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Abstract

It has been well recognized that text classifica-
tion can be satisfactorily performed by Deep
Neural Network (DNN) models, provided that
there are sufficient in-distribution training data.
However, in the presence of distribution drift, a
well trained DNN model may not perform well
on a new dataset even though class labels are
aligned between training and target datasets. To
alleviate this limitation, we propose a novel ap-
proach based on model risk analysis to adapt a
pre-trained DNN model towards a new dataset
given only a small set of representative data.
We first present a solution of model risk analy-
sis for text classification, which can effectively
quantify misprediction risk of a classifier on
a dataset. Built upon the existing framework
of LearnRisk, the proposed solution, denoted
by LearnRisk-TC, first generates interpretable
risk features, then constructs a risk model by
aggregating these features, and finally trains
the risk model on a small set of labeled data.
Furthermore, we present a transfer learning so-
lution based on model risk analysis, which can
effectively fine-tune a pre-trained model toward
a target dataset by minimizing its mispredic-
tion risk. We have conducted extensive exper-
iments on real datasets. Our experimental re-
sults show that the proposed solution performs
considerably better than the existing alternative
approaches. By using text classification as a
test case, we demonstrate the potential applica-
bility of risk-based transfer learning to various
challenging NLP tasks. Our codes are available
at https://github.com/syjcomputer/LRTC.

1 Introduction

As a very important task in natural language pro-
cessing, text classification aims to categorize a
given text into multiple groups based on its con-
tents. Text classification, including the more spe-
cific tasks of sentiment analysis (Abbas et al.,
2019), news categorization (Chen et al., 2022) and
topic classification (Pappagari et al., 2019), have

been extensively studied in the literature (Minaee
et al., 2021). With the emergence of large language
models (e.g., Bert (Devlin et al., 2019), BAE (Garg
and Ramakrishnan, 2020) and BertGcn (Lin et al.,
2021)), the research community has experienced
a considerable shift towards how to adapt these
models to the task.

It has been well recognized that DNN models
can usually perform well on text classification, pro-
vided that there are sufficient in-distribution train-
ing data (Chen et al., 2022; Devlin et al., 2019).
However, in the presence of distribution drift, a
well trained DNN model may not perform well on
a new dataset even though class labels are aligned
between training and target datasets . As other
mainstream machine learning models, the efficacy
of DNN models depends on i.i.d (Identically and
Independently Distributed) assumption. Unfortu-
nately, in real applications, it is usually very labor-
intensive thus prohibitive to retrieve a sufficient
amount of in-distribution labeled data. In these
scenarios, it is desirable that a pre-trained model
can be easily adapted to a new dataset with only a
small amount of additional labeled data. It is note-
worthy that the community has presented many
transfer learning approaches, targeting many tasks
including but not limited to text classification (Pan
and Yang, 2009; Ying et al., 2018; Zhuang et al.,
2021). These existing work mainly focused on how
to mine the knowledge from training data and apply
them on target data. However, most of them can
not effectively adapt a model towards a new dataset
by its particular characteristics. Therefore, transfer
learning generally remains very challenging, with
text classification being no exception.

On the other hand, we have observed that
AI model risk analysis has garnered much at-
tention in recent years due to the concern on
AI model’s misbehavior (Hendrycks and Gimpel,
2017; Hendrycks et al., 2019; Jiang et al., 2018).
The purpose of model risk analysis is to quantify a
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Figure 1: The Framework of the LearnRisk-TC solution:1) risk feature generation; 2) risk model construction by
aggregating the distributions of risk features; 3) risk model training by a learn-to-rank objective, which ensures
mispredictions be ranked before correct predictions.

model’s misprediction risk on a dataset, and then
leverage the results of risk analysis for adaptive
model fine-tuning (Zhang et al., 2022). Since risk
analysis can be potentially effectively performed
with only a small amount of labeled data, it pro-
vides a viable technical roadmap for transfer learn-
ing. In this paper, we first present a solution of
model risk analysis for text classification, and then
propose a corresponding risk-based transfer learn-
ing approach, which can effectively adapt a DNN
model towards a target dataset by its particular char-
acteristics.

Specifically, because the risk analysis framework
of LearnRisk, which was originally proposed for
the task of entity resolution (Chen et al., 2020), is
more interpretable and accurate than the existing
alternatives, we have built the solution of risk anal-
ysis for text classification based on LearnRisk. We
have sketched the solution of risk analysis, which is
denoted by LearnRisk-TC, in Figure 1. It first gen-
erates interpretable risk features, then constructs
a risk model by aggregating these features, and
finally trains the risk model using a small set of
representative data. Furthermore, we present a cor-
responding solution of transfer learning based on
risk analysis. The overall solution of transfer learn-
ing is shown in Figure 2. It consists of two training
phases. The first phase is the same as the process

of traditional model training, which trains a model
based on labeled data from a source. In the sec-
ond phase, it furthermore fine-tunes the model on a
target dataset by minimizing its misprediction risk.

Figure 2: Risk-based Transfer Learning.

Our main contributions in this paper can be sum-
marized as follows:

• We propose a novel solution of interpretable
model risk analysis for text classification,
which can accurately quantify a model’s mis-
prediction risk on a given dataset;

• We propose a transfer learning solution for
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text classification based on risk analysis,
which can effectively adapt a model towards
a target datasetworkload by its particular char-
acteristics;

• We empirically validate the efficacy of the pro-
posed solutions on real datasets. Our exten-
sive experiments show that in the scenario of
distribution drift, provided with only a small
set of representative data, the proposed so-
lution of risk analysis can more accurately
identify mispredictions than the existing alter-
natives. Furthermore, the proposed solution
of transfer learning similarly outperforms the
existing alternatives by considerable margins.

2 Related Work

In this section, we review related work from the
orthogonal perspectives of text classification, risk
analysis and transfer learning.
Text Classification. Traditional solutions for text
classification were constructed based on statistics
and machine learning, e.g., KNN (Trstenjak et al.,
2014), Naïve Bayes (Abbas et al., 2019) and TF-
IDF (Jiang et al., 2021). The hybrid approach of
fusing the KNN and the TF-IDF was first explored
in 2014 (Trstenjak et al., 2014). The approach
that combined KNN and clustering, which could
considerably reduce similarity computation, was
first proposed in 2014 (Jiang et al., 2012). The
Naïve Bayes method was also a popular approach
for text classification (Abbas et al., 2019).

With the emergence of deep learning, various
DNN models have been proposed for text classi-
fication. In recent years, the research community
has experienced a considerable shift towards pre-
trained large language models, the most promi-
nent among which is the Bert model (Devlin et al.,
2019). In the following work, the Bert model
has been extended into multiple variations, in-
cluding BAE (Garg and Ramakrishnan, 2020) and
BertGCN (Lin et al., 2021). Additionally, con-
trastive learning and adversarial learning have been
employed for text classification to facilitate la-
beling with fewer labeled samples. UST intro-
duced Bayesian networks for uncertainty estima-
tions to improve the classification performance on
few-label tasks (Mukherjee and Awadallah, 2020).
NSP-BERT used templates to perform inference
on test samples using Masked Language Model-
ing (MLM) (Sun et al., 2022). More recently,
Large Language Models (LLMs) such as LLaM

and Alpaca-7B were tuned using the techniques
such as Recurrently Ensembling Base Learners
(RGPT) (Zhang et al., 2024b) or based on Instruc-
tion through Contrastive Self-training (Zhang et al.,
2024a), demonstrating impressive performance on
zero-shot text classification tasks. It is noteworthy
that despite their efficacy, these LLMs often require
significant computational resources.

Risk Analysis. It has been empirically shown that
even a well-trained model usually does not perform
satisfactorily if employed in real scenarios. There-
fore, the study of risk analysis has drawn much
attention in recent years (Hendrycks and Gimpel,
2017; Hendrycks et al., 2019; Jiang et al., 2018;
Chen et al., 2020; Nafa et al., 2024a). The authors
of (Hendrycks and Gimpel, 2017) proposed a sim-
ple baseline that employed the probabilities from
softmax distributions. The authors of (Jiang et al.,
2018) proposed a new metric called TrustScore to
measure the agreement between the classifier and
a modified nearest-neighbor classifier on test ex-
amples. More recently, a more interpretable frame-
work of LearnRisk was proposed for the task of
entity resolution (Chen et al., 2020, 2018). Since
its introduction, the framework has also been ex-
tended to handle the tasks of entity disambigua-
tion (Nafa et al., 2024b) and network intrusion de-
tection (Zhang et al., 2022). In these papers, the
authors also demonstrated that model risk analysis
could be leveraged to effectively facilitate adap-
tive deep learning. In this paper, we have built the
solutions of risk analysis and risk-based transfer
learning for text classification based on LearnRisk.

Transfer Learning. As a technique of adapt-
ing pre-trained models to new datasets, transfer
learning can effectively reduce the need for large
amounts of training data, improving model gener-
alization and accelerating model training (Zhuang
et al., 2021). Broadly speaking, the work on trans-
fer learning includes more specific sub-areas, e.g.,
subpopulation shift (Alshaer et al., 2021), domain
generalization (Li et al., 2018) and domain adapta-
tion (Farahani et al., 2021). In this paper, we focus
on domain adaptation, which aims to adapt a model
pre-trained on a source dataset to a target dataset
with a different distribution.

In terms of NLP tasks, with the emergence of
pre-trained large language models, transfer learn-
ing has become a standard approach to adapt these
models to downstream tasks such as text classifi-
cation (Zhuang et al., 2021). The two mainstream
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approaches for transfer learning in NLP are direct
model fine-tuning and feature freezing (Lee et al.,
2019). The first approach directly fine-tunes a pre-
trained model on new tasks with a few additional
epochs and a small learning rate. This approach
can lead to high additional costs and may ignore the
similarity between the source and target datasets.
The approach of feature freezing instead keeps the
earlier layers of a pre-trained model unchanged
while only training the later layers, assuming that
the early layers capture general features that are
transferable across tasks. Since determining the
proper number of layers to freeze is challenging,
and researchers have proposed various methods to
optimize the number of layers to be freezed (Liu
et al., 2021; Lee et al., 2019). However, the assump-
tion of feature freezing that some layers retain sim-
ilarity while others are only related to the source
dataset may be problematic in real scenarios.

3 Task Statement

In this paper, we consider text classification as a
multi-label classification problem. Given a text, a
classifier needs to output a label for the text, which
can accurately summarize its topic. As usual, we
use accuracy as the evaluation metric.

Formally, we define the task of text classification
by:

Definition 1. [Task of Text Classification.] Given
a dataset of text classification, D, consisting of
Ds, Dv and Dt, where Ds, Dv and Dt denote the
sets of training data, validation data and test data
respectively, the task aims to learn an optimal clas-
sifier, g(w∗) based on D such that the performance
of g(w∗) on Dt as measured by the metric of accu-
racy is maximized.

It is noteworthy that in this paper, we focus on
the scenario of transfer learning, where the valida-
tion and test data, Dv and Dt, come from a source
other than that of Ds, and there is distribution drift
between these two text sources. We also suppose
that the validation dataset, Dv, which are repre-
sentatives of Dt, contains only a limited amount
of labeled data. Otherwise, in real scenarios, the
labeled data in Dv can be directly used to fine-tune
a pre-trained model, making transfer learning un-
necessary.

4 Risk Analysis Solution: LearnRisk-TC

In this section, we first briefly introduce the exist-
ing framework of LearnRisk, and then present the

LearnRisk-TC solution for text classification.

4.1 The Framework of LearnRisk

As shown in Figure 1, the general LearnRisk frame-
work mainly consists of three steps: risk feature
generation, risk model construction and risk model
training:

1) Risk Feature Generation: the first step is to
construct risk metrics and then automatically gener-
ate interpretable risk features based on risk metrics.
It needs to ensure the generated risk features are
discriminative, i.e., each rule is highly indicative
of one class label over others. Furthermore, their
validity needs to span over a considerable subpopu-
lation of the workload. In LearnRisk, risk features
are usually represented by one-sided decision rules.
Unlike the traditional labeling functions, a risk rule
concentrates solely on a single class. Consequently,
a risk feature acts as an indicator of the case where
a classifier’s prediction goes against the knowledge
embedded in it. LearnRisk usually employs the
technique of one-sided decision trees to generate
high-quality risk features.

An illustrative example of risk feature is:

dist(di, Cj) < 0.134 ∧ knn5(di, Cj) ≥ 4→ di ∈ Cj ,
(1)

where di denotes a document text, Cj denotes a text
class, dist(di, Cj) denotes the distance between
di and the centroid of Cj in an embedding space,
knn5(di, Cj) denotes the number of documents
belonging to the Cj among the 5 nearest neighbors
of di . According to Eq. 1, if a document di satisfies
both conditions specified in the rule, it belongs to
Cj .

2) Risk Model Construction: the second step of
risk model construction, LearnRisk constructs a
risk model for estimating classifier risk using risk
features generated in the first step. Inspired by
investment theory, it models the distribution of an
instance belonging to a certain class by aggregating
the distributions of each risk feature.

Specifically, given a class, Ci, and its set
of m risk features, F = {f1, f2, . . . , fm}, we
use uF = [uf1 , uf2 , . . . , ufm ]

T and δ2F =
[δ2f1 , δ

2
f2
, . . . , δ2fm ]

T to denote the corresponding
mean and variance for each risk feature. We also
denote their corresponding feature weight vector
by w = [w1, w2, . . . , wm]T . Then we can calcu-
late the cumulative distribution of the class Ci with
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probability distributions of risk features. The mean
and variance of distribution of the class Ci can be
represented by:

ui = zi · (w ◦ uF ) (2)

δ2i = zi · (w ◦ σ2
F ) (3)

where ◦ represents the element-wise product and ·
represents matrix multiplication. zi is a one-hot fea-
ture vector. Specifically, zi = [zi1, zi2, . . . , zim],
where zij = 1 if di has the j−th feature, otherwise
zij = 0.

LearnRisk typically uses the metric of Value-at-
Risk (VaR) (Tardivo, 2002) to estimate the mis-
prediction risk. The metric of VaR represents the
maximum loss that may be incurred, excluding the
worst-case scenario with a total occurrence proba-
bility of 1− θ. θ is a confidence level.

3) Risk Model Training: in the final step of risk
model training, LearnRisk trains a risk model on
labeled representative data through optimizing a
learn-to-rank objective. It usually considers the
expectations (ui) as prior knowledge and estimate
them by labeled training data, but adjusts both the
variances (δ2i ) and weights (wi) of risk features for
model adaptation. After the training process, the
risk model can be applied to evaluate the mispre-
diction risk on unlabeled instances, as determined
by a classifier.

4.2 Solution: Risk Feature Generation

To enable model risk analysis for text classification,
we first extract risk metrics, and then leverage one-
sided decision trees to generate interpretable risk
features. In LearnRisk-TC, we extract risk met-
rics based on linguistic statistics and DNN models
respectively.

.1) Extraction of statistics-based risk metrics: to
extract statistics-based risk metrics, we first extract
the top-K representative words for each category,
which constitute its feature dictionary, and then
quantify a document’s relevance to a category by
the hits of feature words in the document. Intu-
itively speaking, we select the words that are heav-
ily present in a category but not in others, as the
feature words of the category. It can be observed
that if a document has a high hit rate of feature
words in a certain category, it is more likely to
belong to this category.

Specifically, our solution extracts feature words
by a hybrid metric consisting of both an improved

TF-IDF measure (Khan et al., 2021; Aljedaani et al.,
2022) and a Chi-square measure (Kumar et al.,
2021; Alshaer et al., 2021). The hybrid metric
can be represented by:

TFIDF − CHI = p× CHInew

+ (1− p)× TF − IDFnew
(4)

where p denotes a trade-off weight between two
measures. In practical implementation, we suggest
to set the value of p as a value below 0.5, e.g.,
[0.1,0.3].

.2) Extraction of DNN-based risk metrics: since
the success of DNN on NLP tasks depends on
embedding representations, a document’s vector
representation is highly indicative of its relevance
to a category. Therefore, we also leverage DNN-
based vector representations to generate indicative
risk metrics. Specifically, we use labeled training
data to fine-tune the mainstream language models,
then extract both pooler and dense layer outputs as
vector representations, and finally construct corre-
sponding risk metrics based on similarity/distance
measurement. The pooling layer provides a hidden
state that serves as a sentence-level representation,
while the output of the dense layer is used for spe-
cific tasks.

Specifically, we extract two types of embedding-
based risk metrics as follows:

• KNN. Given a document di, we count the
number of its k nearest neighbors in each cat-
egory. Intuitively speaking, if all the k nearest
neighbors belong to a certain category, then
di is very likely to belong to this category. In
practical implementation, we can set kat dif-
ferent values to generate multiple KNN risk
metrics.

• Class Centroid Distance (CCD). Also based
on vector representations, we estimate a doc-
ument’s distance to class centroids. It can
be observed that the smaller the distance is,
the more likely the document belongs to the
corresponding category.

Our implementation used two DNN models, i.e.,
Bert and TextCNN, to extract embedding-based
risk metrics separately. It is noteworthy that other
DNN models can be similarly applied to extract
embedding-based risk metrics. Our experimental
results show that by using Bert and TextCNN, both
of which are mainstream but preliminary language
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models, our proposed approach can effectively out-
perform other more advanced DNN models.

Finally, provided with the extracted risk metrics,
our solution generates risk features by one-side
decision trees as presented in (Chen et al., 2020).
One-side decision trees ensure that most documents
in Di have the same label, but the other document
in D can have mixed labels. The label purity of
a one-sided partition is measured by the metric of
the one-sided Gini index as follows:

G(D) = min(
λ

|Dl|
+ (1− λ)×G(Dl),

λ

|Dr|
+ (1− λ)×G(Dr))

(5)

where λ denotes a weight parameter to balance the
influence of set size and label impurity, G(Dl) and
G(Dr) denote the Gini values of two subsets.

It is noteworthy that our solution generates a dis-
tinct set of risk features for each class. Specifically,
given a class and labeled training data, it first labels
a text as 1 or 0, with 1 means belonging to the class
while 0 indicating otherwise. Then, it leverages
one-sided decision trees to generate risk features
for this class.

4.3 Solution: Risk Model Construction and
Training

Our solution constructs a separate risk model for
each text class. As in the previous work (Chen
et al., 2020), we employ the metric of Value at Risk
(VaR) to quantify misclassification risk. Assuming
the probability that di is classified as Cj is pi, we
denote the misclassification probability of di by
1− pi and the inverse of its cumulative distribution
function by F−1

i (·). Given the confidence level of
θ, the VaR risk of di can be calculated by:

V aR(di) = 1− F−1
i (1− θ;ui, δ

2
i ) (6)

where ui and δ2i denote the parameters of F−1
i (1−

θ).
As usual, we train the risk model on labeled

representative data by a learning-to-rank objec-
tive (Burges et al., 2005). The aim of risk model is
to rank the documents with high mislabeling risk
before the documents with low mislabeling risk.
The parameters that should be learned include the
weights of risk features, wi, and their distribution
variances, δ2. The expectations (ui) are instead
considered as prior knowledge and estimated by
labeled training data. We employ the logistic func-
tion to map a risk value to a posterior probability

by:

pij =
e(vari−varj)

1 + e(vari−varj)
, (7)

and we define its target probability by:

p̄ij = 0.5× (1 + ĝi − ĝj) (8)

where ĝi and ĝj denote risk labels of documents,
with 0 and 1 mean being correctly labeled and mis-
labeled respectively. Finally, based on the defini-
tions of posterior probability and its target proba-
bility, we define the cross-entropy loss function of
risk model training by:

L(D) =
∑

di,dj∈D

[
−p̄ij × log(pij)

− (1− p̄ij)× log(1− p̄ij)
] (9)

5 Transfer Learning Solution

To enable transfer learning, we introduce an adap-
tive deep learning approach for text classification.
As shown in Figure. 2, it consists of two phases of
training. In the first phase, it trains a base DNN
model (e.g., Bert, in our implementation) based
on Ds by the cross-entropy loss function in the
traditional way. In the second phase, it further
fine-tunes the model on Dt by minimizing mispre-
diction risk. Specifically, it iteratively performs: 1)
using LearnRisk-TC to learn a risk model for each
class based on a trained classifier and labeled vali-
dation data of Dv; 2) fine-tuning the classifier by
minimizing its misprediction risk upon the target
dataset of Dt.

Now, we discuss how to minimize the mispredic-
tion risk. For each text in Dt, our solution estimates
a probability distribution of each class based on its
corresponding risk model. Then, it selects the class
with with the highest mean (or u) as its predicted
label. Finally, it uses the text and its predicted label
to fine-tune a classifier by the loss function of

Lrisk
test (w) =

1

ns

ns∑

i=1

[
−

(
1− VaR+(di)

)
log (g (xs

i, w))
] (10)

where ns denotes the number of test data in DB ,
V aR+(di) denotes the risk value if di is labeled
as its predicted class, V aR−(di) denotes the risk
value if di is labeled as a class other than its pre-
dicted class.

We have sketched the whole process in Algo-
rithm 1. The first step trains the classifier with
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Algorithm 1 Risk-based Adaptive Training
Input: Ds, Dv and Dt, a classifier g(w)
Output: A learned classifier g(w∗).
1: w0 ← initialize w with random values
2: for k = 0 to m− 1 do
3: wk+1 ← wk − α×∇wkLtrain(wk)
4: end for
5: Select the best model g(w∗)
6: wm ← w∗
7: for k = 0 to n− 1 do
8: Update the risk models based on Dv

9: wk+1 ← wk − α×∇wkL
risk
test (w)

10: Update g(wk) based on the trained risk models and
Dt

11: end for
12: Select the last model g(w∗)← g(wk+1)
13: return g(w∗)

Ds and selecting the best classifier, then we use
the selected classifier g(w∗) and Dv to train risk
models. Finally, we use the learned risk models to
fine-tune our classifier and select the best model,
g(w∗), based on Dt .

6 Empirical Evaluation

In this section, we evaluate the performance of our
proposed solutions by a comparative study on real
benchmark datasets. Subsection 6.1 describes our
experimental setup. Subsection 6.2 presents the
evaluation results of risk analysis. Subsection 6.3
presents the evaluation results of transfer learning.
Finally, in Subsection 6.4, we evaluate the perfor-
mance sensitivity of the proposed solutions w.r.t
the size of validation data, which serve as the rep-
resentatives of a target dataset.

6.1 Experiment Setup

Table 1: Statistics of Evaluation Datasets

Dataset Pair Classes Train Validation Test

20News-BBC 4 4763 310 915
20News-AgNews 3 6062 364 1140

AgNews-BBC 4 3192 409 559
BBC-20News 4 480 311 7981

AgNews-20News 3 2736 420 6525
BBC-AgNews 4 768 425 2280

We have used three benchmark news datasets
in our experiments, which included 20News 1,
BBC2 2 and AgNews (Zhang et al., 2015). To
simulate the scenario of distribution drift, our ex-
periments suppose that training data come from a

1http://qwone.com/ jason/20Newsgroups/
2http://mlg.ucd.ie/datasets/tbbc.html

dataset while validation and test data come from an-
other dataset. We have summarized the statistics of
our test datasets in Table 1. In the table, the dataset
name of 20news-BBC means that train data come
from the 20News dataset but validation and test
data come from the BBC dataset. It is noteworthy
that we intentionally limit the number of labeled
validation data, i.e., less than 500, to simulate the
scenario of transfer learning in real applications,
where labeled representatives are usually not read-
ily available.

For risk analysis, we compare our proposed so-
lution, denoted by LearnRisk-TC, with two main-
stream alternatives: 1) Baseline: it directly mea-
sures misprediction risk by the output of a classifier,
the baseline model of Bert in our implementation,
or (1-p), where p is the label probability given by
the model; 2) TrustScore (Jiang et al., 2018): it is a
distance-based risk measure. Given a document di
labeled as Cj , the metric of TrustScore is defined
by the ratio of the distance from the nearest class
except Cj for the data to the distance from the data
to the alpha high-density set of Cj . The TrustScore
metric implies that the closer di is to its prediction
class centroid, the lower risk it has.

For the evaluation of risk-based transfer learning,
we compare our solution with the existing main-
stream pre-trained models proposed for text classi-
fication. For fair comparison, we train these models
in two phases, the first phase based on training data
from a source dataset and the second one based on
validation data from a target dataset. Note that in
the second phase, we train models by direct fine-
tuning, because direct fine-tuning performs overall
better than feature freezing on the test datasets. The
compared pre-trained models and their model sizes
are as follows: 1) Bert(Devlin et al., 2019) (110M
parameters); 2) Roberta(Liu et al., 2019) (125M
parameters); 3) XLNet(Yang et al., 2019) (110M
parameters); 4) TextCNN(Kim, 2014) (4.6M pa-
rameters); 5) BertGCN(Lin et al., 2021) (110M+
parameters); 6) npc-gizp(Jiang et al., 2023); 7)
CAT(Pan et al., 2022) (110M+ parameters). Note
that npc-gzip relies on a compression algorithm and
does not have a specific parameter count. In addi-
tion, we have also compared our solution with two
deep learning methods proposed for text classifica-
tion in the scenario of limited labeled training data:
UST(Mukherjee and Awadallah, 2020) (110M pa-
rameters) and NSP-BERT (Sun et al., 2022) (110M
parameters).

We have implemented the solution of
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(a) 20News-BBC (b) AgNews-20News (c) BBC-AgNews

(d) 20News-AgNews (e) AgNews-BBC (f) BBC-20News

Figure 3: Evaluation Results of Risk Analysis

LearnRisk-TC based on the open-sourced
implementation of LearnRisk 3.In the extraction of
statistics-based risk metrics, we set the parameter
of p, which denotes the trade-off weight between
the measures of TF-IDF and CHI, at 0.1. In the
extraction of DNN-based risk metrics, we set
the parameter of k, which denotes the number
of k-nearest neighbors at 5 and 8. In the imple-
mentation of risk feature generation, we set the
maximum depth of decision trees at 3, and the Gini
theresholds for class matching and unmatching at
0.3 and 0.03 respectively. In the implementation of
risk-based adaptive training, we set the learning
rate at a small value of 5e-5, and the iteration
number of adaptive fune-tuning at 5, i.e., we
fine-tune the classifier with 5 additional iterations
in the second phase. Our experiments have shown
that after 5 iterations, the performance of adaptive
model becomes stable. Our experiments have been
conducted on a machine with 2 NVIDIA RTX
3090 GPUs, each with 24 GB of memory.

6.2 Evaluation Results of Risk Analysis

As usual, we use the metric of AUROC to evalu-
ate the performance of risk analysis. The detailed
evaluation results have been presented in Figure 3.
It can be observed that the Baseline performs the

3https://chenbenben.org.cn/RiskER/RiskER.zip

worst in all the datasets, and the margins on some
of them, e.g., 20News-BBC and BBC-20News, are
very considerable. Over-confidence is a common
issue for DNN models, outputing high-confidence
probabilities even when making wrong predictions.
Our experimental results demonstrates that in terms
of over-confidence, DNN models for text classifica-
tion are no exception. In comparison, the proposed
LearnRisk-TC achieves the best performance on
five out of the six datasets, with the exception of
20news-BBC, where its performance is slightly
worse than that of TrustScore (0.985 vs 0.988). It
is also noteworthy that on 5 out of the 6 datasets,
LearnRisk-TC achieves high AUROC values, over
0.9. Our experimental results clearly demonstrate
the performance advantage of LearnRisk-TC over
the alternatives of Baseline and TrustScore.

6.3 Evaluation Results of Transfer Learning

We have presented the detailed evaluation results
of transfer learning in Table 2. It can be observed
that LearnRisk-TC achieves the best performance
on 5 out of the 6 datasets, with the exception of
BBC-20News , where it performs slightly worse
than CAT and NSP, 68.19% vs 69.26% and 70.13%.
It is interesting to point out that the variations of
Bert, Roberta and XLnet, perform even worse then
the baseline model of Bert, meaning that additional
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Table 2: Evaluation Results of Transfer Learning

Methods datasets
20News-AgNews AgNews-20News AgNews-BBC BBC-AgNews BBC-20News 20News-BBC

Bert 91.2 83.1 89.48 78.92 62.68 88.75
Roberta 77.38 79.47 65.87 75.06 54.20 61.8
XLnet 82.87 86.23 82.77 63.05 58.87 81.06
TextCNN 43.78 61.05 64.39 41.23 54.64 38.79
BertGCN 36.06 54.97 35.36 36.38 52.4 40.04
BERT+CAT 31.2 50.39 36.42 35.61 30.7 44.5
npc-gzip 43.51 79.05 59.22 32.24 54.76 46.45
BERT+UST 90.96 83.4 92.12 73.13 69.26 70.93
NSP 81.94 85.87 77.64 75.79 70.13 91.69
LearnRisk-TC 92.11 86.32 93.92 78.94 68.19 93.22

twisting of Bert model may sacrifice its generaliz-
ability capability in the more challenging scenario
of limited in-distribution training data. BertGCN
and UST, with more training and model twisting
than others, even perform considerably worse on
many workloads, including BBC-AgNews, BBC-
20News and 20News-BBC.

It can be observed that UST and NSP-BERT
overall perform better than the models constructed
without considering distribution drift. These results
validate the efficacy of their designed mechanisms
of transfer learning. However, LearnRisk-TC still
manages to outperform them, with considerable
margins on some datasets, e.g., around 20% im-
provement over UST on 20News-BBC and around
10% improvement over NSP on 20News-AgNews.
These experimental results show that LearnRisk-
TC can better leverage a small set of labeled repre-
sentatives to adapt a DNN towards a target dataset.

6.4 Robustness Evaluation w.r.t Size of
Validation Data

Figure 4: Robustness Evaluation of Risk Analysis

This subsection evaluates the performance sensi-
tivity of our proposed solutions w.r.t the size of val-
idation data. We present the evaluation results on
the dataset of 20News-BBC. The results on other
datasets are similar, thus omitted here due to space

limit. We reduce the size of validation data by se-
lecting only a portion of labeled data, i.e., 30% and
60%.

Table 3: Robustness Evaluation of Transfer Learning

dataset Validation Size Accuracy

20News-BBC
103 93.17
206 93.16
310 93.22

The detailed evaluation results of risk analysis
and transfer learning have been presented in Fig-
ure 4 and Table 3 respectively. It can be observed
that in terms of both AUROC and classification ac-
curacy, the performance of LearnRisk-TC only fluc-
tuates marginally as the size of validation data de-
creases. These experimental results clearly demon-
strate that LearnRisk-TC can effectively adapt a
DNN model towards a target dataset by leveraging
only a small set of representative data.

7 Conclusion

In this paper, we have proposed a novel solution
of model risk analysis for text classification, and a
corresponding risk-based solution of transfer learn-
ing to adapt a DNN model towards a target dataset
by using only a small set of representative data.
Our experiments on real datasets have validated
the efficacy of the proposed solutions. On future
work, it is interesting to point out that the proposed
risk-based approach of transfer learning can be po-
tentially applied to other NLP tasks. However, the
detailed technical solutions require further investi-
gation.
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Limitations

Our work has the following limitations:

• Our proposed solutions have been empirically
shown to be effective on the open-sourced
news classification datasets. However, future
research needs to be conducted on more di-
verse datasets.

• Our current solutions extract both keyword-
based and DNN embedding-based risk met-
rics. Unfortunately, the interpretability of
embedding-based risk metrics, i.e., KNN and
CCD metrics, is low due to the general poor
interpretability of DNN models. It is inter-
esting to investigate how to construct more
interpretable risk features for text classifica-
tion.

• Our work didn’t perform risk analysis for
AIGC large language models (LLMs), e.g.,
ChatGPT-4 and Gemini, because based on re-
cent tests by the research community, they
can’t considerably outperform the mainstream
classification language models on text classifi-
cation. However, as AIGC models evolve, it
is interesting to investigate how to adapt them
to the task of text classification.
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