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Abstract

Words have been represented in a high-
dimensional vector space that encodes their se-
mantic similarities, enabling downstream appli-
cations such as retrieving synonyms, antonyms,
and relevant contexts. However, despite re-
cent advances in multilingual language mod-
els (LMs), the effectiveness of these models’
representations in semantic retrieval contexts
has not been comprehensively explored. To
fill this gap, this paper introduces the MIN-
ERS, a benchmark designed to evaluate the
ability of multilingual LMs in semantic re-
trieval tasks, including bitext mining and clas-
sification via retrieval-augmented contexts. We
create a comprehensive framework to assess
the robustness of LMs in retrieving samples
across over 200 diverse languages, including
extremely low-resource languages in challeng-
ing cross-lingual and code-switching settings.
Our results demonstrate that by solely retriev-
ing semantically similar embeddings yields per-
formance competitive with state-of-the-art ap-
proaches, without requiring any fine-tuning.

1 Introduction

Language models (LMs) play a crucial role in learn-
ing natural language representations (Cer et al.,
2018; Kenton and Toutanova, 2019; Reimers and
Gurevych, 2019; Gao et al., 2021; Feng et al.,
2022) and have been successfully applied to var-
ious natural language processing (NLP) tasks,
such as document retrieval (Yang et al., 2019a;
Wang et al., 2023). Existing benchmarks have
systematically evaluated LMs to provide empir-
ical assessments of their performance across a
range of embedding tasks. Some notable bench-
marks include Big-Bench (Srivastava et al., 2023),
MTEB (Muennighoff et al., 2023a), SemEval (Cer
et al., 2017), and BEIR Benchmark (Thakur et al.,
2021). MTEB, in particular, has been established
as a comprehensive benchmark for evaluating the

∗The work was conducted outside Capital One.

effectiveness of embeddings in downstream NLP
applications. However, their analysis of the mul-
tilingual space has been limited to bitext mining,
without further exploration of how these embed-
dings can be utilized in other multilingual down-
stream tasks.

The advancement of multilingual LMs is re-
markable, demonstrating impressive capabilities
in adapting to new languages through fine-
tuning (Conneau and Lample, 2019; Alabi et al.,
2022), learning from few-shot samples via in-
context learning (ICL) (Lin et al., 2021; Winata
et al., 2021b; Tanwar et al., 2023; Cahyawijaya
et al., 2024; Biderman et al., 2024), enabling cross-
lingual zero-shot transfer (Ruder et al., 2021), and
incorporating language-specific adapters (Ansell
et al., 2021; Yong et al., 2023). This exploration
now includes low-resource and regional languages
not part of the pretraining phase, promoting NLP
research for underrepresented languages (Adelani
et al., 2022; Winata et al., 2022; Song et al., 2023).
However, multilingual LMs face two key chal-
lenges: (1) the lack of a comprehensive benchmark
for evaluating effectiveness in semantic retrieval,
and (2) limited understanding of code-switching
(CS) texts common in multilingual communities.

Current CS evaluations focus on model fine-
tuning benchmarks (Aguilar et al., 2020; Khanuja
et al., 2020; Winata et al., 2021a; Zhang et al.,
2023), without deeply exploring their potential as
multilingual retrievers. Recent studies by Winata
et al. (2023a) have primarily focused on semantic
similarity using encoder LMs in zero-shot cross-
lingual settings but have not explored their appli-
cation in generative LMs. This gap presents an
opportunity to leverage these models as context
providers for multilingual generative LMs (Lewis
et al., 2020; Bevilacqua et al., 2022).

In this paper, we introduce MINERS, the first
benchmark designed to assess the multilingual
LMs’ ability in semantic retrieval across various
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tasks. MINERS evaluates the representation of
dense vectors in multiple tasks, including bitext
retrieval, retrieval-based classification, and ICL
classification. We have developed MINERS to
be a reproducible and reliable benchmark that uti-
lizes high-dimensional multilingual vector repre-
sentations. Notably, these tasks do not require any
fine-tuning. The paper’s contribution can be sum-
marized as follows:

• We introduce MINERS, the first comprehen-
sive benchmark designed to systematically
evaluate multilingual LMs as semantic retriev-
ers across a vast array of languages. Cover-
ing 200+ languages, 11 encoder LMs, and 11
generative LMs, including open-source and
commercial APIs. MINERS offers a robust
evaluation framework for assessing the effec-
tiveness of LMs in diverse linguistic contexts.

• We show MINERS is highly adaptable and
scalable across various models. By consolidat-
ing scores from multiple models, MINERS
facilitates a comprehensive evaluation of task
performance, providing insights into different
approaches’ strengths and weaknesses.

• We provide a thorough analysis across dif-
ferent evaluation difficulty levels, including
monolingual, cross-lingual, and CS scenarios.
We examine performance variations across dif-
ferent numbers of retrieved samples to offer
insights into the impact of sample quantity on
retrieval effectiveness.

• We compare the time efficiency of retrieval
methods with conventional fine-tuning ap-
proaches. By demonstrating that retrieval
methods require no training and offer a com-
parable performance of leveraging pre-trained
models for semantic retrieval tasks.

2 MINERS BENCHMARK

2.1 Motivation
The MINERS BENCHMARK

1 is introduced as a
significant step forward in assessing the capabilities
of multilingual LMs in producing high-dimensional
representations for semantic retrieval. This bench-
mark is constructed with three fundamental aspects:
(1) Language Diversity: The benchmark offers in-
sights into the performance of LMs across a wide

1We release the code to reproduce the benchmark results
at https://github.com/gentaiscool/miners

array of languages. It assesses not only the models’
effectiveness in high-resource languages but also
their capabilities in low-resource languages from
various language families. Additionally, the bench-
mark includes evaluations of unseen languages to
gauge the robustness of the models in predicting
languages not encountered during pre-training. CS
datasets are also incorporated to simulate realistic
scenarios where bilingual or multilingual speakers
mix languages, providing a more comprehensive
assessment of the models’ capabilities. (2) Useful-
ness: The benchmark includes evaluations across
three distinct tasks to systematically measure the
performance of multilingual LMs. First, it assesses
the models’ ability to retrieve semantically similar
parallel data in bitext retrieval tasks. Second, it uses
the retrieved samples for classification, evaluating
the models’ accuracy in categorizing text. Third, it
employs the retrieved samples as context for gen-
erating labels in downstream classification tasks,
highlighting the models’ capability to incorporate
retrieved information into context-aware classifica-
tion. Additionally, the benchmark demonstrates the
potential of using multiple LMs and APIs together
to represent text as an ensemble, further emphasiz-
ing their utility. (3) Efficiency: The benchmark
is crafted with efficiency as a key principle. It is
designed to be straightforward and easily extend-
able, accommodating new datasets to ensure its
longevity and continued relevance. Additionally,
the benchmark is publicly available, promoting re-
sult reproducibility and encouraging collaboration
and further research within the field. Importantly,
the benchmark does not necessitate any model fine-
tuning, as all evaluations are conducted exclusively
through model inference, thereby streamlining the
assessment process.

2.2 Tasks

Our benchmark evaluates LMs on three tasks: bi-
text retrieval, retrieval-based classification, and ICL
classification. Figure 1 provides an overview of
tasks. We describe the task details as follows:

Bitext Retrieval This task aims to measure the
LM’s ability to retrieve semantically similar sam-
ples from parallel datasets. The task is also useful
to understand how the model perform when there
are language distribution shifts, especially when
some words are code-switched. Formally, given a
parallel dataset D with two language L1 and L2,
we can have two different datasets DL1

and DL2
.
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Figure 1: MINERS BENCHMARK tasks. In this example, we compare English (en) and Indonesian (id) texts
across three tasks: (a) bitext retrieval, (b) retrieval-based classification, and (c) ICL classification. Light blue cubes
represent vector representations of samples from the training dataset Dtrain, generated by M, while green, yellow,
and red cubes denote raw text labels. The few-shot samples fi in task (c) are retrieved in the same manner as in task
(b). The English translations of the text in the figure are as follows: "Saya suka kucing" ("I like cats"), "Saya suka
anjing" ("I like dogs"), "Saya benci anjing" ("I hate dogs"), and "Kucing imut" ("Cute cats").

For each sample xi in DL1
, the closest sample ŷ is

searched through DL2
, by finding the lowest dis-

tance score between two samples xi and yj . The
score si,j is computed by measuring the Euclidean
distance of their high-dimensional vector represen-
tation which generated by using an LM M. In
this case, euclidean distance is used to compute the
score si,j = ∣∣uxi

− uyj ∣∣2, where uxi
and uyj are

vector representation of samples xi and yj , respec-
tively. We can also use other distance measures,
but the difference is minimal.

Retrieval-based Classification This task in-
volves using the retrieved samples’ labels from the
training set to predict labels in downstream NLP
classification tasks. The goal is to assess the use-
fulness of our retrieved samples and introduce an
efficient prediction method by directly searching
for similar samples in the training set. Given the
retrieved k pairs of training samples with labels[(y1, l1),⋯, (yk, lk)], a label l̂ is selected by ma-
jority voting and assigned to the corresponding test
sample. Increasing k can enhance performance.

ICL Classification We aim to further utilize
the retrieved training samples for natural gener-
ation tasks by using them as few-shot context,
combined with task-specific instructions and a
query. Formally, given a generative LLM G, we
input a text sequence si = (ri; fi; oi; qi), which
includes a text instruction ri, few-shot samples
fi = [(y1, l1),⋯, (yk, lk)], a list of label options
oi, and a query qi, to generate an output text se-

quence. To generate the prediction, we use one
of two methods based on the model’s capabilities:
(a) computing label probabilities, which offers pre-
cise predictions by reducing issues like typos, and
(b) directly predicting labels through instructions,
which is more efficient as responses match desired
labels, eliminating the need to evaluate all options.
We use method (a) when we can calculate the log-
likelihood of the next token prediction; otherwise,
we resort to method (b). For method (a), we com-
pute the probability of each output class, normalize
it by the token length, and select the label with the
highest probability from the distribution as follows:

l̂i = argmax
l∈L

P (l∣si, G), (1)

where L denotes the number of possible classes.
For more details on model inference, please refer
to Appendix A.5.

2.3 Settings

We gauge LMs’ robustness to various text inputs
with three different evaluation settings:

• Monolingual (Mono): We measure the indi-
vidual language performance using the same
language as train and test sets.

• Code-switching (CS): We measure the per-
formance of mixed language datasets. For
bitext retrieval, we find a corresponding CS
text translation from a monolingual text, or
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Dataset |Lang.| Task Eval Metric

BUCC (Zweigenbaum et al., 2017, 2018) 5 Bitext Retrieval F1
MASSIVE (FitzGerald et al., 2023) 51 Intent Classification♢ Acc.
NollySenti (Shode et al., 2023) 5 Bitext Retrieval F1

Sentiment Analysis♢♠ Acc.
NusaX (Winata et al., 2023b) 12 Bitext Retrieval F1

Sentiment Analysis♢♠ F1
NusaT (Cahyawijaya et al., 2023) 12 Bitext Retrieval F1
SIB-200 (Adelani et al., 2023) 205 Topic Classification♢♠ Acc.
Tatoeba (Tiedemann, 2020) 113 Bitext Retrieval F1

Code-switching

FIRE 2020 (Chakravarthi et al., 2020; Hegde et al., 2022) 3 Sentiment Analysis♢♠ Acc.
LinCE MT (Aguilar et al., 2020) 2 Bitext Retrieval F1
LinCE SA (Patwa et al., 2020) 2 Sentiment Analysis♢♠ Acc.
PHINC (Srivastava and Singh, 2020) 2 Bitext Retrieval F1

Table 1: Dataset list of MINERS BENCHMARK. The symbols indicate the tasks run on datasets. ♢Retrieval-based
classification task. ♠ICL classification task.

vice versa, and for retrieval-based classifica-
tion and ICL classification, we take CS texts
as input and predict their labels.

• Cross-lingual (XL): We measure the perfor-
mance of multilingual datasets with one lan-
guage as the source language and the rest as
target languages. For detailed information,
please refer to Table 7 in the Appendix.

• Cross-lingual Code-switching (XL CS): We
tackle a more challenging scenario by evaluat-
ing CS data within a cross-lingual context.

2.4 Datasets
Table 1 presents 11 datasets: 7 multilingual and 4
CS datasets, covering both parallel and classifica-
tion types. Parallel datasets are ideal for bitext re-
trieval due to their aligned multilingual content, en-
abling bitext mining and machine translation tasks.
Classification datasets include intent classification,
sentiment analysis, and topic classification, which
we evaluate for retrieval-based and ICL classifica-
tion tasks. For ICL, we construct prompts using a
unified English template across all generative lan-
guage models to ensure simplicity and consistency.
Detailed instructions for each task are provided in
Tables 17 and 18 in the Appendix.

2.5 Models
Encoder LMs and APIs We use 9 open-
source LMs: LaBSE (Feng et al., 2022),

CMLM (Cer et al., 2018), multilingual E5BASE,
multilingual E5LARGE (Wang et al., 2024),
multilingual MPNetBASEv2 (Song et al.,
2020), multilingual MiniLML12-E384 (Wang
et al., 2020), Glot-500 (ImaniGooghari et al.,
2023), XLM-RBASE, XLM-RLARGE (Con-
neau and Lample, 2019), and two commer-
cial embedding APIs: Cohere-Embedv3
(embed-multilingual-v3.0) and OpenAI-
Embedv3 (text-embedding-3-large).2

Generative LMs We opt for 8 different open-
source LMs: (1) BLOOMZ (Muennighoff et al.,
2023b), an instruction tuned BLOOM (Le Scao
et al., 2023) with three different sizes (560m,
1B, 3B) to further analyze the performance trend
when increasing the model size, (2) mT0 3B
(xl) (Muennighoff et al., 2023b), an instruction
tuned mT5 (Xue et al., 2021), (3) XGLM (Lin et al.,
2021) with two different sizes (564m and 2.9B),
(4) Aya-23 8B (Aryabumi et al., 2024), (5) Aya-
101 13B (Üstün et al., 2024), (6) Gemma 1.1 In-
struct (Team et al., 2024), (7) Llama 3 8B Instruct,
and (8) Llama 3.1 8B Instruct (Dubey et al., 2024),
and three commercial APIs: (1) Command-R, (2)
GPT-3.5 Turbo (gpt-3.5-turbo-0125) and (3)
GPT-4o (gpt-4o-2024-05-13). All open-source
models can be found on Hugging Face. Please
check the Appendix on Table 8 for details.

2The APIs were accessed on May 2024.
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Model Bitext Retrieval Retrieval-based Classification
XL CS avg. Mono XL CS XL CS avg.

Fine-tune (XLM-RBASE) N/A N/A N/A 79.55 65.92 62.28 34.64 60.60

LaBSE 83.90 52.03 67.97 73.46 72.73 60.64 41.10 61.98
CMLM 70.77 42.62 56.70 73.05 70.31 59.27 40.88 60.88
E5BASE 72.26 43.29 57.78 75.08 65.51 61.16 42.73 61.12
E5LARGE 76.35 49.97 63.16 77.52 71.08 61.91 41.99 63.13
MPNetBASEv2 52.25 25.87 39.06 66.17 59.69 58.33 41.25 56.36
MiniLML12-E384 24.82 9.90 17.36 63.18 51.16 57.28 39.61 52.81
Glot-500 14.68 16.64 15.66 65.66 51.75 58.11 40.06 53.90
XLM-RBASE 17.79 10.61 14.20 63.62 47.59 58.25 41.02 52.62
XLM-RLARGE 12.45 6.04 9.25 61.76 43.88 57.30 39.47 50.60

Cohere-Embedv3 76.39 53.25 64.82 78.56 72.67 62.12 42.36 63.93
OpenAI-Embedv3 69.02 68.73 68.88 73.97 67.13 62.77 40.50 61.09

DistFuse (2)† 84.72 56.47 70.60 78.34 70.87 62.13 40.73 63.02
DistFuse (3)† 83.28 56.83 70.06 78.80 70.19 62.31 41.77 63.27

Table 2: Results for bitext retrieval task (k = 1) and retrieval-based classification (k = 10). Mono, XL and CS
denote monolingual, cross-lingual and code-switching, respectively. Bold and underlined numbers present the best
and second-best models. †For DistFuse (2), we use α = 1, β = 3 and for DistFuse (3), we use α = 1, β = 2, γ = 3.
The reported weights represent the best-performing configurations identified during our tuning process.

Ensemble Models To enhance scalability and
effectiveness, we can use multiple models with
DistFuse (Winata et al., 2023a) to improve retrieval
results. DistFuse combines models by calculating
distance scores of label distributions and merging
them through a linear combination. We report two
DistFuse settings for bitext retrieval and retrieval-
based classification tasks:

• DistFuse (2) utilizes two models: LaBSE and
E5LARGE;

• DistFuse (3) utilizes three models: LaBSE,
E5LARGE, and Cohere-Embedv3.

To maintain conciseness, we denote the weights as-
signed to distances computed by LaBSE, E5LARGE,
and Cohere-Embedv3 as α, β, γ, respectively.

3 Results

3.1 Bitext Retrieval
Table 2 highlights DistFuse (2) and OpenAI-
Embedv3-large as top performers in XS and CS
tasks, respectively, with LaBSE ranking highest
among open-source models. DistFuse (2) demon-
strates superior performance across various settings.
While XLM-R and Glot-500 struggle in bitext re-
trieval, they perform better in retrieval-based classi-
fication. Most models face challenges in CS tasks

for both bitext retrieval and retrieval-based clas-
sification, where APIs generally perform slightly
better. OpenAI-Embedv3 outperforms Cohere-
Embedv3 on CS datasets. The specifics of CS
training data remain unclear, potentially explaining
the APIs’ edge over open-source models. Com-
bining model scores significantly boosts perfor-
mance, with up to a 2.63% improvement in bitext
retrieval over LaBSE and a 1.72% improvement
over OpenAI-Embedv3. Similar gains are observed
in retrieval-based classification, where the leading
DistFuse model, though slightly behind Cohere-
Embedv3, notably surpasses OpenAI-Embedv3.

3.2 Retrieval-based Classification Results

Table 2 illustrates that the Cohere-Embedv3 API
outperforms all models by an average of 1.95%,
with LaBSE closely behind at 1.15%. XLM-R
and Glot-500 excel in classification tasks. De-
spite this, they lag behind models trained with
contrastive learning or alignment objectives like
LaBSE, CMLM, or E5 models, emphasizing the
significance of text alignment in NLP tasks. Merg-
ing model scores notably boosts prediction accu-
racy, especially in Mono and XL settings. However,
performance in CS and XL CS settings remains
lower compared to API models. Additionally, our
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Model Zero-shot ICL One-shot ICL
Mono XL CS XL CS avg. Mono XL CS XL CS avg.

BLOOMZ 560M 45.88 43.36 35.83 12.09 34.29 72.37 71.98 54.25 36.35 58.74
BLOOMZ 1.7B 54.10 52.86 35.70 11.80 38.62 71.38 70.65 58.04 38.50 59.64
BLOOMZ 3B 53.20 51.78 36.32 9.50 37.70 74.08 73.19 57.44 39.09 60.95
mT0 3B 53.29 53.64 40.11 42.51 47.39 59.02 57.86 46.66 42.36 51.48
XGLM 564m 39.25 37.19 29.92 10.46 29.21 37.26 40.12 22.64 12.83 28.21
XGLM 2.9B 42.41 40.16 34.71 10.39 31.92 42.57 48.76 27.45 10.39 32.29
Aya-23 8B 39.88 36.88 53.72 43.18 43.42 63.66 63.53 53.12 38.50 54.70
Aya-101 13B 78.65 77.72 42.29 26.26 56.23 81.00 80.20 50.90 36.20 62.08
Gemma 1.1 7B Instruct 55.51 53.36 51.62 37.24 49.43 65.82 64.49 53.12 35.68 54.78
Llama 3 8B Instruct 62.40 60.41 52.72 36.05 52.90 74.85 69.61 54.12 35.68 58.57
Llama 3.1 8B Instruct 60.59 58.86 47.99 26.56 48.50 72.68 59.00 54.11 35.16 55.24

Command-R 47.98 46.02 54.84 44.44 48.32 58.36 56.89 56.84 41.99 53.52
GPT-3.5 Turbo 67.10 65.13 54.32 45.18 57.93 71.01 71.56 57.13 42.73 60.61
GPT-4o 79.92 79.15 53.48 53.04 66.40 82.24 80.95 57.14 49.26 67.40

Table 3: Results on ICL classification with E5LARGE retriever. Bold and underlined numbers present the best and
second-best models.

(a) (b) (c) (d) (e)

Figure 2: Results with different k = [1, 5, 10] on bitext retrieval: (a) cross-lingual and (b) code-switching, retrieval-
based classification: (c) monolingual, (d) cross-lingual, and (e) code-switching.

model outperforms fine-tuned models, requiring no
fine-tuning in XL and CS tasks.

3.3 ICL Classification Results

Based on Table 3, we present the ICL classifica-
tion results using E5LARGE as the retriever. Please
see Appendix Table 16 for results from alternate
retrievers. The inclusion of few-shot context sig-
nificantly improves the generative LM’s precision
in predicting class labels, leading to enhancements.
There is a positive scaling law with increased model
size in the one-shot setup. For instance, using a
model with 6× more parameters (BLOOMZ 3B)
boosts performance by 2.21% compared to the top
BLOOMZ 560m model. However, performance
decreases for CS and XL CS tasks with increasing

complexity. Despite focusing on English, Llama 3
and Llama 3.1 models generally outperform multi-
lingual open-source models like BLOOMZ, mT0,
XGLM, and Aya-23. BLOOMZ excels in the one-
shot scenario, outperforming both Llama models.
Notably, mT0 outperforms XGLM and Aya-23
in zero-shot settings, despite Aya-23’s larger size.
Aya-101 is the top open-source LM in both zero-
shot and one-shot tasks, bridging the gap with com-
mercial APIs like GPT-4o. Commercial generative
LM APIs, such as GPT-3.5 Turbo and GPT-4o out-
perform all other models, particularly in CS and
XL CS contexts. However, their superior perfor-
mance may be attributed to prior exposure to these
datasets, though this aspect remains unclear.
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(a) E5LARGE (sample ID) (b) XLM-RBASE (sample ID)

(c) E5LARGE (language) (d) XLM-RBASE (language)

(e) E5LARGE (class label) (f) XLM-RBASE (class label)

Figure 3: t-SNE representation of 200 randomly training
samples from the NusaX dataset. The color on the
figures show the sample ID for (a) and (b), language for
(c) and (d), and class for (e) and (f).

3.4 Performance Dynamics Over k

Figure 2 shows a consistent positive trend as the
retrieved sample size increases for both bitext re-
trieval and retrieval-based classification tasks. This
indicates that model performance improves with
more retrieved samples. In bitext retrieval, a larger
k provides a richer set of bilingual text pairs, en-
hancing retrieval. Similarly, in retrieval-based clas-
sification, a larger k offers more contextual ex-
amples, leading to more precise label predictions
through majority voting.

4 Further Analysis

4.1 Model Representation

Figure 3 shows 2D scatter plots of the vector repre-
sentation generated using t-SNE (Van der Maaten
and Hinton, 2008). We take 200 random training
samples from the NusaX dataset, reduce the high-
dimensional vectors into 2D and color the scatter
plots in three ways. (1) By sample ID. We assign
the same color for parallel samples. (2) By lan-
guage. We assign a color for each language. (3)
By class label. We assign a color for each class
label. We observe that the E5LARGE model forms

Fine-tune

(1) Train nepoch × (∣Dtrain∣ × (fM + bM) + ∣Ddev∣ × fM)
(2) Evaluate ∣Dtest∣ × fM

Retrieval-based Classification

(1) Generate vectors (∣Dtrain∣ + ∣Dtest∣) × fM
(2) Retrieve samples ∣Dtrain∣ × ∣Dtest∣ × (ndim × (p+ + p− + psq) + p√)
ICL Classification

(1) Generate vectors (∣Dtrain∣ + ∣Dtest∣) × fM
(2) Retrieve samples ∣Dtrain∣ × ∣Dtest∣ × (ndim × (p+ + p− + psq) + p√)
(3a) Generate probability ∣Dtest∣ × fG × ∣L∣ × ¯∣L∣
(3b) Generate responses ∣Dtest∣ × fG × ¯∣L∣

Table 4: FLOPs computation formulae. Here, nepoch and
ndim denote the number of epochs and vector dimension,
respectively. fM and bM represent the forward and
backward FLOPs of model M, respectively. fG denotes
the forward FLOPs of model G. The symbols p+, p−,
psq, and p√ indicate the FLOPs required to perform the
operations of addition, subtraction, squaring, and square
root, respectively. Additionally, ∣L∣ and ¯∣L∣ denote the
number of labels and the average sequence length of the
labels, respectively. The variables ∣Dtrain∣, ∣Ddev∣, and∣Dtest∣ represent the sizes of the train, development, and
test data splits, respectively.

small, color-coded clusters based on sample ID,
indicating its proficiency in aligning text across
different languages. In contrast, the XLM-RBASE
model forms larger clusters where samples of the
same language group closely together, suggesting
it is more effective at identifying same-language
data, even for unseen languages in NusaX. How-
ever, XLM-RBASE displays a sparse distribution
when classifying samples by sample ID, aligning
with our bitext retrieval task results. Both models
effectively distinguish label classes, with E5LARGE
achieving better color separation than XLM-RBASE,
as shown in Figures 3 (e) and (f). Similar findings
are observed for other models. For more details,
refer to Appendix B.1.

4.2 Samples Relevance

Figure 4 illustrates the performance dynamics of
BLOOMZ models on the NusaX dataset when re-
trieving samples from various training data per-
centiles. Lower percentiles correspond to samples
that are more semantically similar to the query.
The results indicate that as the percentile decreases,
performance improves consistently across all three
models. This trend highlights the critical impor-
tance of retrieving highly relevant samples for in-
context learning (ICL) tasks. By focusing on se-
mantically aligned samples, the models are able
to enhance the contextual understanding, which in
turn leads to more accurate and reliable predictions.
These findings highlight the potential benefits of
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Figure 4: ICL performance dynamics of BLOOMZ mod-
els on the NusaX dataset using context retrieved from
various percentiles with E5LARGE. Lower percentiles
correspond to more semantically relevant samples.

optimizing sample retrieval strategies to improve
model performance in various ICL applications.

4.3 Compute Efficiency

We aim to measure the theoretical time complex-
ity by evaluating computation in terms of FLOPs
(Floating Point Operations), irrespective of the ma-
chine configuration. Table 4 details the components
contributing to this calculation. The time complex-
ity for fine-tuning a model scales with the number
of training epochs, with more epochs significantly
increasing complexity. The backward pass FLOPs,
which are substantially higher than forward pass
FLOPs, are a major factor. Retrieval-based classifi-
cation is much more efficient, relying primarily on
generating vector representations through forward
passes. The retrieval process itself is efficient, with
complexity influenced mainly by the sizes of the
training and test datasets—factors typically smaller
than the computational demands of fine-tuning. In
contrast, ICL classification incurs higher inference
costs due to the increased forward FLOPs of gener-
ative models. With very large LMs, the inference
cost can even exceed that of fine-tuning. However,
as the training data size increases, the complexity of
fine-tuning eventually surpasses ICL model infer-
ence. For ICL classification, we have two methods:
(a) computing label probabilities, which offers pre-
cise predictions, and (b) directly predicting labels
through instructions, which is more efficient as re-
sponses match desired labels, eliminating the need
to evaluate all options. While direct prediction may
generate extraneous tokens, this can be mitigated
with additional instructions to output only the label.

4.4 Bitext Retrieval is Unsymmetrical

We evaluate the bitext retrieval performance with
different source and target language(s) directions.
Based on the results presented in Table 5, it is evi-
dent that the bitext retrieval performance is asym-

Model x→eng eng→x
BUCC Tatoeba BUCC Tatoeba

LaBSE 98.77 83.76 98.93 80.31
E5LARGE 98.66 75.73 98.90 75.98
Glot-500 17.90 10.58 16.39 14.07
XLM-RBASE 39.70 12.62 24.70 8.61
XLM-RLARGE 26.51 6.57 11.95 3.30

Cohere-Embedv3 98.76 74.66 98.89 76.43

Table 5: Bitext retrieval F1@1 performance on two
different source-to-target language(s) directions. Bold
and underlined numbers present the best and second-
best models.

metrical. Specifically, we observe that using non-
English data to retrieve English data tends to be
more effective than the reverse scenario.

5 Related Work

Dense Retrieval via LM Dense retrieval has
marked a significant advancement in information
retrieval, enabling rapid sample searches across
vast document collections. Research has fo-
cused on training objectives and architectures that
produce similarity scores between text samples.
Reimers and Gurevych (2019) introduce a Siamese
network architecture trained with contrastive learn-
ing, enhancing retrieval by enabling vector repre-
sentation comparison using similarity measures,
applied to BERT (Kenton and Toutanova, 2019).
Efforts to improve alignment include incorporating
annotated pairs from natural language inference
datasets using SimCSE loss (Gao et al., 2021). Fur-
thermore, Feng et al. (2022) propose combining
monolingual and translation alignment losses to
enhance performance, such as masked language
modeling (MLM) (Devlin et al., 2019) and trans-
lation language modeling (TLM) objectives (Con-
neau and Lample, 2019), dual encoder translation
ranking (Guo et al., 2018), and additive margin
softmax (Yang et al., 2019b). Khattab and Zaharia
(2020) introduce a late interaction paradigm, com-
paring embedding representations via vector simi-
larity indexes for relevance estimation in ranking
tasks. Wang et al. (2024) further innovate by using
in-batch negatives to leverage weakly supervised
data from diverse, heterogeneous sources.

Semantic Retrieval for NLP Tasks Retrieving
labels using semantic retrieval has proven benefi-
cial for classification. Bari et al. (2021) enhance
accuracy with cross-lingual few-shot nearest neigh-

2749



bor adaptation. Winata et al. (2023a) predict test
data labels efficiently using English training data
without prior adaptation via ICL. Li et al. (2023)
introduce a ranking framework to retrieve high-
quality demonstrations for various tasks. Building
on these methods, we adopt a straightforward and
efficient retrieval approach similar to Winata et al.
(2023a), supporting multiple retrieval models for
open-source tools and APIs. We extend this ap-
proach to the ICL setting, enhancing its utility and
accessibility across diverse scenarios.

6 Conclusion

This paper introduces MINERS, a benchmark for
evaluating the efficacy of multilingual LMs in se-
mantic retrieval tasks, including bitext retrieval and
classification through semantic search and retrieval-
augmented contexts. Our framework rigorously as-
sesses LMs’ robustness in retrieving samples from
over 200 languages. Empirical results demonstrate
that our method, which focuses on retrieving se-
mantically similar vector representations, achieves
performance comparable to state-of-the-art fine-
tuned approaches, without requiring fine-tuning
across multiple datasets and languages. We also
explore the mechanisms behind these representa-
tions, offering insights to improve the efficiency
and accuracy of label retrieval methods. Our re-
search aims to pave the way for future exploration
and optimization in semantic retrieval and classifi-
cation, ultimately contributing to more robust and
adaptable NLP systems.

Limitations

We have identified potential avenues for enhanc-
ing the performance of the ICL classification
task through the application of ensemble tech-
niques such as DistFuse and using the target lan-
guage prompts instead of English. Additionally,
while we have primarily focused on evaluating
the BLOOMZ, mT0, XGLM, Gemma, Llama 3,
Llama 3.1, Aya-23, Aya-101, Command-R, GPT-
3.5 Turbo, and GPT-4o models within the bench-
mark, we acknowledge that there may be other
models that could also yield promising results.
These aspects represent areas for future exploration
and expansion of our research efforts. Due to re-
source limitations and simplicity, we only test a
single prompt template. Running with various
prompts could yield different results, but we de-
fer this exploration to future research.

In the future, we plan to explore deeper into
the capabilities of ensemble techniques like Dis-
tFuse to further improve the performance of the
ICL classification task. By combining the strengths
of multiple models, we aim to enhance the robust-
ness and accuracy of our classification outcomes,
ultimately achieving better results in real-world ap-
plications. Furthermore, our current evaluation has
been limited to a select few models and datasets
as part of our initial assessment phase. However,
we recognize the importance of conducting a more
comprehensive evaluation by considering a wider
range of models and datasets. This will allow us to
gain a more comprehensive understanding of the
strengths and weaknesses of different approaches,
enabling us to make more informed decisions about
model selection and optimization strategies.

Ethical Considerations

Our research aims to evaluate LMs in the context
of multilingual semantic retrieval, a field with sig-
nificant implications for diverse multilingual com-
munities. We strive to ensure that our evaluation
is conducted with the utmost transparency and fair-
ness.
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A Experimental Details

A.1 Baselines
For the task-specific evaluation, we include the
following baseline models for comparison:

SOTA We report the state-of-the-art (SOTA)
from the existing literature as follows:

• Bitext Retrieval: BUCC (Wang et al., 2024)
and Tatoeba (Wang et al., 2024).

• Classification: MASSIVE (FitzGerald et al.,
2023), NollySenti (Shode et al., 2023),
NusaX (Winata et al., 2023b, monolin-
gual) (Winata et al., 2023a, cross-lingual), and
SIB-200 (Adelani et al., 2023). We use the
validation split on Accuracy for LinCE SA,
but to the best of our knowledge, there is no
comparable result in the literature. We make a
small modification to FIRE 2020 labels, thus
there are no comparable results in the litera-
ture.

Classification Baselines We report the following
baselines for classification tasks:

• Random: In this baseline, prediction labels
are sampled randomly from a uniform distri-
bution. This approach ensures that each la-
bel has an equal probability of being selected,
regardless of its true distribution within the
dataset. It serves as a baseline to compare the
effectiveness of more sophisticated methods.

• Majority: In this baseline, prediction labels
are selected by taking the majority class for
all instances. By always predicting the most
frequent class observed in the training data,

(a) LaBSE (sample ID) (b) Cohere-Embedv3 (sample
ID)

(c) LaBSE (language) (d) Cohere-Embedv3 (lan-
guage)

(e) LaBSE (class label) (f) Cohere-Embedv3 (class la-
bel)

Figure 5: t-SNE representation of 200 random samples
from the NusaX dataset. The color on the figures show
the sample ID for (a) and (b), language for (c) and (d),
and class for (e) and (f).

this method provides a simple yet effective
baseline, especially in datasets with class im-
balance. It helps to highlight the performance
of models in recognizing and classifying less
frequent classes.

• Fine-tune (XLM-RBASE): We fine-tune a
XLM-RBASE model using the training split
of the dataset. After fine-tuning, the model
is evaluated on the test data split of the same
dataset to assess its performance.

A.2 Datasets
A.2.1 Preprocessing
To enhance the data clarity for LMs and improve
their predictive performance, we apply preprocess-
ing steps to the following two datasets:

• FIRE 2020: We modify several non-standard
labels to a single label for sentiment analy-
sis. We map “Mixed_feeling" into “Mixed",
and map “not-malayalam", “non-tamil",
and “unknown_state" into “Unknown".

2754



• MASSIVE: We replace the underscore char-
acter with a space character from the labels.

A.2.2 Statistics
Table 6 displays the dataset statistics for each
dataset split. In the case of NollySenti in bitext-
retrieval, the English data predominates over other
languages, prompting us to consider an equal num-
ber of data points for all languages. As for LinCE
SA, since we did not utilize the test set, the statis-
tics for this particular dataset are not reported.

A.3 Languages Under Study

Table 7 presents a comprehensive list of source and
target language pairs used in our cross-lingual ex-
periments. The datasets apply different language
code standards. To ensure consistency and uphold
the integrity of the original datasets, we have re-
ported the language codes exactly as they appear
in the respective sources.

A.4 LM Sources

We extensively utilize a range of open-source en-
coder and generative LMs from the Hugging Face
repository to ensure our evaluations are comprehen-
sive and transparent. The models we employ are de-
tailed in Table 8, showcasing the diversity in archi-
tectures and training objectives. These open-source
models provide a solid foundation for our evalu-
ations, allowing us to benchmark against widely
accepted standards in the NLP community. For
commercial models, we leverage state-of-the-art
APIs to access robust and high-performance LMs.
Specifically, we use the OpenAI API to retrieve
generation responses from GPT-3.5 Turbo and GPT-
4. Additionally, we utilize Cohere’s Embed API to
incorporate the Cohere-Embedv3 model.

A.5 LM Inference

We run our model inference on an A100 40G GPU,
utilizing 8-bit quantization (Dettmers et al., 2022)
to optimize memory usage and speed up inference.
Our experiments investigate the impact of varying
the number of retrieved samples k ∈ [1, 5, 10] to
understand how retrieval quality and classification
performance change with the number of instances.
These samples are used for both bitext retrieval
and retrieval-based classification tasks. For the
ICL classification task, we evaluate our model in
both zero-shot and one-shot scenarios using two
methods: (1) predicting the label distribution by

computing the next token probability, and (2) gen-
erating the response directly. For BLOOMZ, Aya,
and XGLM models, we use the first method since
we have access to the next token prediction logits.
For Llama 3, Gemma, and mT0 models, obtaining
these logits is less straightforward. Specifically,
the presence of numerous special tokens in Llama
3 complicates logit calculation, so we opt for the
second method, which leverages the model’s strong
capability to generate exact labels by following in-
structions. Similarly, for GPT-3.5 Turbo and GPT-
4o models, we adopt the second method because
we do not have direct access to the logits for all
possible classes. These models excel in instruc-
tion following, making direct response generation
a practical and effective approach.

A.6 Hyper-parameters

To ensure fair and consistent evaluations across
our models, we employ a set of specific hyper-
parameters during the inference stage, as detailed in
Table 10. These hyper-parameters have been care-
fully chosen to standardize the evaluation process
and ensure that our comparisons are both meaning-
ful and reliable. For our fine-tuning baselines, we
adopt a different set of hyper-parameters, which
are listed comprehensively in Table 9. These pa-
rameters are optimized to enhance the model’s per-
formance during the fine-tuning phase. Moreover,
to streamline the fine-tuning process, we have de-
cided not to incorporate any warmup steps. The
linear scheduler has been chosen for its simplicity
and effectiveness.

B Extended Analysis

B.1 LM Representation Visualization

In Figure 5, we present the t-SNE 2D visualization
of a subset of 200 randomly selected samples from
the NusaX dataset. The visualization showcases
how the LaBSE and Cohere-Embedv3 models ef-
fectively align samples originating from various
languages in a meaningful and interpretable man-
ner. Notably, both models exhibit a high level of
proficiency in grouping the samples based on their
class labels, indicating robust performance in se-
mantic alignment tasks. This finding is consistent
with the behavior observed in models that have
been trained using contrastive learning methods,
such as the E5 models. The ability of these models
to accurately capture semantic relationships across
multilingual data highlights their effectiveness in
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Dataset lang # Train # Valid # Test Source License

BUCC all N/A N/A 35k https://huggingface.co/datasets/mteb/bucc-bitext-mining CC-BY-SA
MASSIVE all 587k 104k 152k https://huggingface.co/datasets/AmazonScience/massive CC-BY 4.0
NollySenti en 1,302 100 500 https://github.com/IyanuSh/NollySenti/tree/main CC-BY 4.0

yo 900 100 500
ha/ig/pcm 410 100 500

NusaX each lang. 500 100 400 https://huggingface.co/datasets/indonlp/NusaX-senti/viewer/eng/train CC-BY-SA 4.0
NusaT btk/bew/jav/ 6.6k 849 2k https://huggingface.co/datasets/indonlp/nusatranslation_mt Apache 2.0

mad/mak/min/sun 6.6k 849 2k
abs/bhp/mui/rej 1k 174 400

Code-switching

FIRE 2020 malayalam 4,851 541 1,348 https://dravidian-codemix.github.io/2020/ N/A
tamil 11,335 1,260 3,149

LinCE MT eng-hinglish 8,060 942 N/A https://ritual.uh.edu/lince/ Research Only
LinCE SA eng-spa 12,002 2,998 N/A https://huggingface.co/datasets/lince-benchmark/lince Research Only
PHINC N/A N/A 27,477 https://huggingface.co/datasets/veezbo/phinc CC-BY 4.0

Table 6: Dataset statistics.

Dataset Source Language Target Language(s)

BUCC en de, fr, zh

FIRE 2020 tamil malayalam

MASSIVE en af, am, ar, az, bn, cy, da, de, el, es, fa, fi, fr, he, hi, hu, hy, id, is, it, ja, jv, ka, km, kn, ko, lv, ml, mn, ms, my, nb, nl,
pl, pt, ro, ru, sl, sq, sv, sw, ta, te, th, tl, tr, ur, vi, zh-CN, zh-TW

NollySenti en ha, ig, pcm, yo

NusaX eng ace, ban, bbc, bjn, bug, ind, jav, mad, min, nij, sun

SIB-200 eng_Latn ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, als_Latn, amh_Ethi,
apc_Arab, arb_Arab, arb_Latn, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn,
azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn, bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab,
bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn,
cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, epo_Latn, est_Latn, eus_Latn, ewe_Latn,
fao_Latn, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gaz_Latn, gla_Latn, gle_Latn, glg_Latn,
grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn,
ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda,
kas_Arab, kas_Deva, kat_Geor, kaz_Cyrl, kbp_Latn, kea_Latn, khk_Cyrl, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl,
kmb_Latn, kmr_Latn, knc_Arab, knc_Latn, kon_Latn, kor_Hang, lao_Laoo, lij_Latn, lim_Latn, lin_Latn, lit_Latn,
lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, lvs_Latn, mag_Deva, mai_Deva, mal_Mlym,
mar_Deva, min_Arab, min_Latn, mkd_Cyrl, mlt_Latn, mni_Beng, mos_Latn, mri_Latn, mya_Mymr, nld_Latn,
nno_Latn, nob_Latn, npi_Deva, nqo_Nkoo, nso_Latn, nus_Latn, nya_Latn, oci_Latn, ory_Orya, pag_Latn,
pan_Guru, pap_Latn, pbt_Arab, pes_Arab, plt_Latn, pol_Latn, por_Latn, prs_Arab, quy_Latn, ron_Latn,
run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Olck, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn,
smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn,
swe_Latn, swh_Latn, szl_Latn, tam_Taml, taq_Latn, taq_Tfng, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai,
tir_Ethi, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab,
ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr,
yor_Latn, yue_Hant, zho_Hans, zho_Hant, zsm_Latn, zul_Latn

Tatoeba eng afr, amh, ang, ara, arq, arz, ast, awa, aze, bel, ben, ber, bos, bre, bul, cat, cbk, ceb, ces, cha, cmn, cor, csb, cym, dan,
deu, dsb, dtp, ell, epo, est, eus, fao, fin, fra, fry, gla, gle, glg, gsw, heb, hin, hrv, hsb, hun, hye, ido, ile, ina, ind, isl, ita,
jav, jpn, kab, kat, kaz, khm, kor, kur, kzj, lat, lfn, lit, lvs, mal, mar, max, mhr, mkd, mon, nds, nld, nno, nob, nov, oci,
orv, pam, pes, pms, pol, por, ron, rus, slk, slv, spa, sqi, srp, swe, swg, swh, tam, tat, tel, tgl, tha, tuk, tur, tzl, uig, ukr,
urd, uzb, vie, war, wuu, xho, yid, yue, zsm

Table 7: List of source and target languages for all datasets in the cross-lingual setting. Each dataset employs a
different language code standard, and we have reported them as used.

handling diverse linguistic contexts and tasks.

B.2 Retrieved Samples

We conduct a detailed comparison of the retrieved
samples to assess their quality in terms of semantic
relevance to the query. Table 11 presents a compar-
ative analysis between the retrieved samples from
E5LARGE and XLM-RBASE. Moreover, Table 12
showcases the retrieved samples from LaBSE. Our
evaluation reveals that the samples retrieved from
E5LARGE and LaBSE predominantly contain cor-

rect labels, with four out of five labels being accu-
rate. In contrast, the samples retrieved by XLM-
RBASE exhibit a lower accuracy rate, with only two
out of five labels being correct. This analysis under-
scores the varying performance in sample quality
and label accuracy across the different models, em-
phasizing the significance of retrieval quality in
downstream tasks.
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(a) k = 1 (b) k = 5 (c) k = 10

Figure 6: Results for the retrieval-based classification task on the SIB-200 dataset, using k values of [1, 5, 10],
across various language families.

(a) k = 1 (b) k = 5 (c) k = 10

Figure 7: Results for the retrieval-based classification task on the SIB-200 dataset, using k values of [1, 5, 10],
across various language scripts.

Model Hugging Face Model

LaBSE sentence-transformers/LaBSE
CMLM sentence-transformers/use-cmlm-multilingual
E5BASE intfloat/multilingual-e5-base
E5LARGE intfloat/multilingual-e5-large
MPNetBASEv2 sentence-transformers/paraphrase-multilingual-mpnet-base-v2
MiniLML12-E384 microsoft/Multilingual-MiniLM-L12-H384
Glot-500 cis-lmu/glot500-base
XLM-RBASE FacebookAI/xlm-roberta-base
XLM-RLARGE FacebookAI/xlm-roberta-large
Aya-23 8B CohereForAI/aya-23-8B
Llama 3 8B Instruct meta-llama/Meta-Llama-3-8B-Instruct
Llama 3.1 8B Instruct meta-llama/Meta-Llama-3.1-8B-Instruct
BLOOMZ 560m bigscience/bloomz-560m
BLOOMZ 1.7B bigscience/bloomz-17b
BLOOMZ 3B bigscience/bloomz-3b
mT0 3B bigscience/mt0-xl
XGLM 564m facebook/xglm-564M
XGLM 2.9B facebook/xglm-2.9B

Table 8: Hugging Face models.

C Detailed Results

C.1 Bitext Retrieval Results

Table 13 presents the complete empirical results
for each dataset and model in the bitext retrieval
task. Generally, there is a positive trend in model
performance as the number of k samples increases.

C.2 Retrieval-based Classification Results

Table 14 presents the complete results for the
retrieval-based classification task in both Mono and
CS settings. Table 15 provides the full results for
the XS and XS CS settings. Figure 6 presents the
performance results across various language fami-
lies on the SIB-200 dataset for different values of
k. Notably, Indo-European languages consistently
achieve the highest accuracies. In contrast, Afro-
Asiatic, Austroasiatic, and Sino-Tibetan language
families exhibit the greatest standard deviations
in their results. Figure 7 shows the performance
results across various language scripts on the SIB-
200 dataset for different values of k. It is evident
that the Latin script generally achieves the highest
performance, albeit with the highest standard de-
viation. Conversely, the scripts Nkoo, Olck, Tibt,
and Tfng exhibit the lowest performance.
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Parameter NusaX SIB-200 MASSIVE LinCE SA NollySenti FIRE 2020

batch size 32 8 32 16 16 16
learning rate 1e-5 1e-5 1e-5 5e-5 5e-5 1e-5
max epoch 100 100 100 20 20 100
early stopping 3 5 3 5 5 5
adam beta 1 0.9 0.9 0.9 0.9 0.9 0.9
adam beta 2 0.999 0.999 0.999 0.999 0.999 0.999
adam epsilon 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8

Table 9: Hyper-parameters for fine-tuning baselines.

Parameter HF models APIs

top-p 1 1
seed - 42
temperature 0.2 0
max new tokens 10 64

Table 10: Hyper-parameters for model inference using
Hugging Face models, such as BLOOMZ, mT0, XGLM,
Aya-23, Aya-101, Gemma 1.1 7B Instruct, and Llama
8B Instruct and APIs, including Command-R, GPT-3.5
Turbo and GPT-4o.

C.3 ICL Classification Results
Table 16 presents the complete results for ICL clas-
sification task in Mono, XS, CS, and XS CS set-
tings.

D Prompt Examples

Prompt examples used for ICL classification are
provided in Tables 17 and 18. Specifically, we use
two different templates: for direct prediction, label
options are added to the prompt; for prediction
by calculating label probabilities, label options are
omitted, resulting in shorter prompts.

E DistFuse

We conduct a simplified hyper-parameter tuning
process to determine the optimal weights for each
model. Due to time constraints, we explore only
a few weight combinations. For DistFuse (2), we
evaluate two combinations: (1) [α = 1 and β = 1],
and (2) [α = 1 and β = 3]. For Dist (3), we assess
three combinations: (1) [α = 1, β = 1, γ = 1], (2)
[α = 1, β = 1, γ = 3], and (3) [α = 1, β = 2, γ = 3].
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E5LARGE XLM-RBASE
sample label dist sample label dist

Query: Cepak saka hotelku nginep, namung digawa mlaku, ing kene akeh tenan pilian panganane, panggonane sing amba, lan nyenengake
Translation (in English): Near the hotel I stayed in, reachable by foot, so many food choice here, the place is huge, and fun
Label: positive

Miturutku mangan ana ing kene porsine akeh lan positive 0.436 Panggonan iki nyediakake pirang-pirang panganan, positive 0.923
regane murah, banjur panganane cepet tekane nanging sing aku jajal mesthi wae batagore, panggonane .
maneh lan panggonane uga resik lan amba uga resik

Translation (in English): In my opinion, eating Translation (in English): This place served several
here will grant you large portions for a cheap food, but of course the one I tried was the batagor, .
price, add to the fact that it’s served quickly, place was clean too
too, and the place being clean and wide.

Aku seneng banget mangan ning restoran iki, positive 0.452 Timku bakal nganakake mangan mbengi tema ing burgundy. negative 0.972
menu masakane rena-rena, rasane enak, regane. Katimbang ilang, aku lan carikku njajal ngecek panggonane
ora tek larang ndhisik sadina sakdurunge. Sisan uga tes panganane. Dalane

adoh banget lan munggah medun bukit. Luwih nemen
Translation (in English): I really love eating maneh pas dhewe mara mrana kuwi dina minggu sore
in this restaurant. Varied menu, awesome dadi macet. Tekane ing kana sih pemandangane oke.
flavours, and not really that expensive. Nanging model restorane biasa wae.

Translation (in English): My team will be having a theme
dinner in burgundy. Instead of getting lost, my secretary
and I tried to check the place first the day before. Also
test the food. The journey is very long and goes up and
down hills. What made it worse was that when we went
there it was a Sunday afternoon so there was traffic jam.
When we got there, the view was okay. But the restaurant
layout is ordinary

Ing restoran iki panganan kang disediakake akeh positive 0.452 Pithik gorenge enak ing kene. Cocok kanggo sing lebare positive 0.974
banget lan regane cukup kajangkau, kahanane sek perjalanan adoh. Aku marang kene mulih saka njaba
enak lan nyaman kutha, dadi mangane pas ngelih ngono deh. Marakake

weteng wareg, panganane enak banjur pelayanane mantap.
Translation (in English): In this restaurant Kasire ayu ayu
there is a lot of food provided and the prices are
quite affordable, the atmosphere is delicious and Translation (in English): The fried chicken is amazing
comfortable here. Perfect after a long trip. I came here after returning

out of town, so I was absolutely starving. My stomach
was filled right back up. The food was good and servers
were great. Not to mention, the cashiers were beautiful

Panggonan iki nyediakake pirang-pirang panganan, positive 0.467 Bingung arep mangan nandi sing panggone asik, panganane positive 1.009
nanging sing aku jajal mesthi wae batagore, . enak lan regane terjangkau? Mrene ae. Aku lan bojoku
panggonane uga resik nikmati banget. Sing mara akeh-akeh cah enom dadi

melu-melu ngrasa enom maneh.
Translation (in English): This place served
several food, but of course the one I tried was Translation (in English): Don’t know where to have
the batagor, place was clean too. a nice and affordable place to grab a bite? Just come

right here. Me and my partner are really enjoying it.
Most of the customers are young people, making
us feel just as young again.

Kuota dadi entek resik kanggo ndelok foto-foto sing negative 0.477 Panganane lumayan, nanging ana pelayan sing lumayan negative 1.018
mung gawe aku srei, panganan enak-enak sing marai kemproh war dadi kurang nyaman. Kanggo panganan rada
ngiler cepet yo ben ora kangelihen konsumene. Isih akeh

sing kudu ditingkatake.
Translation (in English): My quota is drained
dry just to see photos that make me jelly, and Translation (in English): The food was okay, but there
delicious food that makes my mouth water. was this one server who was kinda dirty, making it a

little less comfortable. Please serve the food quicker
so the customers won’t get hungry. There are many things
to improve.

Table 11: Retrieved samples from E5LARGE and XLM-RBASE.
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LaBSE
sample label dist

Query: Cepak saka hotelku nginep, namung digawa mlaku, ing kene
akeh tenan pilian panganane, panggonane sing amba, lan nyenengake
Translation (in English): Near the hotel I stayed in, reachable
by foot, so many food choice here, the place is huge, and fun
Label: positive

Ing restoran iki panganan kang disediakake positive 0.896
akeh banget lan regane cukup kajangkau,
kahanane sek enak lan nyaman

Translation (in English): In this restaurant
there is a lot of food provided and the prices are
quite affordable, the atmosphere is delicious and
comfortable

Wektu pengen mangan variasi panganan, positive 0.934
piliane mesthi Hanamasa. Lokasi panggonane
cukup enak. Pilian panganane akeh, saka awit
camilan, bakar-bakaran, godhokan nganti
panganan panutup. Ora nggelakne banget.

Translation (in English): When you wanna
enjoy a variety of food, the first choice has
to be Hanamasa. The location’s pretty great.
Lots of food you can choose from, ranging from
snacks, barbeques, boiled food, all the way to
desserts. Not bad at all!

Mangan abreng karo dulur-dulur wedok kala positive 0.938
wingi, panggon nyaman, enak kanggo nongkrong,
pelayanane apik. Wis ping bolak-balik mangan
ning kene.

Translation (in English): Dined togetha with
da sistahs a lil’ bit ago, cosy place, nice to hang out,
good service. Have gone ta this place multiple times.

Aku seneng banget mangan ning restoran iki, positive 0.940
menu masakane rena-rena, rasane enak, regane
ora tek larang.

Translation (in English): I really love
eating in this restaurant. Varied menu, awesome flavours,
and not really that expensive.

Pithik gorenge enak ing kene. Cocok kanggo positive 0.946
sing lebare perjalanan adoh. Aku marang kene
mulih saka njaba kutha, dadi mangane pas
ngelih ngono deh. Marakake weteng wareg,
panganane enak banjur pelayanane mantap.
Kasire ayu ayu

Translation (in English): The fried chicken
is amazing here. Perfect after a long trip. I came
here after returning out of town, so I was
absolutely starving. My stomach was filled right
back up. The food was good and servers were great.
Not to mention, the cashiers were beautiful

Table 12: Retrieved samples from LaBSE.
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Model Cross-lingual (XL) Code-Switching (CS) Micro Macro
BUCC NollySenti NusaX NusaT Tatoeba avg. LinCE MT PHINC avg. avg. avg.

metric F1 F1 F1 F1 F1 F1 F1

Fine-tune (SOTA) 99.00 N/A N/A N/A 83.80 N/A N/A N/A N/A N/A N/A

k = 1

LaBSE 98.77 80.52 77.89 81.17 81.14 83.90 34.36 69.70 52.03 74.79 67.97
CMLM 98.64 58.06 55.64 63.08 78.43 70.77 29.34 55.91 42.62 62.73 56.70
E5BASE 98.33 63.40 68.01 63.52 68.06 72.26 29.17 57.41 43.29 63.99 57.78
E5LARGE 98.66 67.50 72.67 67.20 75.73 76.35 34.32 65.63 49.97 68.82 63.16
MPNetBASEv2 98.05 22.64 38.46 40.52 61.60 52.25 14.04 37.70 25.87 44.72 39.06
MiniLML12-E384 57.98 8.26 7.52 19.66 30.70 24.82 4.85 14.95 9.90 20.56 17.36
Glot-500 17.90 11.49 5.78 27.65 10.58 14.68 5.76 27.52 16.64 15.24 15.66
XLM-RBASE 39.70 7.59 8.05 20.97 12.62 17.79 4.15 17.06 10.61 15.73 14.20
XLM-RLARGE 26.51 5.53 5.03 18.60 6.57 12.45 2.20 9.88 6.04 10.62 9.25

Cohere-Embedv3 98.76 62.91 76.51 69.13 74.66 76.39 34.44 72.07 53.25 69.78 64.82
OpenAI-Embedv3-large 98.98 35.84 70.94 73.74 65.61 69.02 46.60 90.87 68.73 68.94 68.88

DistFuse (2) 98.90 80.29 80.96 80.28 83.19 84.72 37.97 74.97 56.47 76.65 70.60
DistFuse (3) 98.90 77.02 81.25 77.61 81.64 83.28 37.23 76.42 56.83 75.72 70.06

k = 5

LaBSE 99.12 89.94 84.98 88.57 89.15 90.35 56.69 79.17 67.93 83.95 79.14
CMLM 99.15 71.54 65.91 74.48 87.38 79.69 50.96 66.91 58.94 73.76 69.32
E5BASE 99.05 77.58 79.47 74.68 80.42 82.24 51.48 69.79 60.64 76.07 71.44
E5LARGE 99.19 79.70 82.60 78.76 86.27 85.30 56.80 75.96 66.38 79.90 75.84
MPNetBASEv2 99.01 29.95 50.24 51.55 70.38 60.23 26.26 47.28 36.77 53.52 48.50
MiniLML12-E384 72.82 14.72 14.07 29.01 45.39 35.20 10.47 20.33 15.40 29.54 25.30
Glot-500 32.26 20.92 14.39 38.51 21.28 25.47 11.30 35.22 23.26 24.84 24.37
XLM-RBASE 57.23 15.00 15.74 29.42 20.87 27.65 9.08 22.27 15.68 24.23 21.67
XLM-RLARGE 41.06 10.66 10.73 25.65 13.61 20.34 4.24 11.68 7.96 16.80 14.15

Cohere-Embedv3 99.29 76.19 85.08 80.72 84.98 85.25 57.28 82.05 69.66 80.80 77.46
OpenAI-Embedv3-large 99.43 43.39 79.37 83.05 76.77 76.40 74.92 94.64 84.78 78.80 80.59

DistFuse (2) 99.21 90.66 88.08 89.13 91.02 91.62 61.70 84.21 72.95 86.29 82.29
DistFuse (3) 99.26 87.65 88.24 87.36 90.07 90.52 61.27 85.22 73.25 85.58 81.89

k = 10

LaBSE 99.17 92.62 87.67 90.21 91.02 92.14 61.54 82.15 71.84 86.34 81.99
CMLM 99.17 77.54 70.81 78.35 89.53 83.08 56.44 70.72 63.58 77.51 73.33
E5BASE 99.18 83.07 83.76 78.52 83.89 85.68 56.85 74.34 65.59 79.94 75.64
E5LARGE 99.31 83.78 86.19 82.35 88.80 88.09 61.6 79.57 70.58 83.09 79.34
MPNetBASEv2 99.13 32.75 55.52 55.61 73.33 63.27 30.61 50.74 40.67 56.81 51.97
MiniLML12-E384 78.08 20.25 19.84 33.34 51.89 40.68 13.52 23.29 18.41 34.32 29.55
Glot-500 39.08 26.72 20.60 43.06 27.69 31.43 14.01 38.30 26.15 29.92 28.79
XLM-RBASE 63.56 20.01 20.66 33.19 25.61 32.61 11.50 24.83 18.16 28.48 25.39
XLM-RLARGE 47.24 14.03 14.34 28.31 17.79 24.34 5.11 12.70 8.90 19.93 16.62

Cohere-Embedv3 99.39 81.16 88.01 84.24 87.56 88.07 62.23 84.82 73.52 83.92 80.80
OpenAI-Embedv3-large 99.50 47.01 82.55 85.61 80.20 78.97 79.75 95.36 87.56 81.43 83.27

DistFuse (2) 99.29 93.21 90.48 91.12 92.85 93.39 66.20 86.75 76.47 88.56 84.93
DistFuse (3) 99.39 90.45 90.40 89.83 91.87 92.39 65.94 87.54 76.74 87.92 84.57

Table 13: Results on bitext retrieval. Bold and underlined numbers present the best and second-best models.
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Model Monolingual (Mono) Code-Switching (CS) Micro Macro
MASSIVE NollySenti NusaX SIB-200 avg. FIRE 2020 LinCE SA avg. avg. avg.

metric Acc. Acc. F1 Acc. Acc. Acc.

Random 1.67 33.33 33.33 14.29 20.66 25.00 33.33 29.00 23.49 24.83
Majority 7.03 50.00 18.44 25.00 25.12 53.90 55.78 54.84 35.03 39.98
Fine-tune (SOTA) 86.10 88.80 80.00 75.90 82.70 N/A‡ N/A‡ N/A N/A N/A
Fine-tune (XLM-RBASE) 85.04 87.16 75.43 70.55 79.55 68.78 55.78 62.28 73.79 70.92

k = 1

LaBSE 76.55 80.04 62.23 61.14 69.99 56.56 49.92 53.24 64.41 61.62
CMLM 76.24 79.48 63.40 60.42 69.89 54.83 48.63 51.73 63.83 60.81
E5BASE 74.82 82.96 65.59 62.23 71.40 57.14 50.03 53.59 65.46 62.49
E5LARGE 76.67 85.24 67.14 66.64 73.92 58.25 51.00 54.63 67.49 64.27
MPNetBASEv2 69.41 75.24 53.29 56.24 63.55 51.21 49.70 50.46 59.18 57.00
MiniLML12-E384 63.32 72.28 58.35 39.77 58.43 51.49 49.00 50.25 55.70 54.34
Glot-500 64.01 75.52 57.00 51.76 62.07 53.48 48.84 51.16 58.44 56.62
XLM-RBASE 61.93 74.56 58.29 43.66 59.61 53.57 47.44 50.51 56.57 55.06
XLM-RLARGE 60.39 73.36 57.62 40.66 58.01 52.17 47.18 49.68 55.23 53.84

Cohere-Embedv3 77.78 86.80 68.54 71.08 76.05 59.30 51.43 55.37 69.16 65.71
OpenAI-Embedv3-large 74.97 79.56 63.61 67.44 71.40 61.19 51.37 56.28 66.36 63.84

DistFuse (2) 78.18 84.72 66.65 68.32 74.47 58.89 50.73 54.81 67.92 64.64
DistFuse (3) 78.59 86.24 67.44 70.76 75.76 59.15 50.94 55.05 68.85 65.40

k = 5

LaBSE 78.62 82.08 66.90 64.67 73.07 63.65 53.85 58.75 68.30 65.91
CMLM 78.38 80.60 67.07 64.62 72.67 61.73 54.87 58.30 67.88 65.48
E5BASE 77.13 85.96 69.16 66.82 74.77 63.38 55.51 59.45 69.66 67.11
E5LARGE 79.10 87.20 71.72 71.05 77.27 64.14 57.40 60.77 71.77 69.02
MPNetBASEv2 71.24 79.12 54.76 59.20 66.08 56.48 54.76 55.62 62.59 60.85
MiniLML12-E384 65.16 76.28 63.84 44.56 62.46 57.96 52.23 55.10 60.01 58.78
Glot-500 65.72 78.60 60.08 57.49 65.47 59.65 51.37 55.51 62.15 60.49
XLM-RBASE 63.54 76.24 61.32 48.22 62.33 60.35 53.42 56.89 60.52 59.61
XLM-RLARGE 62.08 76.20 60.57 45.44 61.07 59.11 52.56 55.84 59.33 58.45

Cohere-Embedv3 80.15 88.12 71.00 74.73 78.50 65.12 57.56 61.34 72.78 69.92
OpenAI-Embedv3-large 77.32 80.64 67.77 69.88 73.90 66.19 56.27 61.23 69.68 67.57

DistFuse (2) 80.42 87.00 71.90 72.13 77.86 64.21 56.16 60.19 71.97 69.02
DistFuse (3) 80.92 88.48 71.70 74.63 78.93 64.69 57.13 60.91 72.93 69.92

k = 10

LaBSE 78.47 82.48 67.39 65.50 73.46 64.73 56.54 60.64 69.19 67.05
CMLM 78.21 82.04 67.11 64.84 73.05 62.96 55.57 59.27 68.46 66.16
E5BASE 77.18 86.36 69.07 67.72 75.08 64.71 57.61 61.16 70.44 68.12
E5LARGE 79.02 88.00 71.15 71.91 77.52 65.30 58.53 61.92 72.32 69.72
MPNetBASEv2 70.75 80.40 53.85 59.67 66.17 59.26 57.40 58.33 63.56 62.25
MiniLML12-E384 64.47 77.12 64.27 46.87 63.18 60.61 53.95 57.28 61.22 60.23
Glot-500 65.14 79.36 58.69 59.47 65.67 62.04 54.17 58.11 63.15 61.89
XLM-RBASE 62.98 78.40 62.72 50.39 63.62 62.06 54.44 58.25 61.83 60.94
XLM-RLARGE 61.58 77.56 60.62 47.29 61.76 60.92 53.68 57.30 60.28 59.53

Cohere-Embedv3 80.15 88.64 69.87 75.57 78.56 65.88 58.36 62.12 73.08 70.34
OpenAI-Embedv3-large 77.27 82.28 66.80 69.54 73.97 67.33 58.20 62.77 70.24 68.37

DistFuse (2) 80.38 88.28 71.83 72.88 78.34 65.73 58.53 62.13 72.94 70.24
DistFuse (3) 80.79 88.96 70.99 75.32 79.02 65.97 58.42 62.20 73.41 70.61

Table 14: Results on retrieval-based classification. Bold and underlined numbers present the best and second-best
models. ‡For FIRE 2020, we modify the labels, thus there are no comparable results in the literature. For LinCE SA,
we evaluate on the development split and we could not find any comparable result in the literature.
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Model Cross-lingual (XL) Code-Switching (CS) Micro Macro
MASSIVE NollySenti NusaX SIB-200 avg. FIRE 2020 avg. avg.

source lang. eng en eng eng_Latn tamil
metric Acc. Acc. F1 Acc. Acc.

Random 1.67 33.33 33.33 14.29 20.66 25.00 21.52 21.09
Majority 7.03 50.00 18.44 25.00 25.12 41.91 28.48 26.80
Fine-tune (SOTA) 70.60 N/A 52.08 69.10 N/A N/A† N/A N/A
Fine-tune (XLM-RBASE) 68.94 74.95 56.71 63.10 65.92 34.64 59.67 62.79

k = 1

LaBSE 73.96 79.80 63.65 60.18 69.40 32.94 62.11 65.75
CMLM 73.08 74.00 58.98 57.51 65.89 34.87 59.69 62.79
E5BASE 63.43 74.30 34.08 63.11 58.73 35.53 54.09 56.41
E5LARGE 69.38 79.85 40.73 67.63 64.40 35.91 58.70 61.55
MPNetBASEv2 46.05 61.60 48.44 55.95 53.01 32.12 48.83 50.92
MiniLML12-E384 35.72 62.20 41.15 30.50 42.39 31.60 40.23 41.31
Glot-500 24.66 66.70 44.45 40.08 43.97 33.16 41.81 42.89
XLM-RBASE 27.49 64.85 36.41 33.98 40.68 32.42 39.03 39.86
XLM-RLARGE 20.38 66.50 34.19 28.04 37.28 31.75 36.17 36.72

Cohere-Embedv3 70.87 81.30 65.29 69.67 71.78 35.68 64.56 68.17
OpenAI-Embedv3-large 61.09 67.85 65.45 67.36 65.44 31.90 58.73 62.08

k = 5

LaBSE 75.80 81.80 68.25 63.75 72.40 38.58 65.64 69.02
CMLM 75.48 78.70 64.89 58.89 69.49 38.72 63.34 66.41
E5BASE 66.83 73.45 51.82 67.43 64.88 40.28 59.96 62.42
E5LARGE 72.48 78.60 60.99 71.53 70.90 40.28 64.78 67.84
MPNetBASEv2 50.83 64.00 53.98 58.73 56.89 38.58 53.22 55.05
MiniLML12-E384 40.19 65.55 52.79 34.81 48.34 36.80 46.03 47.18
Glot-500 28.67 73.50 49.37 47.01 49.64 37.61 47.23 48.43
XLM-RBASE 31.27 69.15 39.52 39.89 44.96 38.58 43.68 44.32
XLM-RLARGE 24.74 69.20 36.13 34.19 41.07 37.69 40.39 40.73

Cohere-Embedv3 74.18 78.60 64.59 74.62 73.00 40.28 66.45 69.73
OpenAI-Embedv3-large 63.62 66.15 69.22 69.09 67.02 38.43 61.30 64.16

DistFuse (2) 77.53 79.25 63.74 65.03 71.39 39.24 64.96 68.17
DistFuse (3) 77.27 78.25 61.67 66.00 70.80 38.65 64.37 67.58

k = 10

LaBSE 75.89 81.20 68.54 65.29 72.73 41.10 66.40 69.57
CMLM 75.77 81.30 66.06 58.11 70.31 40.88 64.42 67.37
E5BASE 67.60 74.20 51.54 68.71 65.51 42.73 60.96 63.23
E5LARGE 73.09 77.50 61.40 72.33 71.08 41.99 65.26 68.17
MPNetBASEv2 56.45 64.80 57.88 59.61 59.69 41.25 56.00 57.84
MiniLML12-E384 42.07 66.55 58.66 37.34 51.16 39.61 48.85 50.00
Glot-500 30.73 74.10 51.50 50.67 51.75 40.06 49.41 50.58
XLM-RBASE 32.96 70.45 45.11 41.83 47.59 41.02 46.27 46.93
XLM-RLARGE 27.18 69.50 39.62 39.20 43.88 39.47 42.99 43.43

Cohere-Embedv3 74.98 77.95 61.69 76.06 72.67 42.36 66.61 69.64
OpenAI-Embedv3-large 64.43 65.15 69.88 69.07 67.13 40.50 61.81 64.47

DistFuse (2) 77.75 78.30 62.72 64.71 70.87 40.73 64.84 67.86
DistFuse (3) 77.67 76.70 58.94 67.43 70.19 41.77 64.50 67.34

Table 15: Results on retrieval-based classification in the cross-lingual setting. The source language is English for all
datasets except FIRE 2020, where the source language is Tamil. Bold and underlined numbers present the best and
second-best models. †We preprocess the dataset differently from the original dataset. Thus, there are no comparable
results in the literature.
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Model Mono XL CS XL CS Micro Macro
NollySenti NusaX SIB-200 avg. NollySenti NusaX SIB-200 avg. FIRE 2020 LinCE SA avg. FIRE 2020 avg. avg.

metric Acc. F1 Acc. Acc. F1 Acc. Acc. Acc. Acc.

BLOOMZ 560m

k = 0 70.68 29.01 37.94 45.88 65.40 37.87 26.82 43.36 16.25 55.41 35.83 12.09 39.05 34.29
k = 1

LaBSE 80.20 62.79 60.19 67.73 81.60 63.57 58.54 67.90 55.82 51.10 53.46 33.61 60.82 55.68
E5LARGE 82.64 66.94 67.54 72.37 82.00 66.41 67.54 71.98 57.94 50.56 54.25 36.35 64.21 58.74
Cohere-Embedv3 83.40 66.44 69.43 73.09 82.05 65.02 67.70 71.59 58.12 52.18 55.15 35.98 64.48 58.95

BLOOMZ 1.7B

k = 0 82.28 47.03 33.00 54.10 79.25 46.34 33.00 52.86 17.55 53.85 35.70 11.80 44.90 38.62
k = 1

LaBSE 84.60 54.27 62.00 66.96 81.75 55.81 60.50 66.02 57.19 56.75 56.97 35.39 60.92 56.33
E5LARGE 86.48 58.14 69.51 71.38 82.50 60.16 69.28 70.65 59.05 57.02 58.04 38.50 64.52 59.64
Cohere-Embedv3 86.48 58.80 71.31 72.20 82.50 57.48 69.36 69.78 59.27 57.07 58.17 37.69 64.44 59.46

BLOOMZ 3B

k = 0 79.48 45.99 34.12 53.20 76.25 45.07 34.02 51.78 14.16 58.47 36.32 9.50 44.12 37.70
k = 1

LaBSE 85.68 64.98 62.37 71.01 82.95 62.08 61.65 68.89 57.99 55.14 56.57 37.46 63.37 58.48
E5LARGE 86.52 66.68 69.05 74.08 83.70 65.69 70.17 73.19 59.41 55.46 57.44 39.09 66.20 60.95
Cohere-Embedv3 86.88 66.80 70.59 74.76 82.40 61.05 69.72 71.06 59.19 56.11 57.65 38.58 65.70 60.51

mT0 3B

k = 0 83.96 28.18 47.74 53.29 83.35 30.09 47.48 53.64 54.18 26.04 40.11 42.51 49.28 47.39
k = 1

E5LARGE 85.12 39.34 52.60 59.02 81.55 36.87 55.16 57.86 54.17 39.16 46.67 42.36 54.04 51.48

XGLM 564m

k = 0 60.80 32.11 24.84 39.25 55.50 31.24 24.83 37.19 11.91 47.93 29.92 10.46 33.29 29.21
k = 1

E5LARGE 23.76 35.05 52.97 37.26 33.25 36.50 50.60 40.12 21.61 23.67 22.64 12.83 32.25 28.21

XGLM 2.9B

k = 0 63.84 38.84 24.56 42.41 58.20 37.76 24.53 40.16 11.97 57.45 34.71 10.39 36.39 31.92
k = 1

E5LARGE 39.72 32.56 55.43 42.57 52.60 36.60 57.09 48.76 14.61 40.29 27.45 10.39 37.70 32.29

Aya-23 8B

k = 0 61.12 39.59 18.94 39.88 54.45 37.26 18.94 36.88 54.44 52.99 53.72 43.18 42.32 43.42
k = 1

LaBSE 56.24 68.24 63.67 62.72 55.35 67.81 58.76 60.64 56.66 47.71 52.19 36.42 56.76 52.99
E5LARGE 54.52 67.57 68.90 63.66 56.15 67.54 66.89 63.53 58.85 47.39 53.12 38.50 58.48 54.70
Cohere-Embedv3 54.16 67.66 69.61 63.81 54.05 68.51 64.72 62.43 58.77 46.53 52.65 37.17 57.91 54.01

Aya-101 13B

k = 0 84.40 77.78 73.78 78.65 82.35 76.98 73.83 77.72 35.25 49.33 42.29 26.26 64.44 56.23
k = 1

E5LARGE 86.40 79.19 77.42 81.00 85.80 79.24 75.56 80.20 48.59 53.20 50.90 36.20 69.07 62.08

Gemma 1.1 7B Instruct

k = 0 71.20 52.68 42.64 55.51 67.05 50.21 42.82 53.36 47.47 55.78 51.62 37.24 51.90 49.43
k = 1

E5LARGE 76.00 56.20 65.26 65.82 74.85 52.90 65.71 64.49 48.14 58.10 53.12 35.68 59.20 54.78

Llama 3 8B Instruct

k = 0 71.60 57.77 57.82 62.40 66.95 56.46 57.82 60.41 46.81 58.63 52.72 36.05 56.66 52.90
k = 1

LaBSE 83.16 64.86 67.48 71.83 78.15 63.34 62.50 68.00 48.57 59.01 53.79 34.94 62.45 57.14
E5LARGE 85.04 66.59 72.92 74.85 77.65 64.34 66.83 69.61 49.82 58.42 54.12 35.68 64.14 58.57
Cohere-Embedv3 85.76 66.79 73.64 75.40 74.70 62.31 67.21 68.07 49.64 58.74 54.19 37.02 63.98 58.67

Llama 3.1 8B Instruct

k = 0 74.88 49.85 57.04 60.59 70.85 48.66 57.07 58.86 37.45 58.53 47.99 26.56 53.43 48.50
k = 1

E5LARGE 86.36 58.70 72.99 72.68 78.45 32.49 66.05 59.00 49.37 58.85 54.11 35.16 59.82 55.24

Command-R

k = 0 65.16 35.27 43.50 47.98 59.25 35.42 43.39 46.02 50.72 58.96 54.84 44.44 48.46 48.32
k = 1

E5LARGE 67.96 39.21 67.91 58.36 62.30 41.45 66.92 56.89 55.10 58.58 56.84 41.99 55.71 53.52

GPT-3.5 Turbo

k = 0 68.80 63.96 68.53 67.10 63.30 63.64 68.46 65.13 50.65 57.99 54.32 45.18 61.17 57.93
k = 1

LaBSE 77.12 62.53 71.43 70.36 75.25 65.65 72.03 70.98 53.58 60.95 57.27 42.14 64.52 60.19
E5LARGE 77.24 63.30 72.48 71.01 75.25 65.97 73.47 71.56 53.84 60.41 57.13 42.73 64.97 60.61
Cohere-Embedv3 77.16 63.07 72.23 70.82 74.20 66.52 73.27 71.33 52.90 60.14 56.52 41.84 64.59 60.13

GPT-4o

k = 0 83.16 77.08 79.53 79.92 81.55 76.42 79.47 79.15 49.89 57.07 53.48 53.04 70.80 66.40
k = 1

E5LARGE 85.04 79.52 82.15 82.24 83.20 78.96 80.69 80.95 57.25 57.02 57.14 49.26 72.57 67.40

Table 16: Results on ICL classification. Bold and underlined numbers present the best and second-best models.
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Template Instruction:<INSTRUCTION>
Please only output the label.
<FEW-SHOT SAMPLE>

Options:<OPTIONS>
Input:<QUERY> Prediction:

Few-shot sample Input:<INPUT TEXT>. Prediction:<LABEL>

Dataset Prompt

FIRE 2020 Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input: Ikka waiting......... Prediction:Positive

Options:[’Positive’, ’Negative’, ’Mixed’, ’Unknown’]
Input:mind blowing ikkaaaa.... Prediction:

LinCE SA Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input:@brissamayen Thanks :) ay si todavia le hablas a mi chikiya in the future te invitamos
a la boda ;) lol 2̆665 Prediction:positive

Options:[’negative’, ’neutral’, ’positive’]
Input:@brissamayen @sanluispotoyees estopp I blashhh lol jk but aww :) thanks haha ( x Prediction:

NollySenti Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input:Enjoy! Very nice... very nice indeed. Prediction:positive

Options:[’negative’, ’neutral’, ’positive’]
Input:Damn....so interesting Prediction:

NusaX Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input:Kawan ulun bagawi di gojek Prediction:neutral

Options:[’negative’, ’neutral’, ’positive’]
Input:Macet di mana-mana pasl agi peraian Prediction:

SIB200 Instruction:Generate a topic label for a given input.
Please only output the label.
Input:Batu kabidi bateka mikalu bua njila ya makasa ni ya makalu. Prediction:travel

Options:[’geography’, ’science/technology’, ’entertainment’, ’politics’, ’health’, ’travel’, ’sports’]
Input:Anu kaniemesha uvua mutapika bibi ku mutu. Prediction:

Table 17: Prompt examples. k = 1 with LaBSE.
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Template Instruction:<INSTRUCTION>
Please only output the label.
<FEW-SHOT SAMPLE>

Options:<OPTIONS>
Input:<QUERY> Prediction:

Few-shot sample Input:<INPUT TEXT>. Prediction:<LABEL>

Dataset Prompt

FIRE 2020 Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input: Njan mathram aano sunny chechiyee kaanan vannath Sunny chechi uyir Prediction:Positive

Options:[’Positive’, ’Negative’, ’Mixed’, ’Unknown’]
Input:Sunny chechiye kaanan vannathu njan maathram aano Prediction:

LinCE SA Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input:hablar de los planes de spring break y mis 18 me pone bien hyper ! :D
Prediction:positive

Options:[’negative’, ’neutral’, ’positive’]
Input: Prediction:

NollySenti Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input:Amazing Film. . . . Indeed the most anticipated film from Nollywood 2019 didn’t disappoint.
Loved it all. Well done to Genevieve and Team. Prediction:positive

Options:[’negative’, ’neutral’, ’positive’]
Input:This is the nollywood evolution. . . . This is arguably my best Nigeria movie for year 2019.
I cannot find any misplaced in this movie, perfectly executed, simple and so informative about our
society n thought provoking on career part for our children Prediction:

NusaX Instruction:Generate a sentiment label for a given input.
Please only output the label.
Input:Tempatnya nyaman banget, makanannya enak, kopinya enak.
Pas buat nongkrong bareng teman-teman atau makan malam. Prediction:positive

Options:[’negative’, ’neutral’, ’positive’]
Input:Tempat yang bagus kalau dinikmati malam hari. Cukup nyaman. Harga cukup terjangkau.
Favorit saya steak tenderloinnya. Cukup enak. Prediction:

SIB200 Instruction:Generate a topic label for a given input.
Please only output the label.
Kel sirvisu ta uzadu txeu pa transporti, inkluindu artizanatu di lazer, y tanb0̆0ea ispidisonz ki ten
nisisidadi di dadus y v0̆0f3s a dist0̆0e1nsia. Prediction:science/technology

Options:[’geography’, ’science/technology’, ’entertainment’, ’politics’, ’health’, ’travel’, ’sports’]
Input:Sist0̆0e9ma di IA gosi ta uzadu kuazi txeu na 0̆0e1rias di ikonumia, midisina, injinharia y
militar, sima ten stadu ta podu na txeu konputador di kaza y software di v0̆0eddio geimi. Prediction:

Table 18: Prompt examples. k = 1 with E5LARGE.
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