in the optimization of
(K, C) for the GPT-4 case.

Next, we compare Hier-UCB’s performance
with other baseline methods. In Figures 4 and 5, we
plot the evolution of Recall@x metric over the iter-
ation process for the 2-parameter and 3-parameter
optimization cases, respectively. With the identifi-
cation of task complexity in Table 1, the following
observations are made:

• Hier-UCB consistently outperforms other
baselines for all “Medium” complexity cases,
while demonstrating comparable performance
in “Easy” and “Hard” cases. Notably, Hier-
UCB achieves faster convergence in “Medium”
cases, as evident in Figure 5. The last column

Figure 5: Evolution of Recall@5 in the optimization of
(K, C, E) for the GPT-4 case.

of Table 1 presents the Recall@x for Hier-UCB
at the final timestamp, showing its competi-
tive edge. However, this advantage is less pro-
nounced compared to the mid-iteration times-
tamp (e.g., T ×B ≈ 2500).

• All three baseline methods exhibit similar be-
havior. Although random exploration can be
effective, its application in real-world online
tuning requires caution. This approach is more
likely to explore cases resulting in low rewards,
thereby negatively impacting user experience.

Lastly, we also observe that Hier-UCB achieves
the highest average cumulative rewards over time,
suggesting that it effectively balances exploration
and exploitation by selecting hyperparameters that
have minimal impact on user experience. Details
can be found in Figure 15 in Appendix E.

4.3 Ablation Study

The results of Hier-UCB in the previous section
are obtained with αh = αl = 1 and a batch size
of B = 4. We now examine the impact of varying
these values on performance. For this analysis, we
focus on the 3-parameter optimization case, which
encompasses all three complexity levels. Specif-
ically, we present ablation studies for αh,l in Fig-
ure 6 and for the batch size B in Figure 7.

From Figure 6, it can be observed that setting
αh = αl = 1 is robust across all cases. Fur-
thermore, a large αl (e.g., αl = 1.5) can de-
grade performance in some cases, while setting
a high value for αh and a low value for αl (e.g.,
αh = 1.5, αl = 0.5) yields the best overall per-
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Figure 6: Evolution of Recall@5 when optimizing
(K, C, E) with varying αh,l settings of Hier-UCB in the
GPT-4 case.

formance. This can be understood intuitively: a
higher value for the high-level arm, responsible for
hyper-parameter selection, promotes exploration at
the high level, avoiding premature convergence to
local minima. Conversely, a lower α value in the
lower-level arm facilitates faster convergence.

Figure 7: Evolution of Recall@5 when optimizing
(K, C, E) with varying batch sizes B of Hier-UCB in
the ASQA GPT-4 case.

According to Figure 7, the batch size B greatly
affects the performance. Again, B = 4 appears
to be a robust choice across all cases. A smaller
B may increase sample variance, particularly in
the “accuracy-central” case (w = 0.9), and a larger
B reduces the number of iterations, impairing the
exploration process.

4.4 Case Study: Upgrade Base LLM from
GPT-3.5-Turbo to GPT-4

Lastly, we demonstrate the application of our pro-
posed Hier-UCB method in a real-world scenario:
the upgrade of base LLMs. Given the rapid ad-
vancements in LLMs, there is a strong motiva-
tion to upgrade to a more advanced version for
improved performance. In our experiment, we first
conduct online hyper-parameter tuning with GPT-
3.5-Turbo for T×B ∈ [0, 6000]. At T×B = 6000,
we switch the base LLM to GPT-4. During this tran-
sition, we evaluate two configurations: Continue
and Reset. The Continue configuration maintains
the internal state parameters (e.g., Qt(a)) from
Eq. (2), effectively providing a warm start for later
parameter search in GPT-4. In contrast, the Re-
set configuration initializes these parameters anew,
simulating a cold start.

Figure 8: Evolution of an example three-parameter
search in Hier-UCB when the base LLM is upgraded
from GPT-3.5-Turbo (left) to GPT-4 (right), using the
ASQA dataset, w = 0.5, αh = αl = 1, and B = 1. The
Y-axis represents the ranking of parameter combinations
for each base LLM taking from Grid Search, with lower
values indicating higher rankings. Two different config-
urations of Continue and Reset are considered during
the parameter search in GPT-4.

Figure 8 illustrates a three-parameter search tra-
jectory when switching from GPT-3.5-Turbo to
GPT-4, using the ASQA dataset. We set w = 0.5,
αh = αl = 1, and B = 1. The Y-axis represents
the ranking of parameter combinations for each
base LLM taking from Grid Search, with lower
values indicating higher rankings. In the first half
of the process (left subplot), the Hier-UCB method
effectively identifies optimal parameter combina-
tions, evidenced by the clustering of parameters at
the top in later timestamps. After transitioning to
GPT-4, the Hier-UCB method quickly adapts under
the Continue configuration, focusing on higher-
ranked parameter combinations. However, under
the Reset configuration, it explores more lower-
ranked combinations, suggesting a need for addi-
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tional exploration to find the optimal parameters.
To highlight the superior performance of the

Continue configuration, Figure 9 presents the mean
Recall@5 metric for 10 random trials. It reveals
that the Continue configuration not only converges
faster but also achieves significantly higher Re-
call@5 values. In summary, this experiment in-
dicates that maintaining internal parameters dur-
ing system changes can enhance the Hier-UCB
method’s adaptability and effectiveness.

Figure 9: Evolution of the mean Recall@5 metric for
10 random trials, using the settings in Figure 8.

5 Discussion
In this work, we address online optimization in
RAG systems by framing hyper-parameter tuning
as an online Multi-Armed Bandit problem. Our
proposed Hier-MAB approach can be extended
to offline hyper-parameter tuning, demonstrating
greater efficiency than traditional Grid Search
methods, especially in scenarios with large search
spaces with steep gradients. Hier-MAB can also
serve as an initial step to filter the search space,
followed by a more extensive parameter scan.

Our approach can be applied to a broader range
of tunable hyper-parameters. While we focus on
hyper-parameters in retrieval and prompt compres-
sion modules, it is extendable to other RAG mod-
ules such as document chunk size in indexing mod-
ule, LLM API settings, or other LLM-based so-
lutions (e.g., agent frameworks). Due to compu-
tational constraints, exhaustive searches for opti-
mal configurations as the ground-truth are challeng-
ing, limiting the feasibility of experiments across
broader hyper-parameter combinations.

The reward settings in our work can also be ex-
panded. Currently, we assume the reward is a
linear combination of accuracy and input token
length, with a user-defined weight parameter allow-
ing users to adjust the weight parameter w. How-
ever, determining the right parameter to balance ac-
curacy and LLM API cost is challenging in reality.
An alternative is to set LLM API cost constraints
and optimize accuracy within these constraints, in-
corporating cost constraints as penalty terms in the

reward function. This converts a multi-objective
optimization problem into a single-objective one,
though exploring Pareto optimization within RAG
could also yield valuable insights.

Our current reward framework only considers
feedback from the correctness of the final response.
In practice, feedback might also come from inter-
mediate steps (e.g., document relevance evaluation
in retrieval modules) or multiple sources in multi-
turn dialogues. Thus, automatically and efficiently
integrating these additional feedback sources into
the reward definition is also worth exploration.

Beyond hyper-parameter tuning, developing a
comprehensive AutoML framework for RAG in-
volves identifying the optimal combination of avail-
able RAG modules, automated prompt tuning and
other query-dependent parameters, such as those in
a routing module that directs queries to appropri-
ate base LLMs. Additionally, an ideal AutoRAG
system should auto-generate evaluation data for
tuning as needed, supporting the “Bring Your Data”
vision where users provide their data, and the plat-
form autonomously configures the entire pipeline
to meet their specific requirements. Future work
will explore these areas.

6 Summary

Inspired by traditional AutoML practices designed
to simplify and automate ML/AI development,
we introduce the AutoRAG-HP framework. This
framework addresses the critical need for efficient
and effortless hyper-parameter tuning within the
Retrieval-Augmented Generation (RAG) system
in the context of LLMs. To address challenges
posed by extensive search spaces and the need for
online tuning, we formulate hyper-parameter se-
lection in RAG as a multi-armed bandit problem
and introduce a novel two-level hierarchical Upper
Confidence Bound (Hier-UCB) method for effi-
cient parameter space exploration.

Our experiments on simultaneously tuning three
hyper-parameters demonstrate that multi-armed
bandit-based online learning methods (Hier-UCB,
UCB, and TS) can achieve Recall@5 ≈ 0.8 for
scenarios with prominent gradients in search space,
using only ∼ 20% of the LLM API calls required
by the Grid Search approach. Additionally, the
proposed Hier-UCB approach outperforms other
baselines in more challenging optimization scenar-
ios. These promising results motivate further ex-
ploration into automatic tuning of the RAG system
to achieve the full vision of AutoRAG.
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Limitations

We acknowledge the limitations of this paper. First,
we evaluate AutoRAG-HP using only two LLMs
as backbones. Additional experiments can be done
to assess AutoRAG-HP’s performance with other
LLMs as well as small language models. Secondly,
our experiments are limited to two public datasets
in QA format. Further testing can be done across
diverse tasks and datasets. Finally, we only explore
jointly tuning of up to three hyper-parameters and
further exploration can be extended to include tun-
ing a greater number of hyper-parameters, which
we will leave for future work.

Ethics Statement

This paper focuses on hyper-parameter optimiza-
tion and does not inherently address potential risks
associated with the underlying LLMs, such as un-
ethical outputs, toxicity, and biases. We strongly
recommend integrating Responsible AI modules
within the RAG pipeline and conducting a compre-
hensive evaluation of these potential issues prior to
deployment in practice.
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A Result for Text-to-SQL Task

Here, we present the experimental results by
tuning four hyperparameters in a new RAG
task, specifically a Text-to-SQL task where SQL
queries are generated from users’ natural language
queries. Our experiments employed the ODIS
method (Chang and Fosler-Lussier, 2023), which
utilizes few-shot examples from both in-domain
and out-of-domain databases for prompt construc-
tion. Following the ODIS framework, we consid-
ered four tunable hyperparameters: the in-domain
retrieval strategy, the number of out-of-domain
databases, the number of out-of-domain examples,
and the number of synthetic in-domain examples.
For in-domain retrieval, we tested three settings
(‘similarsql’, ‘simsql_pred’, ‘covsql’), while each
of the other three parameters had four candidate
values ([2, 3, 4, 5]). This resulted in 192 combina-
tions of hyperparameter settings.

We randomly selected 100 test samples from the
Spider dataset (Yu et al., 2018) and evaluated the ac-
curacy of the generated SQL queries by executing
them on the corresponding databases using the test-
suite-sql-eval repository (Zhong et al., 2020). We
performed experiments with Hier-UCB and three
baselines (Random, TS, and UCB), using the same
settings as the main text. The Recall@10 metrics
at T ×B = 4000 (∼ 20% of the computation cost
of the Grid Search method) are presented in Ta-
ble 2. Hier-UCB outperformed the other baselines
for weights of 0.5 and 0.9 but lagged behind UCB
for a weight of 0.1. The results for w = 0.1 were ex-
pected since this scenario emphasizes token length,
which is simpler than the others. As noted in the
main text, Hier-UCB performs similarly to other
baselines in less complex scenarios.

In summary, this experiment on a different RAG
task verifies the effectiveness of our proposed Hier-
UCB method across diverse scenarios and a broader
range of RAG parameters.

B Grid Search Results for ASQA and NQ

Grid Search results for the ASQA dataset with GPT-
3.5-Turbo is shown in Figures 10. Grid Search
results for the NQ dataset with GPT-4 and GPT-
3.5-Turbo are shown in Figures 11 and Figures 12,
respectively.

Figure 10: Grid search results for ASQA with GPT-3.5-
Turbo. Error bars represent the standard deviations of
accuracy and reward values across all batches.

C Result for ASQA and NQ using
GPT-3.5-Turbo

In Figures 13 and 14, we plot the the experimen-
tal results with GPT-3.5-Turbo, i.e., evolution of
Recall@x metric over the iteration process for the
2-parameter and 3-parameter optimization cases,
respectively.

D Result without Question Filtering

We conducted experiments in the NQ dataset with-
out filtering out the questions that can be answered
correctly by LLMs without context. The results
for the 3-parameter case with T ×B = 6000 and
GPT-4 are provided in Table 3. Similar outcomes
were observed across other settings. Hier-UCB
consistently outperforms the baselines in medium-
complexity scenarios (weight = 0.9) and shows
similar performance in both easy (weight = 0.1)
and highly complex scenarios (weight = 0.5).
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Weight Recall@10 (Hier-UCB) Recall@10 (Random) Recall@10 (TS) Recall@10 (UCB) Recall@10 (all avg.)
0.1 0.40 0.03 0.35 0.49 0.29
0.5 0.35 0.05 0.23 0.26 0.18
0.9 0.21 0.07 0.08 0.11 0.08

Table 2: Evaluation results for Text-to-SQL task when T ×B = 4000 using GPT-4.

Weight Recall@5 (Hier-UCB) Recall@5 (TS) Recall@5 (Random) Recall@5 (UCB)
0.1 0.74 0.60 0.68 0.70
0.5 0.04 0.06 0.08 0.14
0.9 0.6 0.36 0.22 0.22

Table 3: Evaluation results without data filtering in NQ for 3-parameter case (K, C, E) when T ×B = 6000 and
using GPT-4.

Figure 11: Grid search results for NQ with GPT-4. Error
bars represent the standard deviations of accuracy and
reward values across all batches.

E Trade-offs Between Exploration and
Exploitation

We highlight the critical trade-off between explo-
ration and exploitation in online learning. Below,
we present the average cumulative rewards at dif-

Figure 12: Grid search results for NQ with GPT-3.5-
Turbo. Error bars represent the standard deviations of
accuracy and reward values across all batches.

ferent timesteps (T ×B) for Hier-UCB and other
baselines for the ASQA dataset using GPT-4 with
a weight of 0.5. The results are consistent across
other weight settings and the NQ dataset. As shown
in Figure 15, it indicates that Hier-UCB achieves
the highest average cumulative rewards over time,
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Figure 13: Evolution of Recall@3 in the optimization
of (K, C) for the GPT-3.5-Turbo case.

Figure 14: Evolution of Recall@5 in the optimization
of (K, C, E) for the GPT-3.5-Turbo case.

suggesting that it effectively balances exploration
and exploitation by selecting hyperparameters that
have minimal impact on user experience.

F Prompts

Examples of prompts for the evaluation of ASQA
and NQ datasets are in Tables 4 and 5 respectively.
The examples shown here are with the (K = 3 and
C = 1) setting.

Figure 15: Comparison of cumulative rewards among
different algorithms at different timesteps of T ×B.
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Instruction: Write an accurate, engaging, and concise answer for the given question using
only the provided search results (some of which might be irrelevant) and cite them properly.
Use an unbiased and journalistic tone. Always cite for any factual claim. When citing several
search results, use [1][2][3]. Cite at least one document and at most three documents in each
sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of
the documents.

Question: Who has the highest goals in world football?

Document [1](Title: Argentina–Brazil football rivalry): "Football Player of the Century",
by IFFHS International Federation of Football History and Statistics, 1999, "South America
Football Player of the Century", by IFFHS International Federation of Football History and
Statistics. Pelé’s 1281 goals are recognized by FIFA as the highest total achieved by a profes-
sional footballer, although the Soccer Statistic Foundation (rssf) recognizes only 767 goals in
official mode, occupying the third place after Josef Bican (805) and Romario (772). For his
part, Maradona has been named the best soccer player in World Cup history both by The Times
and FourFourTwo, publication that also rewarded him as the "Best

Document [2](Title: Godfrey Chitalu): have beaten Gerd Müller’s record of 85 goals in a year,
the Football Association of Zambia claimed that the world record actually pertained to Godfrey
Chitalu who had scored 116 goals (possibly 117) during the 1972 calendar year and 107 during
the 1972 season. The difference of goals is due to first 9 goals being scored before the season
officially started. The Football Association of Zambia presented the evidence to FIFA but a
spokesperson responded that they would ratify neither Lionel Messi’s nor Chitalu’s records as
they do not keep statistical track of domestic competitions. Nonetheless, it could constitute the

Document [3](Title: Godfrey Chitalu): highest official tally claimed by a national football
association. Chitalu made his international debut on 29 June 1968 in a friendly match against
Uganda in Lusaka which Zambia won 2–1. He scored his first goal in a 2–2 draw against the
same team five days later. Chitalu played a prominent role during the World Cup qualification
matches against Sudan with Zambia being eliminated on a strange rule which was peculiar to
Africa and favoured the team that won the second leg. Despite the aggregate score being tied at
6–6 after Zambia won the first leg 4–2 and lost the return

Answer:

Table 4: Prompt for ASQA. The prompt consists of Instruction, Question, and K retrieved Documents, where K in
the table example is equal to 3 and without prompt compression.
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Instruction: Write a high-quality answer for the given question using only the provided search
results (some of which might be irrelevant).

Question: which is the default file extension for an audio file in windows media player

Document [1](Title: Windows Media Player) Windows Media Player 11 is available for
Windows XP and included in Windows Vista and Windows Server 2008. The default file
formats are Windows Media Video (WMV), Windows Media Audio (WMA), and Advanced
Systems Format (ASF), and its own XML based playlist format called Windows Playlist (WPL).
The player is also able to utilize a digital rights management service in the form of Windows
Media DRM.

Document [2](Title: Windows Media Player) as data discs with playlists such as an MP3 CD,
synchronize content with a digital audio player (MP3 player) or other mobile devices, and
enable users to purchase or rent music from a number of online music stores. Windows Media
Player replaced an earlier application called Media Player, adding features beyond simple video
or audio playback. Windows Media Player 11 is available for Windows XP and included in
Windows Vista and Windows Server 2008. The default file formats are Windows Media Video
(WMV), Windows Media Audio (WMA), and Advanced Systems Format (ASF), and its own
XML based playlist format called

Document [3](Title: Windows Media Audio) Windows Media DRM cannot play DRM-
protected files. Windows Media Audio Windows Media Audio (WMA) is the name of a series
of audio codecs and their corresponding audio coding formats developed by Microsoft. It is
a proprietary technology that forms part of the Windows Media framework. WMA consists
of four distinct codecs. The original WMA codec, known simply as "WMA", was conceived
as a competitor to the popular MP3 and RealAudio codecs. "WMA Pro", a newer and more
advanced codec, supports multichannel and high resolution audio. A lossless codec, "WMA
Lossless", compresses audio data without loss of audio fidelity

Answer:

Table 5: Prompt for Natural Question. The prompt consists of Instruction, Question, and K retrieved Documents,
where K in the table example is equal to 3 and without prompt compression.
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