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Abstract

We introduce a neural architecture finetuned
for the task of scenario context generation: The
relevant location and time of an event or en-
tity mentioned in text. Contextualizing infor-
mation extraction helps to scope the validity
of automated finings when aggregating them
as knowledge graphs. Our approach uses a
high-quality curated dataset of time and loca-
tion annotations in a corpus of epidemiology
papers to train an encoder-decoder architecture.
We also explored the use of data augmentation
techniques during training. Our findings sug-
gest that a relatively small fine-tuned encoder-
decoder model performs better than out-of-the-
box LLMs and semantic role labeling parsers
to accurate predict the relevant scenario infor-
mation of a particular entity or event.

1 Introduction

We present an approach to contextualizing infor-
mation extraction (IE) that focuses on enhancing
events and entities with scenario context: the loca-
tion and time relevant to extracted elements.

Knowing when and where an event occurs has
become increasingly relevant due to the wide adop-
tion of large-scale machine reading technology. De-
cision makers in high-stakes areas,1 like epidemiol-
ogy, public health or climate sciences, are increas-
ingly turning to natural language processing (NLP)
technologies to help guide their decision making
through automatic evidence discovery and aggrega-
tion. In light of this, properly scoping automated IE
becomes very valuable to the users of these tools.

One example of a domain when scenario con-
text information is relevant is the modeling of epi-
demic dynamics, where the literature describes dif-
ferent outbreaks using different mathematical mod-
els, such as variations of the susceptible-infected-
recovered (SIR) compartmental model. The dif-

1https://www.darpa.mil/program/
automating-scientific-knowledge-extraction-and-modeling

ferent scenarios have different parameters and it is
useful to contextualize the relevant event to have a
better picture of the scenario described. Another ex-
ample is the domain of climate and climate change,
where changes in the climate of different geograph-
ical regions over time is studied by the geosciences
community.

Scenario information is often explicitly found in
the periphery of the text describing an extraction,
but not necessarily in the same sentence—thus, it
is a form of inter-sentence relation extraction (see
Figure 1 for examples).

In this work, we tackle the problem as a gener-
ative task using an encoder-decoder transformer
based on T5 (Raffel et al., 2019). Given the loca-
tions and temporal phrases in an input passage, we
prompt the model to chose and generate the rele-
vant scenario information with respect to a specific
entity or event. The main contributions of this work
are the following:
(1) An encoder-decoder model finetuned for gener-
ating scenario context, i.e., the spatial and temporal
context of a particular event or concept within a
larger phrase.
(2) A high-quality, hand-curated dataset of loca-
tion and temporal relations with intra- and inter-
sentence relations, used to train and evaluate the
aforementioned model.
(3) An error analysis of the predictions of the
model, shedding light on potential future improve-
ments to this method.

All artifacts used to train and evaluate the model
are publicly available.2

2 Related Work

Annotating when and where an event occurs
is closely related to semantic role labeling
(SRL) (Levin and Hovav, 2005; Gardner et al.,

2Code, data and artifacts available for download from
https://github.com/ml4ai/scenario-context.
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(a) Temporal annotations

(b) Location annotations

Figure 1: Example annotations in our dataset. Predicates highlighted in yellow represent ‘events’ with scenario
context information assigned to them, text highlighted with cyan represents temporal context, and text in green
location context. The arrows connect a context expression to an event they are associated with. The scenario context
to event associations are effectively many-to-many relations. Figure 1a shows a passage with several temporal
scenario contexts and Figure 1b shows several location scenario contexts.

2017) and document-level relation extraction (Sahu
et al., 2019; Xu et al., 2022; Delaunay et al., 2023).
An important distinction, however, is that SRL op-
erates on parsing the structure of a sentence and
assign roles to phrases within it. Our proposed
approach is generative in nature, and is not con-
strained to the structural elements identified during
parsing.

The typical approach for IE is finetuning a pre-
trained transformer (Vaswani et al., 2017) such
as T5 on the data of interest. We build upon the
family of encoder-decoder architectures (Bahdanau
et al., 2014) to map an input passage to the ex-
pected output that represents the relevant scenario
information.

Recently, large language models (LLMs)
(Brown et al., 2020; Jiang et al., 2023; Touvron
et al., 2023) have gained traction, but concerns re-
main about their tendency to hallucinate. Our work
relies on supervised learning via finetuning instead
of attempting to mitigate hallucinations.

Contextualizing IE has been of interest to the
research community for a while, particularly in
the biomedical domain (Noriega-Atala et al., 2018;
Sosa and Altman, 2022; Noriega-Atala et al., 2021).

In this work we focus instead on the more general
class of scenario information: the relevant location
and time of an entity or event.

3 Dataset

In order to train our model, we created a dataset
that contains location and temporal context annota-
tions at both intra- and inter-sentential levels. We
focused on 22 epidemiology research articles, in-
cluding ones that involve modeling the dynamics
of infection and outbreak case-studies, published
between 2020–2022.

These articles often describe parallel scenarios
to compare and contrast the behavior of different
outbreaks, making the inference of the scenario
context of relevant concepts and events in these pa-
pers non-trivial. Correctly understanding the loca-
tion and time period for specific events is important
for the accuracy of any inference drawn from these
studies. We excluded any temporal mentions that
were abstract or relative, and any location mentions
that were modifiers or adjectives. Figure 1 shows
an example of an annotated passage of each kind.

The dataset comprises 383 passages, ranging in
length from a single sentence to a couple of para-
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graphs. A total of 1,382 relations were annotated
with 833 (60.3%) location context relations and
549 (39.7%) temporal context relations.

A key aspect of the dataset is the presence of
annotations for inter-sentential relations—i.e., re-
lations where the event/concept of interest and its
scenario context are in different sentences. These
comprise 18% of scenario context relations. Ap-
proaches that rely on syntax, e.g., SRL, are not
well suited for inter-sentential relations. Figure 2
shows the distribution of sentence distances for the
inter-sentential subset of annotations.

Figure 2: Number of sentences between the relevant
entity/event and its corresponding context.

A random sample consisting of 13% of the re-
lations was used to measure inter-annotator agree-
ment using the Cohen’s Kappa method (Cohen,
1960), resulting in a score of 𝜅 = 0.79.3. Details
about the annotation guidelines are found in Ap-
pendix A

3.1 Data Augmentation

Manually annotating data is time-consuming and
labor-intensive. To address this challenge and scale
up the amount of data available for the scenario con-
text generation task, we explored two techniques
for data augmentation using LLMs—paraphrasing
and procedural generation. The details of prompts
and generation procedures are provided in Ap-
pendix D.
Paraphrasing. To increase the lexical and syntac-
tic diversity of the gold annotations, we generated
variations of each passage in the dataset using GPT-
4. Additionally, we substituted the temporal and
location arguments with alternatives while keep-
ing track of the relations present in them. This
process resulted in 434 additional scenario context
relations.
Procedurally generated relations. We used GPT-
4 to procedurally generate passages containing one
or more fictional events with temporal and loca-

3Agreements over 0.61 are considered substantial and over
0.81 are considered almost perfect (Landis and Koch, 1977).

tion context. We used the prompt to control the
topic, role of the narrator, length, and number of
scenario contexts in each passage. This procedure
allows to scale up the amount of training data pro-
portional to one’s budget. This approach resulted
in an additional 1,361 scenario context relations.

4 Experiments and Results

We trained4 an encoder-decoder model (Sutskever
et al., 2014; Vaswani et al., 2017) based on T5 to
generate the location and temporal information rel-
evant to a specific event from its surrounding con-
text. For each relation in the dataset, we prompted
(see Appendix B for details) the model to decode
the context information of the specific event. Each
event may have zero, one or more context relations
of each type. The model decoded all of them simul-
taneously.

We held out a random sample of 20% of the
annotions for testing and fine-tuning t5-base. Ta-
ble 1 contains the main results averaged across
three runs with different random seeds. Since a
particular event may have zero or more annotations
of each type, we compute precision, recall, and F1
individually for each and average them across the
testing set. We report two variants of this evalua-
tion: (i) span-level, and (ii) token-level. At the span
level, a generation is considered correct only if it
exactly matches the gold standard annotation. In
order to ignore minor lexical variations, we applied
a basic normalization procedure before comparing
strings: converting to lowercase, trimming spaces
on both ends, and removing commas. Nevertheless,
having a partially correct prediction may still be
useful (e.g., july 5 1987 vs july 1987), there-
fore the token level evaluation reports the precision,
recall, and F1 scores at the token level, similar to
SQuAD (Rajpurkar et al., 2016).

Table 1 contains the results of models trained (i)
with manual annotations only and (ii) with the aug-
mented dataset. In general, our approach achieves
better results when predicting location than tem-
poral context. Training only with the manual an-
notations results on the best performance for loca-
tions; training with the augmented data decreases
the performance for location, but improves the per-

4The model was finetuned using a workstation with an
RTX 3090Ti GPU, a Threadripper 3960X 24-Core CPU and
128 GB of system memory. Each model was finetuned from
t5-base using HuggingFace’s Seq2SeqTrainer for 10,000
steps, 3e-5 learning rate, linear weight decay of 0.1 and batch
size of 4.
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Span-level Token-level

Location Temporal Location Temporal

Model P R F1 P R F1 P R F1 P R F1

Annotations 0.81 0.80 0.80 0.76 0.73 0.74 0.84 0.84 0.83 0.76 0.80 0.77
+paraphrases 0.80 0.79 0.78 0.78 0.76 0.76 0.83 0.82 0.82 0.79 0.81 0.79
+synthetic 0.78 0.77 0.76 0.79 0.78 0.78 0.81 0.81 0.80 0.79 0.81 0.79
+para & synth 0.77 0.76 0.75 0.71 0.70 0.7 0.81 0.81 0.80 0.74 0.75 0.74

Table 1: Scenario context evaluation results. P = Precision, R = Recall.

Location Temporal

Method P R F1 P R F1

GPT-4o 0.29 1 0.22 0.33 0.89 0.24
Mistral-7B 0.25 1 0.20 0.23 0.98 0.19

SRL 0.09 0.01 0.01 0.08 0.05 0.03

Table 2: SRL and LLM baseline results. P = Precision,
R = Recall, Mistral-7B = Mistral 7B Instruct v0.2.

formance for temporal context. We hypothesize
that this is a consequence of the differences be-
tween expressing named locations vs. temporal
expressions. There is less variance in how loca-
tions are written; they are usually proper nouns
or adjectives, whereas time expressions are much
more varied— they could be expressed as a stan-
dalone year, full date, date range, season, relative
temporal phrase, etc. Data augmentation may help
increase the diversity of temporal context phrases
shown during training, leading to less overfitting to
the lexicon compared to location.

Baselines We compare our methods with a
decoder-based LLM approach and an SRL system.
Table 2 contains the baselines’ results. For the
LLM baseline, we tested GPT-4o (OpenAI, 2023)
and Mistral 7B (Jiang et al., 2023). We asked the
models5 to generate the scenario context for each
event and computed the span level results. We find
that the LLMs successfully identify time spans and
locations relevant to concepts and events, but also
tend to predict spurious relations that are not re-
lated to the focus of the query. This is reflected
in the high recall and low precision exhibited by
the LLMs. These observations support the use of
supervised learning approaches when feasible.

SRL assigns roles between the clauses in a sen-
tence. We used it as an alternative baseline to
the other generative approaches. To test for sce-
nario context detection, we used AllenNLP’s struc-

5Prompting details in Appendix C

tured prediction pre-trained model6 to parse the
sentences containing events in each passage of the
ground truth dataset. We considered a scenario con-
text relation ‘extracted’ if the appropriate context
is contained within a predicted modifier argument
(ARGM-LOC, ARGM-TMP) and the text of the event is
contained in the union of another argument with
the predicate. We found that SRL is not well-suited
for this task—it often failed to select the event of
focus within an argument.

Error Analysis We performed an error analysis
on a sample of the testing predictions of the model
trained only with human annotations. Table 3 con-
tains different types of prediction errors broken
down by scenario context type. Spurious predic-
tions occur when there is no context annotation,
but the model generates a prediction; conversely,
a Missing prediction happens when there is a gold
annotation but no prediction from the model. Mis-
taken predictions are when there is both a gold
annotation and a prediction, but the model was
outright wrong about it. Partial predictions occur
when the generated text is properly contained in
the annotation’s text, but is not an exact match—
e.g., an event with a location context annotation
of “Western and Northern Europe, United
Kingdom” where the model predicted “Western
and Northern Europe” is a partial prediction;
Overprediction errors are the opposite. These in-
stances are considered false positives for the span-
level results in Table 1, however their partial, accu-
rate predictions are accounted for in the token-level
evaluations. Other errors are artifacts of the genera-
tive nature of the task. Consider the gold annotation
“California, Indiana, New York” and the pre-
diction of “California (CA), Indiana (IN),
New York (NY)”—clearly the prediction is cor-
rect; however, the model decoded state acronyms

6https://storage.googleapis.
com/allennlp-public-models/
structured-prediction-srl-bert.2020.12.15.tar.gz
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Context Type

Error Type Location Temporal

Spurious 11 12
Missing 10 7
Mistaken 4 6

Partial 7 3
Over 8 7
Other 3 4

Total 49 39

Table 3: Prediction error types.

alongside the names, which fail an exact string
match. The token-level evaluation is able to pick
up the full state names. For temporal context, Mis-
taken predictions mostly stem from the variety of
ways time intervals can be expressed in text and
the inability of the model to abstract that informa-
tion, e.g., the gold annotation “between 2009 and
2014” was predicted as “2009, 2014”, which cor-
rectly includes the endpoints of the range, but fails
to specify the crucial detail that this is an inclusive
range including the years between them.

5 Conclusions and Future Work

In this work, we introduced an encoder-decoder
model finetuned to generate location and tempo-
ral context associated with a particular concept or
event. We are releasing a dataset of hand-curated
annotations from a collection of academic papers in
the epidemiology domain that describe the dynam-
ics of outbreaks in different locations and times.
We found that our method more accurately rec-
ognizes the relevant context than out-of-the-box
LLMs or SRL. We also explored the use of data
augmentation methods, finding that they resulted
in modest improvements in temporal context ex-
traction.

There are at least two promising avenues for fu-
ture work. The first is expanding the dataset to
include more curated annotations from additional
domains. This will foster the development of more
accurate models with better generalization capa-
bilities. The second is exploring other network
architectures, such as span-prediction or decoder-
only models. The former is useful for attributing
the source of the context prediction and the lat-
ter can benefit from the transfer learning potential
exhibited by open-source LLMs.

6 Limitations and Ethical Considerations

While the methods described in the paper are not
specific to a particular domain, the annotations fo-
cus on scientific literature in the domain of epidemi-
ology. The evaluations carried out in this work did
not test for generalization capabilities on different
domains. Additionally, all of the information used
in this work was written solely in English, limiting
the potential impact and applications of our contri-
butions. While we evaluated the performance of
LLMs for this task, we only tested two different
models: GPT-4o and Mistral-Instruct. We recog-
nize that the landscape of LLMs changes quickly
and that the state-of-the-art is fleeting. Due to this,
our baseline results may be rendered obsolete in
the near future.
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A Annotation Guidelines

We used LabelStudio7 to manually annotate sci-
entific articles with scenario context information.
LabelStudio was set up with 383 tasks, where each
contains a section of the article’s text containing
either location or temporal scenario information of
a specific event. At least one annotator carefully
read each passage, selecting all the events with a
designated location and/or temporal information.
The annotator then proceeded to select and link
each piece of scenario context information to the
relevant event. Figure 1 displays two examples
of the user interface of LabelStudio with different
types of scenario context and event information.

Two other independent annotators worked in
a sample comprising 13% of the tasks. Using
these additional annotations, we computed an inter-
annotator agreement metric using Cohen’s Kappa
of 𝜅 = 0.79.

B Model Inputs and Outputs

Figure 3 shows the format of the prompt used as in-
put to the scenario context model. Fields between
double curly braces are substituted with the text
containing the entity or event of focus in {{event}}
and the complete passage from which relevant sce-
nario context will be retrieved in {{context}}.

Figure 4 shows the output format produced by
the model. The model will generate zero or more
relevant locations and time expressions per input.
Double curly braces are placeholders for the actual
predicted values decoded by the model.

7https://labelstud.io
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Text: {{event}}

Context: {{passage}}

Figure 3: Input prompt format used by the scenario
context encoder-decoder model.

location: {{loc 1}}, ..., {{loc n}};
time: {{tmp 1}}, ..., {{tmp n}}

Figure 4: Output sequence format decoded by the sce-
nario context encoder-decoder model.

C LLM Baseline Prompt Template

The prompt template shown in Figure 5 was to
generate the scenario context predictions from
both LLMs in § 4. At run-time, {{event}}
was substituted by the entity/event of focus and
{{pre_context}} and {{post_context}} were
subsituted by the passage’s text before and after
it, respectively.

The output of the LLMs was parsed as a JSON
object and used to compute the baseline scores.

For the following phrase, look at the
event or concept surrounded by ``` and
tell me the locations and time periods
that relevant to the element surrounded
by ```.
The output format should be a json
object with an array of strings for
type of context. If there is not any
element of a specific type, you will
put an empty array in its value.
Output format:
{
"locations": [],
"time periods": []
}

Phrase:
{pre_context}```{event}```{post_context}

Figure 5: Prompt used to elicit scenario context using
an LLM.

D Data Augmentation Procedures

D.1 Paraphrasing Annotations

We used GPT-4 to generate paraphrases of the an-
notated dataset. Each passage was used as a seed

to geenrate multiple paraphrases using the prompts
listed in Figure 6.

- Please give me a location that is either
close or similar in nature with:
`{location}`.
Please do not return any additional
information.

- Please give me a date that is either close
or similar in nature with: `{date}`.
Please do not return any additional
information.

- Please rephrase the following text, while
keeping the following the following phrase
fixed:`{phrase}`
and maintaining the overall message and
length

{text}

- Please rephrase the following text,
maintaining the overall message and
length

{text}

- Please replace word `{word}` and its
derivatives with the word `{replacement}`
and its appropriate derivatives the
following text:

{text}

Figure 6: Prompts used for parapghrasing sequences in
the original dataset

D.2 Procedurally Generated Data
We used GPT-4 to procedurally generate synthetic
data.

First, we seed the procedure with a set of event
types. In our experiments we defined these to be
historical events, tech conferences, and
public health emergencies. Then, for each
event type, we repeat the following steps:

1. For each event type, we ask the LLM to gen-
erate ten different fictional event names.

2. We ask the LLM to generate five different nar-
rator roles—e.g., news reporter, high school
student, historian, etc.
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3. We prompt the LLM to narrate each event,
assuming each of the roles using a predefined
set of numbers of paragraphs.

Figure 7 contains a code snippet from a Jupyter
notebook used to generate the synthetic data.

3828



1 # Get the number different types of events to develop context for
2

3 events_prompt = ChatPromptTemplate.from_messages([
4 ("user", "Generate a list of 10 different fictional {event_type} names.\
5 Don't any include details, locations, names or dates. You must provide a comma-separated\
6 list as a result.")
7 ])
8

9 narrator_prompt = ChatPromptTemplate.from_messages([
10 ("user", "Generate a list of 5 different narrator roles that describe {event_type}.\
11 For example, if we are describing a political event, a narrator role could be\
12 a news reporter; if it is a historical event, the narrator could be a historian\
13 writing a book, a highschool student writing a homework assignment or a PhD\
14 scholar writing a dissertation. You must provide a comma-separated list as the output.\
15 Don't include the event type, just the narrator role")
16 ])
17

18 generation_prompt = ChatPromptTemplate.from_messages([
19 ("system", "You are a {role} describing {event_type}"),
20 ("user", """Write {length} about {event}.
21 Whenever you mention the event or refer, either explicitly or through pronoums, you
22 must wrap between <evt></evt> markup tags. You must include one location context in
23 your description. This location context represents where the event took place and
24 it could be a geographical region, country, city or location coherent with your
25 argument. Any mention of the geographical context must be wrapped between
26 <loc></loc> markup tags. You must include {loc_distractors} other distractor
27 locations that are not related to the location context. It must be unambiguous, but
28 subtle, that these distractior locations are not where the event took place.
29 The distractor locations must be wrapped by <nloc></nloc> markup tags. You must
30 also include one temporal context in your description. This temporal context
31 represents the specific time or time frame in which the event took place. Any
32 mention of the temporal contect must be wrapped between <tmp></tmp> markup tags.
33 You must include {tmp_distractors} other distractor times that are not when the
34 event took place. It must be unambiguous, but subtle, that these distractor times
35 are not when the event happened. The distrator times be wrapped
36 by <ntmp></ntmp> markup tags.""".strip())
37 ])
38

39 events_chain = events_prompt | llm | list_parser
40 roles_chain = narrator_prompt | llm | list_parser
41 generation_chain = generation_prompt | llm | str_parser

Figure 7: Python code snippet with the prompts used to narrate a fictional event in order to procedurally generate
data.
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