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Abstract

Time series are critical for decision making in
fields like finance and healthcare. Their impor-
tance has driven a recent influx of works pass-
ing time series into language models, leading to
non-trivial forecasting on some datasets. But it
remains unknown whether non-trivial forecast-
ing implies that language models can reason
about time series. To address this gap, we intro-
duce a first-of-its-kind evaluation framework
for time series reasoning, including formal
tasks and a corresponding dataset of multi-scale
time series paired with text captions across ten
domains. Using these data, we probe whether
language models achieve three forms of rea-
soning: (1) Etiological Reasoning—given an
input time series, can the language model iden-
tify the scenario that most likely created it? (2)
Question Answering—can a language model
answer factual questions about time series? (3)
Context-Aided Forecasting—does relevant tex-
tual context improve a language model’s time
series forecasts? We find that otherwise highly-
capable language models demonstrate surpris-
ingly limited time series reasoning: they score
marginally above random on etiological and
question answering tasks (up to 30 percentage
points worse than humans) and show modest
success in using context to improve forecasting.
These weakness showcase that time series rea-
soning is an impactful, yet deeply underdevel-
oped direction for language model research.1

1 Introduction

Time series measure how systems change over
time and contain information that is uncommon
in language. They are a critical data modality in
healthcare (Morid et al., 2023), finance (Sezer et al.,
2020), agriculture (Kamilaris and Prenafeta-Boldú,
2018), economics (Nerlove et al., 2014), political
science (Beck and Katz, 2011), astronomy (Benson

1All data and code are available at https://github.com/
behavioral-data/TSandLanguage

et al., 2020), signal processing (Jagannath et al.,
2021), and beyond. As the scientific community
races to bring language models (LMs) to these do-
mains, we must ensure LMs can support decisions
about these sources of valuable information. If suc-
cessful, LMs could perform novel tasks like citing
patterns and events in time series as evidence for
observations and inferences, drawing interpretable
conclusions from complex dynamical systems, or
learning to recognize and respond to temporal pat-
terns.

Several recent works have shown that LMs can
be used for zero-shot time series tasks, though
nearly all focus on forecasting. These works typi-
cally forecast by structuring historical observations
as raw text (Liu et al., 2023b; Xue and Salim, 2023;
Zhang et al., 2024; Gruver et al., 2023) or images
(Li et al., 2023). This is promising work, and sug-
gests language models may someday demonstrate
the same remarkable zero-shot performance that
they do with text and images. But it remains un-
known whether non-trivial forecasting implies that
LMs can reason about time series, as opposed to
simply generating matching temporal patterns that
appear in their inputs. In fact, recent works indicate
that a LM’s ability to generate data does not imply
deeper reasoning (West et al., 2024; Hessel et al.,
2023).

In this work, we develop, apply, and release a
framework to ultimately find that despite excite-
ment about using LMs for time series analysis,
current language models are remarkably bad
at zero-shot time series reasoning. We propose
three components of time series reasoning. First,
for a LM to reason about time series it must be
able to consider the etiology (the set of possible
causes) of a time series through etiological rea-
soning (Figure 1(a)). Second, a successful model
should excel at question answering and be able
to address queries about time series and how they
relate to one another (Figure 1(b)). Finally, time
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a) Etiological Reasoning (Section 4)

c) Context-Aided Forecasting (Section 6)

Question: What scenario could 
have produced this time series?

Daily step counts after 
a New Year’s resolution

Minutes of sunlight per 
hour over two days

✅

❌

or

b) Question Answering (Section 5)

Context: A drug  
company tracks 
symptoms in a drug 
trial. After 60 weeks, a 
mutation makes 
symptoms dramatically 
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Question: Does the overall brightness trend 
stay the same?
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Yes, the trend 
continues upward or
✅

No, the trend is 
interrupted

❌

Figure 1: The three forms of time series reasoning (Section 2).

series reasoning implies context-aided forecast-
ing, wherein a language model can leverage its
world model and natural language context to aid in
forecasting (Figure 1(c)).

To evaluate LMs we create a first-of-its kind
dataset that contains 230k time series multiple
choice questions and 8.7k pairs of synthetic time
series and text captions that describe the series and
the context in which it was observed (Section 3).
These data span a diverse set of time series sce-
narios across including health data, transport and
traffic trends, finance, and more.

We use this dataset to evaluate etiological rea-
soning by tasking models to select the most prob-
able time series caption given the observed time
series (Section 4) and find that human annotators
outperform language models by a margin of up
to thirty percentage points, with otherwise strong
language models like GPT-4 barely doing better
than random chance. Then, we test models on a
question answering task by augmenting our dataset
to include 230k question-answer pairs (Section 5).
Again, we find that human annotators significantly
outperform language models, indicating that lan-
guage models have limited capacity to interpret the
information in time series. Finally, we evaluate
language models on a context-aided forecasting
task (Section 6). We find that even with text de-
scriptions of what will happen in future, GPT-4
struggles to incorporate this information, resulting
in negligible improvements over models without
additional context. Taken as a whole these results
indicate that despite modest time series forecasting
ability, current language models fail to reason about
these ubiquitous, critical data despite considerable
human performance on the same tasks.

2 Forms of Time Series Reasoning

Here we propose a rigorous (though non-
exhaustive) definition of time series reasoning.

Consider a univariate uniformly-sampled time
series of n observations, x = {x0 · · ·xn}, x ∈ Rn.
Suppose that an autoregressive language model M
is able to represent this time series as input and pro-
duce time series observations and text as outputs.
That is, M estimates the probability p of an output
token sequence Y given some context tokens C
and the time series: pM (Y |x,C) = M(Y, x, C).

Definition 2.1 (Etiological Reasoning). Etiologi-
cal reasoning is the property by which language
models are able to hypothesize about the cause of
a time series. That is, given a time series x, textual
instructions as context C, a correct description D+

of how x was generated and an incorrect descrip-
tion D−, a language model should assign higher
probability to D+:

pM (D+|x,C) > pM (D−|x,C) (1)

Language models that can reason about time
series should also be able to answer questions about
the behavior and implications of a time series.

Definition 2.2 (Question Answering). We define
question answering as a model’s ability to use in-
formation in the time series x to interpret queries
about the time series or the events surrounding the
scenario it represents.

For the sake of evaluation, the questions should
be time-series-dependent—correct answers should
be unattainable without interpreting x. For exam-
ple, given an ECG, a dependent question might be,
“Does this signal demonstrate atrial fibrillation?”
while a trivially non-dependent question would be,
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“Who was the first president of the United States?”
Formally, given a question Q and an answer A+,
the model should predict

p(A+|x,Q) ≫ p(A+|Q) (2)

A language model should be able to exploit this
information. In a multiple-choice setting, given a
correct answer A+ and an incorrect answer A−:

pM (A+|x,Q) > pM (A−|x,Q) (3)

Finally, for an LM to reason about time series
it should be able to integrate relevant information
from text into forecasts about how the time series
will behave in the future.

Definition 2.3 (Context-Aided Forecasting).
Context-aided forecasting is the property by which
a language model can use additional outside
information about a time series to guide its
forecasts. Given the first t observations of a time
series and a relevant text description D, the model
should predict:

pM (xt+1 · · ·xn|x0 · · ·xt, D)

> pM (xt+1 · · ·xn|x0 · · ·xt) (4)

Note that D must provide some meaningful infor-
mation about the behavior of x.

3 Dataset

Evaluating these forms of time series reasoning
requires pairs of time series and highly-relevant
text descriptions. Without a strong relationship
between the two, it is impossible to determine if a
model’s failure to reason about time series is due to
poor fundamental capabilities or a poorly-designed
evaluation. However, there is no general corpus
of time series and natural language descriptions
that captures such relationships (Section 7.1). To
address this challenge, here we contribute a first-
of-its-kind dataset of synthetic multi-domain time
series and highly relevant text captions.

3.1 Dataset Generation
We prompt GPT-4 to generate descriptions of en-
vironments that change over time alongside exe-
cutable Python functions that generate correspond-
ing time series. A naive solution is to generate
a time series as text, however autoregressive lan-
guage models struggle to generate text with long
range interactions (Bubeck et al., 2023) and demon-
strate poor numerical reasoning (Akhtar et al.,

2023; Dziri et al., 2023). Accordingly, time series
that are generated as text exhibit poor coherence
and are of overall low quality (Figure 3). Instead,
we leverage recent language models’ capacity to
generate code (Zhong and Wang, 2023; Chen et al.,
2021; Wang et al., 2023b). We prompt GPT-4 to
produce data generating functions in the form of
Python scripts. We ask the model to “imagine a
scenario” that would produce a time series. We
then yield the following data for each scenario:

• A caption of the scenario that generated the
time series.

• Five characteristics of a time series which
matches this description.

• A data generating function which, when ex-
ecuted, returns the time series as an array.

• Metadata about the time series, including its
start and end timestamp, its sample rate, units,
a short caption of less than five words which
summarizes the scenario.

To encourage diversity during generation, we
append the latest twenty short descriptions to each
new prompt and ask the model to a generate a sce-
nario that is as distinct as possible from these previ-
ous generations. Empirically, this step is important
for maintaining variety in the generated results.
The full prompt is available in Section C. Finally,
we filter the scenarios by removing multivariate
time series and those with complex, missing, or in-
finite values, resulting in 8.7k scenarios. Next, we
feed 100 captions into GPT-4 and ask the model to
categorize these time series into ten domains (Fig-
ure A.1). We then automatically apply these cate-
gories to the remaining 8.7k scenarios (Figure A.2).
We manually reviewed 50 scenarios and found no
substantial inaccuracies between the captions and
the time series.

3.2 Evaluating Data Quality
The quality of our synthetic data relies on the re-
alism of the generated time series as well as the
relevance of the associated text captions. To sys-
tematically quantify the quality of this relationship
we recruited ten experienced PhD-level data scien-
tists with relevant time series experience for human
evaluation. The ten participants were each shown
50 unique time series line plots with four possi-
ble captions each (for a total of 500 examples).
One caption was the model-generated ground truth,
while the other three were randomly sampled from
other, irrelevant time series. A screenshot of the
annotation tool is available in Figure A.7. Annota-
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Describe an event that would create a time series, give characteristics of that series and then write code that would generate it.

The time series represents the daily count of steps from users of 
a smartphone fitness app over the span of a year. The sample 
rate is once daily at midnight. Users' motivation to exercise 
varies by season and can be influenced by external events like 
New Year resolutions, causing a spike in activity in early 
January.

A. Caption
def generate_series():    
   # Generally, a person averages around 5000 steps per day.
   steps = np.random.normal(loc=5000, scale=500, size=365)   
   # New Year effect: increase step count in first month
   steps[:31] += 1500 
   # Gradual decrease in enthusiasm   
   for i in range(1, 12):        
      steps[i*30:(i+1)*30] -= i*50   
   # Make sure we don't have negative number of steps    
   steps = np.where(steps<0, 0, steps)    
   return steps

D. Generating Function

Prompt (abbreviated for clarity):

Generated Scenario:

1. A mean of 5000 steps
2. A high in January

3. Mean reversion begins in February
4. Non-zero values

C. Characteristics

Units: Steps
Frequency: Daily

Start: 2021-01-01
End: 2021-12-31

B. Metadata

Short Caption:
“Fitness app daily steps"
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E. Complete Series

Figure 2: We generate realistic time series and text pairs by querying GPT-4 for code that can be executed to
generate the signal (Section 3).
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Figure 3: By simulating time series with GPT-4-generated code (rather than generating the series directly from
the model itself) we’re able to produce substantially more complex data which better represent realistic scenarios.
Checks indicate desired characteristics are captured by the time series.

tors selected the correct caption 66.1% of the time,
far above random chance of 25%. We note that
skilled humans often struggle to interpret even sim-
ple time series plots (Albers et al., 2014), and so
human performance on this task may not represent
the upper bound of possible performance. Later,
in Section 4, we will use this performance as a
baseline for etiological reasoning.

Is this performance good enough? We conducted
an error analysis to contextualize this result by man-
ually annotating 50 incorrectly answered questions.
We found that participants’ errors fell into three
categories:

• Hard (27) - There is exactly one correct an-
swer, but annotators were not able to identify
it. Common reasons for wrong answers are
(a) signal noise (e.g, trends are hard but not
impossible to pick out), (b) ignoring the scale
of the data (e.g. the data is in the range 20-25

and the caption describes ambient tempera-
ture in degrees Celsius), and (c) misinterpret-
ing sample rate (e.g the sample rate is visibly
very high and all but one caption describes a
lower frequency reading). Additional annota-
tor training could potentially eliminate these
errors.

• Flawed (13) - The correct caption has some
flaw, although may not be entirely incorrect.

• Ambiguous (10) - at least one other caption
is plausibly correct, although the ground truth
answer remains a strong option.

While these results indicate some ambiguity,
over half of errors are attributable to human skill
and not noise in the underlying data (“Hard”). As
discussed in Section 4, our human subjects dramat-
ically outperformed language models on this task.
The gap in performance (32.6% in Table 1) cannot
be explained by the frequency of flawed or ambigu-
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ous questions ((100%− 66.1%) ∗ (13+ 10)/50 =
15.6% < 32.6%). Importantly, this implies that
even if we assume adversarially imperfect scenar-
ios there is still substantial room for model im-
provement.

4 Etiological Reasoning: Near Random
Performance

By defining time series reasoning (Section 2) and
creating our first-of-its kind dataset of time series
and associated captions (Section 3) we can evaluate
the capacity of LMs to reason about these ubiqui-
tous data. Reasoning implies an ability to provide
explanations for observed phenomena. In our con-
text if a model can reason about a time series then
it should be able to hypothesize about how that
series was generated. For example, given a time
series with a strong daily seasonality “sunlight in-
tensity” is a more likely description than “Nvidia
stock price since 1999.”

We evaluate etiological reasoning by tasking an
LLM to select the correct time series caption from
a set of four, with three incorrect captions (Figure
1(a)). We sampled incorrect descriptions by ran-
domly selecting three captions from the remainder
of the dataset. To encourage the models to focus on
the time series itself and not on metadata like the
series’ units or start and end timestamps we only
provided the values of the time series. For pure lan-
guage models, time series were encoded into text
using the method from (Gruver et al., 2023) which
uses separate schemes for LLAMA and GPT-4.
Details on this method are available in Section A.1.
We also experiment with representing time series as
images of plots and passing them to GPT-4-Vision,
as in as (Li et al., 2023).

A natural question is whether text is the correct
way to represent a time series. To answer this,
we experimented with five other representations
(including time series as audio, spectrograms, pre-
computed embeddings, and images) by training
existing multimodal models on our data and found
no difference in performance (Section B.1).

Our results show that all models perform remark-
ably poorly relative to the human baseline (66.1%
accuracy, Section 3.2), with some models perform-
ing at or near random chance (e.g LLAMA with
27.3% accuracy) (Table 1). GPT-4-Vision performs
best (34.7%) while still falling short of human per-
formance by over 30 percentage points.

These results indicate that current language

models are poor zero-shot judges of time series
etiology.

5 Question Answering: Trailing Behind
Human-Level Proficiency

A LM that can reason about time series should be
able to answer questions about a time series and the
implications of the scenario it describes. To prop-
erly evaluate this property it should not be possible
to answer the questions without the time series.
This avoids misleading performance estimates ob-
served in Visual Question Answering with models
performing well even without the associated im-
age (Wang et al., 2023c). A good candidate for
these questions are counterfactual “what-if”-style
queries that ask the LM to interpret how the time
series might be different if its related scenario were
changed. For example, given a time series of coffee
shop sales over the course of a day with a peak at
2pm, a good “what-if” question might be, “If half
as many customers visited the shop at noon, would
the peak sales change?” We evaluate this ability by
presenting LMs with Multiple Choice Questions
(MCQs) with four options – one correct and three
incorrect.

We evaluate question answering using the same
techniques as etiological reasoning (Section 4). Ad-
ditionally, in Section B.4 we experiment with rep-
resenting the time series as plain, unformatted text
and show no appreciable difference. Human per-
formance was again assessed using a team of ten
data scientists who annotated 500 time series plots
using the exact same data as the LMs (metadata,
time series [as a plot], and the short description).

5.1 Time Series Questions

All models showed near-random performance
(except the one generating the MCQs). To create
time series MCQs that cannot be answered by LMs
without attending to the time series itself, we first
create ‘what-if’ scenarios for a time-series along-
side a second time series that materializes this
counterfactual scenario. We create these MCQs
using a three-step procedure.

• For each time series x (Section 3) we query
GPT-4 to produce a ‘what-if’ scenario and
a corresponding generative function for x,
which reflects that scenario.

• We use the ‘what-if’ scenario, short captions,
time series x and x, and their generating func-
tions to generate MCQs about similarities and
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Model/Task Etiological Reasoning Question Answering

Original Perturbed

Random baseline 25% 25% 25%
Human 66.1% 67.0% 61.7%

LLAMA-7B- No TS N/A† 24.7% 25.6%
LLAMA-7B 27.3% 25.2% 24.3%
LLAMA-13B- No TS N/A† 26.3% 25.6%
LLAMA-13B 27.8% 25.8% 25.6%
GPT-3.5- No TS N/A† 29.8% 26.3%
GPT-3.5 33.5% 27.4% 27.7%
GPT-4- No TS N/A† 51.3%* 28.4%
GPT-4 33.5%* 52.7%* 28.4%
GPT-4-Vision 33.5%* 53.6%* 30.5%

Gap - Human vs Best LM 32.6% 13.4% 33.3%
* GPT-4 generated all data and its performance should be considered an upper bound
of true capability (Section 3).
† These results are not included for etiological reasoning because in this task models
only have the time series (and no metadata) as input.

Table 1: Accuracy of LMs on Etiological Reasoning and Question Answering. Human performance was evaluated
on a subset of data (N=500). No TS indicates that the model was evaluated without the time series as input (i.e. with
only metadata in the prompt). Etiological Reasoning: Performance is near-random for LLAMA models and slightly
better for GPT models. Human performance is significantly higher. Question Answering: LM performance is
near-random for LLAMA models, and is slightly better for GPT models, though again trailing human performance
(Section 5).

differences between x and x.
• To ensure that all MCQs are answerable only

in the presence of both time series, we filtered
out questions that GPT-3.5 could answer in
the absence of any time series, which led to
almost half of the MCQs being discarded. In
total, this process generated over 130k MCQs,
with one correct and three incorrect answers
each. An example question is in Figure 1.

We also experimented with generating questions
about a single time series, but found that language
models could successfully answer these questions
even without the time series, making them poor
tools for evaluating time series reasoning. More
details on these experiments are available in Sec-
tion B.3.

We make the following observations: (1) All
LMs, other than GPT-4, had close to random per-
formance (Table 1). (2) Only GPT-4 achieves non-
trivial performance on this MCQ task. However,
performance does not meaningfully increase when
the time series is added to the LM input. Again,
the fact that GPT-4, with and without time series,
achieves non-trivial performance may be because
GPT-4 was used to generate these scenarios. We
describe additional experimental evidence that is
consistent with this interpretation in Section 5.2.
(3) Human performance, when given the exact

same information as the LMs is significantly higher
than all LMs at 67% which perform at near-random
performance (other than the aforementioned GPT-
4 and GPT-3.5 exceptions). This gap to human
performance demonstrates that higher LM perfor-
mance should be possible given the information
available.

One potential reason for LMs performing just
as badly even with a time series representation is
that these time series may not contain any relevant
information. However, since human performance is
substantial at 67% we can rule out this possibility.
The only model achieving meaningful levels of
performance in the MCQ task with multiple time
series is GPT-4, and we have to caution again that
GPT-4 was used to generate these MCQs and this
evaluation is likely to overestimate generalization
performance of GPT-4.

5.2 Manually-Perturbed MCQs

Minor manual perturbations in MCQs eradi-
cate above-random zero-shot performance for
any LM, including GPT-4 which generated all
data. Upon first inspection it is notable that GPT-4
achieved non-trivial levels of performance in ques-
tion answering. However, we show that this per-
formance is possibly explained by GPT-4 being
the model used to synthetically generate these data
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and MCQ tasks, casting significant doubt on any
actual time series reasoning ability of GPT-4, and
therefore all of the LMs evaluated in this study.

We demonstrate this by taking 144 samples from
the previously described MCQ dataset and make
manual perturbations to the answers. For each ques-
tion we select the correct answer for the MCQ and
create a similar incorrect answer as a distractor by
editing the numerical values so that they are similar
while still incorrect. We provide an example in
Section B.6.

Prior to the manual perturbations, GPT-4 and
GPT-4- No TS answered over half the MCQs cor-
rectly. However, after only minor changes to MCQ
options performance decreases to near-random per-
formance as well (Table 1). This strongly sug-
gests that GPT-4’s above-random performance in
all prior time series MCQ tasks is due to the fact
that it created the data and MCQs itself, and that
does not generalize to slightly varied settings. We
hypothesize (i.e., do not claim or prove) that the
prior non-trivial performance is explained by the
model recognizing likely correct answers due to
artifacts of the distribution that this LM models.

We note that we experimented with using GPT-4
to automatically perturb questions as in Hong et al.
(2024), but were unable to generate questions that
were sufficiently hard.

In summary we show that LMs exhibit near-
random performance on meaningful QA tasks
while human evaluations demonstrate that signif-
icantly better performance is possible. In none
of these zero-shot evaluations did LMs perform
better with than without the time series, suggest-
ing that current LMs cannot integrate informa-
tion from time series to answer questions.

6 Context-Aided Forecasting

We next evaluate whether LMs can leverage rele-
vant textual context when forecasting future time
series values. We build on recent works that find
LMs can non-trivially zero-shot forecast time se-
ries (Gruver et al., 2023; Xue and Salim, 2023).
Using the same zero-shot forecasting method as
LLM-TIME (Gruver et al., 2023), we experiment
with prepending different corresponding textual
context alongside the time series. We randomly
select 2000 time series with their captions, descrip-
tions, and metadata, feed the first 80% as context
and forecast the remaining 20% of the timesteps.
This textual context contains highly-relevant in-

formation, including future information about the
series’ behavior. To understand how well these
methods compare to a simple baseline we include
the “Predict Median” baseline, which simply com-
putes the median of the first 80% of a time series’
values then repeats it for the forecasting window.

We measure forecasting success using the com-
mon metrics Mean Absolute Error (MAE) and
Mean Squared Error (MSE). Since the values of
the time series in our dataset span several orders of
magnitude we min/max and z-score normalize val-
ues before computing these metrics so that error on
high-magnitude series does not dominate perceived
model performance.

Highly-relevant captions barely change LM fore-
casts. As shown in Figure 5, adding all textual
context only marginally improves MAE. Of 2,000
zero-shot samples, only 1,040 show improvement
in MAE when the full context is shown and in
the remaining time series MAE increases. An ex-
ample is illustrated in Figure 4, showing that the
LM ignores potentially useful information in the
context. We also experimented with other combina-
tions of metadata, characteristics, and descriptions
and found that adding more information gradually
improves performance, but overall performance re-
mains below or comparable to the weak “Predict
Median” baseline (Section E). We include an exam-
ple where the model appears to integrate context in
Figure A.6.

This lack of improvement is surprising and
demonstrates a clear gap in these LM-powered
methods’ capacities to leverage relevant text when
forecasting time series. Further, neither forecast-
ing method clearly outperforms the simple “Me-
dian Prediction” baseline. We note that because
our series were intentionally designed to contain
interruptions from external events (Section 3) me-
dian prediction is a particularly weak baseline on
our dataset. This experiment shows that current
LMs largely fail to use context to inform fore-
casting.

7 Related Work

7.1 Datasets for Time Series and Language
Dozens of time series classification and forecasting
datasets aggregate data from diverse domains (Tan
et al., 2020; Dau et al., 2018; Bauer et al., 2021;
Grauman et al., 2023). Unlike these works, we
evaluate the relationship between time series and
text and motivate time series reasoning as an area
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Context: 
(1) … cyclical pattern, with consumption increasing 
during daytime hours and decreasing during nighttime. 
(2) The electricity consumption might be slightly higher 
during the morning and evening, corresponding to   …

❌

✅

��������������
����������������

���
	���

Figure 4: An example of forecasting with context. This data is sampled every 15 minutes from 0:00 to 23:45, with
electricity usage dropping sharply near midnight. Forecasting starts at 19:15. The left side displays the captions
in our dataset and the right side presents the performance of LLM-TIME (GPT-4) which fails to incorporate this
highly-relevant information.

0.00 0.10 0.20 0.30

Predict Median

LLM-TIME (GPT-4)
wo/ Context

LLM-TIME (GPT-4)
w/ all Context

(a) MAE with max-min normalization

0.00 0.40 0.80

Predict Median

LLM-TIME (GPT-4)
wo/ Context

LLM-TIME (GPT-4)
w/ all Context

(b) MAE with z-score normalization

Figure 5: After adding contextual information corre-
sponding to the time series, forecasting performance
improved marginally and is still the same or worse than
a simple baseline that only predicts the median of the
historical signal (Section 6).

of research beyond forecasting and classification.
Some datasets focus on single-domain question an-
swering with time series. Oh et al. (2023) and Xing
et al. (2021) provide question answering datasets
based on templated questions about ECGs and ac-
tivity recognition, whereas Xie et al. (2023) present
templated questions that concern tweets and stock
price data. Jhamtani and Berg-Kirkpatrick (2021)
provide simple captioned time series, but these are
abstract shapes with no semantic grounding and
simple captions like “consistent in the first two
thirds” or “slightly climbs up at the end”.

7.2 Language Models and Time-Series
Recent work demonstrates that LMs can perform
time series forecasting (Gruver et al., 2023) and
classification (Zhou et al., 2023). These methods
be categorized into two paradigms. The first in-
volves fine-tuning LMs, such LLAMA-7B, for spe-

cific tasks and datasets (Zhou et al., 2023; Jin et al.,
2024; Cao et al., 2024). The second approach en-
tails inputting specially tokenized time series into
an LM for forecasting, imputation, and classifi-
cation tasks (Gruver et al., 2023; Xue and Salim,
2023).

Most methods require fine-tuning the model with
domain-specific data. In cross-domain tasks, the
strategy often involves fitting one dataset and then
transferring to another (Jin et al., 2024; Cao et al.,
2024; Zhou et al., 2023; Wang et al., 2023a). This
approach is not suitable for our dataset, where
each time series originates from a different setting.
Therefore, to evaluate our entirely cross-domain
dataset, we utilize the latest state-of-the-art zero-
shot method, LLM-TIME Gruver et al. (2023), as
our baseline.

8 Limitations

One limitation of this work is its reliance on syn-
thetic data. While we go to great care to manually
validate the quality of the data (Section 3.2) and
provide examples of our scenarios (Figure A.2)
we nonetheless recognize that questions may arise
about our data’s realism. It is important to remem-
ber that no “real” dataset of diverse time series
and highly relevant text exists. By providing our
dataset, tasks, and evaluations we provide progress
that would not be possible without synthetic data.
We leave it to future work to mine and document a
similar “real” dataset.

A related limitation is that because GPT-4 was
used to generate data (and some questions in Sec-
tion 5) it is possible that the performance of this
model (and this model only) is an over-estimate of
true ability. We provide evidence to this end in Sec-
tion 5.2, where we show that manually perturbed
MCQs are harder for GPT-4 but just as difficult for
humans. Nevertheless, even if we assume that this
is an overestimate the substantial gap between hu-
man and GPT-4 performance on all tasks indicates
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significant room for improvement.

9 Conclusion

We identified three forms of time series reasoning
and used them to create a first-of-its-kind dataset
of time series and highly relevant text. We then
used this dataset to assess etiological reasoning,
question answering, and context-aided forecasting.
Given the substantial gap between language model
and human performance on the first two tasks, and
mediocre performance on the third, we identified
opportunities for the NLP community to develop
models that can deeply reason about these critical
data.

Acknowledgements

This research was supported in part by NSF CA-
REER IIS-2142794, Bill & Melinda Gates Founda-
tion (INV-004841), NSF IIS-1901386, NSF CNS-
2025022, the Microsoft Accelerating Foundation
Models Research Program, and UW eScience
Azure Cloud Computing support.

¯

References
Mubashara Akhtar, Abhilash Shankarampeta, Vivek

Gupta, Arpit Patil, Oana Cocarascu, and Elena Sim-
perl. 2023. Exploring the numerical reasoning capa-
bilities of language models: A comprehensive analy-
sis on tabular data. In EMNLP.

Danielle Albers, Michael Correll, and Michael Gleicher.
2014. Task-driven evaluation of aggregation in time
series visualization. In SIGCHI.

André Bauer, Marwin Züfle, Simon Eismann, Johannes
Grohmann, Nikolas Herbst, and Samuel Kounev.
2021. Libra: A benchmark for time series forecasting
methods. In ICPE.

Nathaniel Beck and Jonathan N Katz. 2011. Model-
ing dynamics in time-series–cross-section political
economy data. Annual review of political science,
14:331–352.

B Benson, WD Pan, A Prasad, GA Gary, and Q Hu.
2020. Forecasting solar cycle 25 using deep neural
networks. Solar Physics, 295(5):65.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Kamar, et al. 2023.
Sparks of artificial general intelligence: Early experi-
ments with gpt-4. arXiv preprint arXiv:2303.12712.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister,
Yixiang Zheng, Wen Ye, and Yan Liu. 2024. Tempo:
Prompt-based generative pre-trained transformer for
time series forecasting. In ICLR.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar,
Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yan-
ping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-
ML. 2018. The ucr time series classifica-
tion archive. https://www.cs.ucr.edu/~eamonn/
time_series_data_2018/.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chan-
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson
Ettinger, Zaid Harchaoui, and Yejin Choi. 2023.
Faith and Fate: Limits of Transformers on Composi-
tionality. In NeurIPS.

Kristen Grauman, Andrew Westbury, Lorenzo Tor-
resani, Kris Kitani, Jitendra Malik, Triantafyllos
Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant
Bansal, Bikram Boote, Eugene Byrne, Zachary
Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean
Crane, Avijit Dasgupta, Jing Dong, María Esco-
bar, Cristhian Forigua, Abrham Kahsay Gebrese-
lasie, Sanjay Haresh, Jing Huang, Md Mohaiminul
Islam, Suyog Dutt Jain, Rawal Khirodkar, Devansh
Kukreja, Kevin J Liang, Jia-Wei Liu, Sagnik Ma-
jumder, Yongsen Mao, Miguel Martin, E. Mavroudi,
Tushar Nagarajan, Francesco Ragusa, Santhosh K.
Ramakrishnan, Luigi Seminara, Arjun Somayazulu,
Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu
Zhang, Angela Castillo, Changan Chen, Xinzhu Fu,
Ryosuke Furuta, Cristina Gonzalez, Prince Gupta,
Jiabo Hu, Yifei Huang, Yiming Huang, Weslie Khoo,
Anush Kumar, Robert Kuo, Sach Lakhavani, Miao
Liu, Mingjing Luo, Zhengyi Luo, Brighid Mered-
ith, Austin Miller, Oluwatumininu Oguntola, Xi-
aqing Pan, Penny Peng, Shraman Pramanick, Merey
Ramazanova, Fiona Ryan, Wei Shan, Kiran So-
masundaram, Chenan Song, Audrey Southerland,
Masatoshi Tateno, Huiyu Wang, Yuchen Wang,
Takuma Yagi, Mingfei Yan, Xitong Yang, Zecheng
Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao,
Zhifan Zhu, Jeff Zhuo, Pablo Andrés Arbeláez,

3520

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


Gedas Bertasius, David J. Crandall, Dima Damen,
Jakob Julian Engel, Giovanni Maria Farinella, An-
tonino Furnari, Bernard Ghanem, Judy Hoffman,
C V Jawahar, Richard A. Newcombe, Hyun Soo
Park, James M. Rehg, Yoichi Sato, Manolis Savva,
Jianbo Shi, Mike Zheng Shou, and Michael Wray.
2023. Ego-exo4d: Understanding skilled human ac-
tivity from first- and third-person perspectives. arXiv
preprint arXiv:2311.18259.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G
Wilson. 2023. Large language models are zero-shot
time series forecasters. In NeurIPS.
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A Appendix

A.1 Numerical Tokenization
We use the LLM-TIME (Gruver et al., 2023) as
a baseline for "contextual reasoning" to evaluate
LLM‘s reasoning performance in time series fore-
casting when captions are provided. The perfor-
mance of LLM-TIME is partly attributable to their
special numerical tokenization method. The origi-
nal input (20.88, 20.20, 20.48, . . . below), is first
z-score normalized and then scaled to a constant
power of ten (1e3 below):

20.88, 20.20, 20.48, . . .

↓
1.0522, 1.0178, 1.0324, . . .

↓
1052, 1017, 1032, . . .

Note that there are subtle differences in tokeniza-
tion for GPT-4 and LLaMA.2

B Additional Results

B.1 Training Multimodal Models on
Etiological Reasoning Task

Is putting time series into a prompt as text the best
way to model these data? Here we experiment
with five alternative modeling techniques, each
adapted from an existing multimodal architecture.
When training models we wanted to keep the re-
sults roughly comparable to zero-shot experiments
so we reserved the “Health and Medical Data”,
“Agricultural and Food Production” and “Educa-
tional and Public Services” categories for testing
and trained on the remainder. Where models are
trained the default learning rate from the model’s
repository was used.

Whisper. Speech-to-text models can be thought of
as special cases of time-series-to-text models since
microphone-recorded audio is a 1D sensor reading.
We modify Whisper (Radford et al., 2022) to com-
pute spectrograms of arbitrary time series and fuse
these with GPT-2 inputs via cross attention.

LLAVA-Matplotlib-Zero-Shot. (Liu et al., 2023a)
supports visual instruction tuning by training a lin-
ear adapter between a vision encoder and a lan-
guage model’s token embedding space. Follow-
ing Li et al. (2023) we encode time series by plot-
ting them in Matplotlib and saving the results as

2https://github.com/ngruver/llmtime

Model/Task Etiological Reasoning

Human 66.1%

Whisper 23.6%
LLAVA-Matplotlib-Zero-Shot 24.3%
LLAVA-Matplotlib 26.1%
LLAVA-TimesNet 23.5%
LLAVA-Spectrogram 26.1%

Table A.1: Perfomance of multimodal models trained
on the etiological reasoning task (Section 4)

Sales and Market Trends
27.6%

Environmental and Climate
18.1%

Energy and Resource Consumption11.9%

Entertainment
11.3%

Technological and Digital Trends
8.2%

Transport and Traffic Trends
6.8% Health and Medical Data

6.0% Agriculture and Food4.8%
Wildlife and Nature2.9% Educational and Public Services2.5%

Figure A.1: Portion of scenario categories in our gener-
ated dataset (Section 3).

224x224 images. These images are fed directly into
LLaVA’s pretrained CLIP encoder. As the name
suggests, this model was not trained and instead
relies entirely on the pretrained LLaVA weights.

LLAVA-Matplotlib. This experiment is the same
as the previous, but we began by tuning LLaVA’s
adapters using the seven held-out scenario cate-
gories.

LLAVA-Spectrogram. Spectrograms are 2D repre-
sentations of a time series and can be passed to stan-
dard vision encoder. For this experiment we com-
puted spectrograms and fed them imto LLaVA’s
clip encoder.

LLAVA-TimesNet. In this experiment we replaced
LLaVA’s CLIP encoder with the TimesNet (Wu
et al., 2023) encoder. TimesNet adaptively maps
1D time series signals into a 2D space that can be
interpreted by computer vision kernels and was de-
signed as a general-purpose time series encoder.
Since there is no pretrained TimesNet checkpoint
in this experiment we freeze only the LLaMA back-
bone and allow the model to learn weights in the
encoder.

The results show that all models struggle to learn
etiological relationships between time series and
text. Each model performs within an epsilon of ran-
dom performance (25%). We conclude that even
models finetuned on these data have limited capac-
ity to reason about time series.
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s Sales and Market Trends
We track the daily coffee sales in a small café located near a college. Sales might increase during
exam periods when students stay up late. The sample rate will be daily over a year (365
observations).

Coffee Sales Data
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Environmental and Climate
Consider a scenario of rainfall measuring agency operating in a region known to be affected by
monsoon yearly. The agency measures daily rainfall, recorded in mm, over the span of one
monsoon season (120 days). Significant external events are monsoon onset and monsoon offset
which substantially increase and decrease rainfall respectively.

Monsoon Rainfall Data
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Energy and Resource Consumption
The scenario involves monitoring the daily power usage of a data center over a period of two
years, recorded every day at midnight. Any increases in the usage could likely be related to
additional servers being added or peak periods of client activity. Summer heat waves could also
boost air conditioning use and hence power consumption.

Data Center Power Usage.
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Over a period of two years, the time series is developed to observe and understand the pattern
in the footfall count at a movie theater. Here, the external event is the release of blockbuster
movies, which greatly increases the footfall. The sample rate of this time series is daily.

Movie Theater Footfall
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nt Technological and Digital Trends

This scenario tracks the daily followers count of a rising Instagram influencer over a 2-year
period. The influencer starts with modest followers but gets a significant boost after being
featured in a viral video on a popular YouTube channel. The time series is sampled daily and
the sample rate is 1 sample per day.

Instagram Follower Tracking
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s Transport and Traffic Trends
The scenario involves tracking the number of trains passing a particular station per hour over
one month. An external event such as a railway strike could result in a decreased number of
trains during the strike period. The time series data is sampled every hour.

Train Frequency Tracking
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s Health and Medical Data
A time series measuring daily steps of a fitness enthusiast. He promised to increase his daily
steps due to the new year's resolution starting from January 1. The series will track his steps for
365 days, sampled daily. The external event here is the New Year.

Daily Steps Tracking
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Agriculture and Food
This scenario involves the monitoring of temperature in an agritech controlled environment
where special hybrid crops are grown.  Let's say on the 3rd day, a power outage occurred,
having an impact on the heating system, thus this event will influence an unusual decrease in
the temperature.

Agritech Temperature Tracking
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s Wildlife and Nature

This scenario involves the tracking of honeybee population in a particular hive over one year.
The external event could be a pesticide spray in nearby fields, resulting in a decline of the
population. The sample rate is measured weekly, resulting in about 52 observations in a year.

Beehive Population

2021-01-01 2021-06-29
4000
8000

D
ai

ly
V

ie
w

s Educational and Public Services
A tech vlogging YouTube channel decides to create a daily series about coding tutorials in
Python. The channel launches the series targeting especially beginners. The series gets
popularity upon the introduction of a new trending Python library for Machine learning during
the month, causing a spike in viewership. The time series will be recorded on a daily basis over a
duration of 180 days (6 months).

Youtube Python Tutorials

Figure A.2: One scenario from each of our ten categories (Section 3).
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Model/Generator LM LLAMA-13B GEMMA-7B

LLAMA-13B- No TS 88.1% 88.5%
LLAMA-13B 87.0% 87.3%
GEMMA-7B- No TS 86.6% 88.5%
GEMMA-7B 87.2% 88.3%
GPT-3.5- No TS 96.8% 97.0%
GPT-3.5 96.4% 97.1%
GPT-4- No TS 97.5% 97.7%
GPT-4 97.2% 97.4%

Table A.2: Accuracy of LMs on counterfactual MCQs
generated using LLAMA-13B and GEMMA-7B.

B.2 MCQ Generation using other LMs

Here, we evaluate the ability of LM other than
GPT-4 to generate MCQs. Specifically, we cre-
ated counterfactual scenarios and the correspond-
ing questions using two LM – LLAMA-13B and
GEMMA-7B (Mesnard et al., 2024). Across each
setting, we used 100 time series examples and cre-
ated a set of almost 1000 MCQs for each LLM.
The results across these datasets clearly show that
GPT-4 achieves significant performance across
the MCQs generated using LLAMA-13B and
GEMMA-7B, even in the absence of any time se-
ries information (Table A.2). This can be attributed
to the limited ability of LMs in understanding the
dynamics within time series data and creating ques-
tions solely based on their textual descriptions.
These results reinforce that other LMs may not
be suitable for generating time series-specific ques-
tions and, consequently, for training models to eval-
uate time series reasoning ability.

Model/Task Question Answering (One TS)

Random baseline 25%

LLAMA-7B- No TS 78.4%
LLAMA-7B 78.8%
LLAMA-13B- No TS 82.6%
LLAMA-13B 82.5%
GPT-3.5- No TS 90.4%
GPT-3.5 88.2%
GPT-4- No TS 92.6%*

GPT-4 92.3%*

GPT-4-Vision 91.8%*

* GPT-4 generated all data and its performance should be con-
sidered an upper bound of true capability (Section 3).

Table A.3: Question Answering (One TS) Performance

B.3 Questions About One Time Series

‘What-if’ MCQs created for single time series
were trivial to answer. An intuitive approach to
generate MCQs for time series is to prompt a LM

to use the time series and associated scenarios and
metadata from Section 3 to generate questions and
answers. We again use GPT-4, as questions gener-
ated by other LMs were always answerable with-
out the timeseries (Section B.2). First, we prompt
GPT-4 with the with all the information generated
in Section 3, i.e., time series, short caption, char-
acteristics, generative function, and metadata, to
generate a potential counterfactual ’what-if’ sce-
nario. Second, we prompt GPT-4 to generate ques-
tions around the original time-series and the possi-
ble changes due to ’what-if’ scenarios and obtain
100k single time series MCQs (full prompt in Sec-
tion D.1, and examples in Section B.5).

In early experiments, we found that giving the
LM access to the full caption consistently led to
questions that were entirely dependent on the cap-
tion and did not reference the time series. Even
after removing the caption from the question gen-
erating procedure, all LMs achieved 78-92% accu-
racy, even when they were not provided the time
series. This demonstrates that these questions did
not actually necessitate time series reasoning (Ta-
ble A.3).

We further experimented with changing the or-
der of options within MCQs, used prompts with
different sets of time-series features, generative
functions, metadata, and presented time series as
plain text and as tokens using the procedure in
LLM-TIME (Gruver et al., 2023). However, none
of these attempts produced MCQs that required the
time series in order to answer them correctly.

We make the following observations: (1) LM
performance overall was high, ranging from 78-
92% without the time series. This creates a false
impression of LM time series reasoning ability,
when really the performance stems from text-based
parametric LM knowledge instead. (2) Since these
data and questions were generated by GPT-4, with
GPT-3.5 potentially sharing training data and other
components, it is perhaps less surprising that they
are significantly better than LLAMA models. We
therefore caution to interpret these results as a
sign of generalizable time series reasoning abil-
ity, which is further called into question by the
experiments described next.

Since LMs performed well even in the absence
of time series, we deemed this setting unsuitable
for evaluating time series reasoning, and did not
perform additional human evaluation.
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Model/Task Single TS MCQ

Plain Text LLM-TIME

LLAMA-7B 78.6 78.8%
LLAMA-13B 82.4 82.5%
GPT-3.5 88.2 88.2%
GPT-4 92.2 92.3%

Model/Task Multiple TS MCQ

Plain Text LLM-TIME

LLAMA-7B 25.2% 25.1%
LLAMA-13B 25.7% 25.8%
GPT-3.5 27.0% 27.1%
GPT-4 52.5% 52.5%

Table A.4: LMs’ accuracy on MCQs when time-series
are given as comma-separated values in plain text and
tokenized using LLM-TIME.

B.4 Using Different Methods to Prompt Time
Series

Here, we evaluate different methods of passing a
time series to a language model. This task is in-
credibly important, as recent research has shown
that changing the tokenization for time series can
lead to it being easily confused by language mod-
els and can result in state-of-the-art results in fore-
casting (Gruver et al., 2023). Therefore, in this
section, we compare two methods used in LLM-
TIME (Gruver et al., 2023): specifically, passing
tokens as comma-separated values and using the
tokenization procedure described in Appendix A.1.
Our results across both methods show insignificant
differences in the ability of LMs to answer MCQs
(Table A.4). However, we note that LM with time
series encoded as LLM-TIME obtains slightly bet-
ter performance.

B.5 Examples of Single Time Series MCQs

Here we provide a few examples of single-time
series MCQs. Specifically, for the time series given
in Figure A.3, we queried GPT-4 and obtained the
following MCQs.

Q. How would the series be affected if the cafe
started to remain open all night?
A. If the cafe started to remain open all

night the timeseries would show no
change in customer counts as the
patterns remain the same.

B. If the cafe remained open all night the
periods that previously showed zero
customer counts due to closure would now
show some level of customer activity.
However the counts during these late
hours would typically be lower compared
to the breakfast and lunch times.

C. If the cafe started to remain open all
night the timeseries would show higher
customer counts during the day and a
decrease in counts during the night when
the cafe is closed.

D. If the cafe started to remain open all
night the timeseries would show
significant spikes in customer counts
throughout the day.

Q. How would the time series be different if the
TV show started to air on Wednesdays
instead of Sundays?
A. If the TV show started to air on

Wednesdays instead of Sundays the
timeseries would show no change in
customer counts as the patterns remain
the same.

B. If the TV show aired on Wednesdays instead
of Sundays the pronounced spikes in the
customer counts would shift to reflect
this change. This means we would start to
see the spikes on Wednesdays and
continue for the next few days following
the broadcast.

C. If the TV show started to air on
Wednesdays instead of Sundays the
timeseries would show increased customer
counts throughout the week.

D. If the TV show started to air on
Wednesdays instead of Sundays the
timeseries would show a decrease in
customer counts on Wednesdays and an
increase on Sundays.,

Q. What would the effect on the customer count
be if the cafe started serving dinner and
remained busier during evening hours?
A. If the cafe started serving dinner and

remained busier during evening hours the
timeseries would show a decrease in

customer counts during dinner time.
B. If the cafe started serving dinner and

remained busier during evening hours the
timeseries would show increased

customer counts only during dinner time.
C. If the cafe started serving dinner and

remained busier during evening hours the
timeseries would show no change in
customer counts as the patterns remain
the same.

D. If the cafe became busier during dinner
time then the unknown counts during
evening hours would increase. This could
introduce another cyclical pattern in
the time series corresponding to dinner
hours similar to those observed during
breakfast and lunch times.

B.6 Manually Perturbed MCQs

In this section, we highlight the procedure we use
to manually perturb the MCQs generated by GPT-
4. In detail, we aim to test the robustness of GPT-4
across slightly modified versions of the same set of
MCQs it generated. For this, consider the following
MCQs generated by GPT-4 for two independent
time series. These questions aim to compare the
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Figure A.3: An example time-series with description: ’Customer counts at a cafe following a TV feature over two
week period.’

time series updated by the ’what-if’ scenario with
the original time series.

Q. Do both the original and updated time series
have the same starting base level of
pollution?
A. No the updated series starts at 0 units of

pollution.
B. No the base level in the updated series is

1500 units.
C. Yes both start with a base level of 1000

units of pollution.
D. No the base level in the original series

is 500 units.

Q. Is there a change in the visitor count during
the pandemic period in the modified time

series compared to the original?
A. The visitor count during the pandemic does

not drop to 0 in the modified series.
B. There is no change the visitor count during

the pandemic period drops to 0 in both.
C. The visitor count during the pandemic

becomes 1500 in the modification.
D. The pandemic period is removed in the

modification.

To change the question, we select the correct
option – option C and option B respectively, and
create a similarly looking incorrect option. Later,
we replace this perturbed option with a randomly
selected incorrect option and test the LMs’ ability
in responding to the MCQ. The following shows
the updated MCQs with options D and C being
the perturbed options. Upon evaluating both the
MCQs, we note that GPT-4 and other LMs se-
lected the perturbed option as their choice of an-
swer. However, we also note that the LMs across
different runs selected the correct option, i.e., op-
tion C and Option B too. But the goal of the manual
perturbation succeeds in showing that LMs cannot
understand and select an answer using a time series
and mostly select options based on their similarity
to the option they originally generated.

Q. Do both the original and updated time series
have the same starting base level of
pollution?
A. No the updated series starts at 0 units of

pollution.
B. No the base level in the updated series is

1500 units.
C. Yes both start with a base level of 1000

units of pollution.
D. Yes both start with a base level of 500

units of pollution.

Q. Is there a change in the visitor count during
the pandemic period in the modified time
series compared to the original?
A. The visitor count during the pandemic does

not drop to 0 in the modified series.
B. There is no change the visitor count during

the pandemic period drops to 0 in both.
C. There is no change the visitor count during

the pandemic period drops to 10 in both.
D. The pandemic period is removed in the

modification.

C Prompt For Scenario Generation

We used the following prompt to generate the time
series scenarios described in Section 3.

1. Describe a scenario that might produce a
time series. This scenario should include an
external event and how it might influence
the reading. Be sure to describe the sample
rate of the time series and the duration
over which it is sampled. The description
should be less than 100 words in length.
Delimit this description with the XML tag <
description>.

The time series must be less than 1000
observations in length, be a single
variable, have no values greater than 1
e6, and have no missing values.

Also add a summary of the description, no
more than 25 words in length with the
tag <description_short>. Also add
summary, no more than three words in
length with the tag <description_tiny>.
The scenario should be as different as
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possible from any of the following: [<
previous_descriptions>]

2. You will generate a list of up to five
characteristics of this specific time series
, including patterns that you might expect
to see in the series and how external events
might cause distribution shifts in the data
generating process. Delimit these

characteristics with the XML tag <
characteristics>.

3. You will write a numpy function called `
generate_series` that takes no arguments and
outputs a time series that matches the

description. All parameters from the data
generating process should be drawn from
reasonable distributions. The function must
return a single numpy array. Place this code
inside a python markdown block and delimit

your code with the XML tag <generator>. Do
not call the function, simply define it. You
should also make sure that the scale of

time series is realistic. For example, a
time series of a quantity like stock price
should never be less than zero.

4. Return a json string, delimited by the tag <
metadata> that contains the units of the
time series and the timestamps corresponding
to the first and last values. Remember that
in JSON format datetimes must be passed as

strings. Also include a string that relects
the frequency of the time series.

Here is an example of a complete response:
<description> *your description* </description>
<description_short> *your description* </

description_short>
<description_tiny> *your description* </

description_tiny>
<characteristics> *your characteristics* </

characteristics>
<generator>

```python
def generate_series():

# your code here
return x

```
</generator>
<metadata>

{
"start": x,
"end": y,
"units": z,
"frequency" : freq
}

</metadata>

D Prompt For MCQ Generation

D.1 Prompt for Single Time-Series MCQs

We use the following prompt to generate the MCQs
around single-time series described in Section 5.

1. Given a description of a time-series, a set
of sentences describing its characteristics,
and a python code segment that generates

this time-series. You have to create five
counterfactual question-answer pairs.
Counterfactual reasoning questions involve
exploring hypothetical scenarios by
considering what would have happened if
certain events or conditions had been
different from what actually occurred.

2. For example, 'What will the time-series look
like if some event occured?'. Generate a
wide-range of questions. Create questions
and answers that avoid referencing or
directly quoting code or the description.
Avoid asking questions specifically tied to
the description or the Python code. The
questions should require an understanding of
time-series dynamics for accurate answers.

3. The answers should not mention the
description or the code at all. Provide the
questions and answers in the following exact
format: '{'category':'"+et+"', 'question
':'', 'answer':''}'. Ensure that each
question and its corresponding answer are
presented on the same line, with each new
question starting on a new line for a clear
and organized format.

4. Using the set of question-answer pairs,
create three incorrect answer options for
each question. Your incorrect answers should
have similar lengths compared to the
correct answers. The input format is: '{'
question':'', 'answer':''}'. In the output,
you should copy the question and answers
from the input and provide incorrect options
in the following format: '{'question':'', '
answer':'', 'incorrect answer 1':'', '
incorrect answer 2':'', 'incorrect answer
3':''}\n'. Each new question should start on
a new line. Do not separate question, its
answer and options into different lines.
Ensure that each question, its corresponding
answer and incorrect answers are presented
on the same line. Do not use any double
quotations within the text.

5. Avoid the use of contractions in all kinds
of notations. Instead, use the full forms
for greater clarity. If there exists any
contraction in the question or answer, then
replace it with the full-form. Do not
generate any additional text.

D.2 Prompt for Multiple Time-Series MCQs

For generating MCQs that operate at the intersec-
tion of multiple time-series, we employed the fol-
lowing steps:

D.2.1 Creating a list of ’what-if’ scenarios for
a time series

1. You have been given a description of a time
series and a code that generates the time-
series. Your task is to create five
counterfactual questions that someone can
ask regarding this time series.
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2. Try to formulate questions that are distinct
from each other. Additionally, ensure that

the questions aim to bring about significant
changes to the time series. Make sure that

the new time series can be easily generated
by modifying the code and do not ask
extremely difficult questions.

3. Format the output as follows:'{'question'}'\
n, with each new question starting on a new
line. The counterfactual questions should
explore hypothetical scenarios and involve '
What-if' type inquiries. The questions
should not include values directly from the
original time series or code. For instance,
'What if the start was 25 units' is
preferred over 'What if the start was 25
units instead of 20 units?'.

4. Avoid referencing random noise, the random
number generator, its mean, or variance in
any question. Do not generate any additional
text.

D.2.2 Creating a new time-series
For each time series x (Section 3) and a ’what-if’
scenario outlined in the previous paragraph, we
employ GPT-4 to generate the corresponding gen-
erative function. This function simulates a second
time series, denoted as x, reflecting the ’what-if’
scenario. We used the following prompt to generate
the updated time series

1. Generate a new Python code for a time series
based on the given code and description.

The user will specify a change in the time
series, and you should produce the updated
code using the function name '
generate_series'.

2. Always ensure the length of the time series
remains unchanged. This is hard constraint
that should not be violated. Keep realistic
expectations and ensure the length of the
time series remains unchanged. For example,
(1) keep the rate of change consistent
rather than the actual values. (2)
Understand what changes the user's
suggestion can make to the time series and
then update the code accordingly. (3) Given
a time series code, you have the freedom,
and in some cases, the obligation, to modify
any pre-defined maximum or minimum values

specified in the original code to accurately
represent the desired change.

3. Ensure that the new time series adheres to
real-world principles; for instance,
maintaining a consistent rate of change
under typical conditions. If the change
demands that the time series has an offset
by some units, then modify this value in the
code as well.

4. Return the output in the format ```new code
```, where the 'new code' is replaced by the
updated code. Try to create code that

generates a time-series that is
significantly different from the time-series
produced by the original code, but with
same lengths.

5. Always return the code in a format that can
be executed directly using the exec()
function. Avoid additional text.

D.3 Creating MCQs

Utilizing the ’what-if’ scenario, brief captions, and
both time series x and x, along with their generat-
ing functions, we construct multiple-choice ques-
tions (MCQs). These MCQs aim to evaluate the
similarities and differences between the two time
series. We used the following prompt to generate
the MCQs around single-time series described in
Section 5.

1. Given two Python codes for generating time
series, the first representing the original
time series with a description, and the
second presenting a modification of the
original time series under specific
conditions.

2. Your task is to ask five questions regarding
the differences between both time series.
Also ask five questions regarding the
simmilarity between both time series.
Additionally, provide answers to all the
questions and three negative or incorrect
options. Ask questions regarding the
patterns within both time-series, such as
how they appear, the rates of change, and
any specific differences in trends. Format
the output as follows:'{'category':'
difference/simmilarity', 'question':'', '
answer':'', 'incorrect answer 1':'', '
incorrect answer 2':'', 'incorrect answer
3':''}'.

3. Make sure you follow the following rules:
(1) Do not ask question regarding the
lengths or the number of data-points within
both the time-series. (2) Ensure that the
questions and answers give the impression of
being created independently, in the absence
of the code, solely by examining the time
series. (3) Do not mention anything
regrarding the random noise or random number
generator in both the answers and questions
. (4) Try to keep the answers short and not
very detailed. (5) Ensure that each question
and its corresponding answer are presented
on the same line, with each new question
starting on a new line for a clear and
organized format. (6) Try to add numerical
values to answers wherever possible, but
make sure you use words such as 'seems to be
' or 'around value' so that they appear to
be approximate. Avoid unnecessary text and
focus on precision.
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E Additional Results for Context-Aided
Forecasting

In this section, we will present more results and
examples on how LM reasons through context in
forecasting. Figure A.4 shows the full results for
two metrics, MAE and MSE, both derived from
the average of 2000 samples. Each result will be
independently normalized before calculating the
metrics. Overall, it can be seen that as more cap-
tions are provided, LM’s reasoning in forecasting
only improves slightly. Even when all captions
are provided, the aid remains quite marginal. Two
examples of how LM integrates context into fore-
casting are shown in Figure A.5, where figure (a)
demonstrates that LM can reason out difficult-to-
forecast distribution shifts from captions. However,
as seen in figure (b), even when highly-relevant
caption are provided, it still does not enhance the
forecasting. Even though current LMs show quite
limited zero-shot reasoning ability about time se-
ries, they still demonstrate some potential. Exam-
ples in Figure A.6 illustrate some successful cases.
Therefore, we believe that with the development of
general models, LMs reasoning ability on numer-
ical sequences, especially with natural language
context, will gradually improve.

F Participant Details

Participants were recruited from a major Computer
Science department. They were paid at a rate equiv-
alent to their hourly rate commensurate with their
seniority, as determined by the department.
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(a) MAE with max-min normalization
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(c) MSE with max-min normalization
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Figure A.4: These figures indicate that after adding various context relevant to the time series, the forecast results
improved marginally. We use "Predict Median", "LLM-TIME (Gruver et al., 2023) (GPT-4)", and "TS as Plain Text
(GPT-4)" as our baselines. In the baseline, LLM forecasts without context (wo/ Context). It can be observed that
whether providing Caption (Ca), Characteristics (Ch), or Metadata (Me) individually, such as "LLM-TIME (GPT-4)
w/ Ca", or combining all captions, for example, "LLM-TIME (GPT-4) w/ all Context", the overall improvement
remains very limited.
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Context: 
(1) Slow decrease of temperature once 
power is restored until it reaches … 
(2) Stable temperature values before 
the outage and after temperature …  
(3) Overall time series has slow ascend- 
ing and descending trends during …

✅

✅

✅
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(a) LLM reasoned out the distribution shift in the time series from the captions.

Context: 
(1) Overall increasing trend in website 
visits due to growing popularity. 
(2) Daily seasonality due to increased 
visits during peak hours. 
(3) A large spike in visits during the 
discount event.

✅

✅

✅
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(b) Even in a relatively simple pattern, the LLM fails to effectively understand captions.

Figure A.5: Figures (a) and (b) are two typical examples showing that LLM can reason out difficult-to-forecast
distribution shifts from captions. However, in a simple pattern, even when accurate captions are provided, it still
fails to reason effectively.
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(a) For simple distribution shifting pattern, captions improves reasoning during forecasting.
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(b) For very difficult to forecast time series, captions still provide significant help to LLM reasoning.

Figure A.6: Examples (a) and (b) show that integrating captions into forecasting, whether utilizing the LLM-TIME
method or directly using GPT-4, helps with LLM reasoning.
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Figure A.7: A screenshot of the tool used by human annotators in the etiological reasoning task (Section 4)
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