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Abstract

This research introduces a comprehensive Ba-
hasa text-to-speech (TTS) dataset and a novel
TTS model, EnGen-TTS, designed to enhance
the quality and versatility of synthetic speech
in the Bahasa language. The dataset, span-
ning ~55.0 hours and 52K audio recordings,
integrates diverse textual sources, ensuring lin-
guistic richness. A meticulous recording setup
captures the nuances of Bahasa phonetics, em-
ploying professional equipment to ensure high-
fidelity audio samples. Statistical analysis re-
veals the dataset’s scale and diversity, laying
the foundation for model training and evalu-
ation. The proposed EnGen-TTS model per-
forms better than established baselines, achiev-
ing a Mean Opinion Score (MOS) of 4.45 ±
0.13. Additionally, our investigation on real-
time factor and model size highlights EnGen-
TTS as a compelling choice, with efficient
performance. This research marks a signifi-
cant advancement in Bahasa TTS technology,
with implications for diverse language appli-
cations. Link to Generated Samples: https:
//bahasa-harmony-comp.vercel.app/

.

1 Introduction

The Bahasa language, spoken by a vibrant and di-
verse community, serves as a linguistic tapestry that
encapsulates the rich cultural heritage of its speak-
ers. In our increasingly digital world, the demand
for advanced speech synthesis technologies tailored
specifically to Bahasa becomes more pronounced.
This necessity arises from the need for synthetic
speech that authentically captures the nuances of
Bahasa expressions, accommodating the linguistic
diversity within the Bahasa-speaking population,
including various dialects, registers, and cultural
nuances.

Existing text-to-speech (TTS) systems, while
making strides in the broader landscape, often fall

short in addressing the requirements of Bahasa.
This gap underscores the motivation for our re-
search, which introduces a meticulously curated
Bahasa TTS dataset and an innovative TTS model,
EnGen-TTS. While other models have attempted
to address the synthesis challenges for diverse lan-
guages, including Bahasa, they may exhibit draw-
backs such as limited adaptability, linguistic rich-
ness, or efficiency.

Our proposed EnGen-TTS model not only fills
these gaps but also showcases superior perfor-
mance when compared to established baselines.
The model achieves a remarkable Mean Opinion
Score (MOS) of 4.45 ± 0.13, outperforming ex-
isting models even without fine-tuning on addi-
tional Bahasa data. Our key strength is, positioning
EnGen-TTS as a solution for high-quality, adaptive
Text-to-Speech synthesis across various languages.

1.1 Contributions

1. Comprehensive Bahasa Dataset: Our research
introduces a meticulously curated Bahasa text-
to-speech (TTS) dataset, comprising ~55.0
hours sourced from diverse linguistic contexts.
This dataset, enriched with contributions from
skilled voice artists and varied textual sources,
stands as a valuable resource for the research
community and addresses the need for a com-
prehensive linguistic foundation for Bahasa
TTS systems. We will make dataset, trained-
model and finetuneing code publicly available.
Dataset Link: https://bit.ly/3Vi22x9

2. Efficient Model Architecture: The proposed
model architecture leverages a multi-lingual
T5 (m-t5) encoder (Xue et al., 2021) for con-
fitioning text latents for decoding audio se-
quence through neural codec language model-
ing. This innovative design optimizes the syn-
thesis process, allowing for finetuning more
efficiently and reduced computational time
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while maintaining high-quality Bahasa speech
synthesis.

3. Integration of Neural Codec Language Mod-
eling: The incorporation of a trainable neural
codec language modeling module represents
a novel contribution. This module captures
both textual and audio features, enhancing
the model’s ability to understand Bahasa lin-
guistic nuances effectively. The integration of
trainable weights in this module contributes to
the adaptability and expressive power of the
TTS system.

4. Versatile Pre-trained Model: Our research
presents a pre-trained TTS model, EnGen-
TTS, showcasing exceptional performance
without additional fine-tuning on Bahasa-
specific data. Trained on LJ-Speech (Ito and
Johnson, 2017) and VCTK, this model ex-
hibits inherent strengths in adapting to new
languages, highlighting its versatility and po-
tential for the development of high-quality
Text-to-Speech systems for diverse languages
like Bahasa.

2 Related Work

In the domain of multilingual text-to-speech (TTS)
datasets and models, several noteworthy contribu-
tions have been done for enhanced synthesis capa-
bilities across diverse languages. The IndicSpeech:
Text-to-Speech Corpus for Indian Languages (Sri-
vastava et al., 2020a) project recognizes the critical
need for TTS systems tailored to the linguistic di-
versity of India. Presenting a 24-hour corpus for
Hindi, Malayalam, and Bengali, the authors not
only contribute data but also train state-of-the-art
TTS systems for each language.

In a similar vein, the paper titled Towards Build-
ing Text-to-Speech Systems (Kumar et al., 2023)
for the Next Billion Users explores the landscape of
deep learning-based TTS systems, specifically fo-
cusing on the challenges and opportunities within
the context of Indian languages. Some models
like SLBERT (Susladkar et al., 2023) a speech
and language processing framework, which uses
multimodal attention mechanism to get the better
transition between the speech and language fea-
tures. Recognizing the computational expense as-
sociated with investigating the multitude of Indian
languages, lower resource availability, and untested
advances in neural TTS, the authors evaluate var-
ious aspects such as acoustic models, vocoders,

Entity Stats

Hours ~55 Hrs
Mean Audio Length 4.06 Sec

Total Words 458K
Vocab Size 23K
Sentences 68.9K

Mean Word Freq. 9.4
Total Recordings 52K

Table 1: Descriptive statistics of our Bahasa corpus. We
see that the corpus consists of a diverse vocabulary and
is at a scale well-suited for state-of-the-art neural TTS
models.

loss functions, training schedules, and speaker/lan-
guage diversity. The results indicate that mono-
lingual models with FastPitch (Łańcucki, 2021)
and HiFi-GAN V1 (Kong et al., 2020a), trained
jointly on male and female speakers, exhibit signif-
icant improvements across 13 languages, as mea-
sured by mean opinion scores (Viswanathan and
Viswanathan, 2005).

Considering the landscape of existing TTS mod-
els, it’s crucial to acknowledge advancements be-
yond the scope of the aforementioned papers. State-
of-the-art models such as Tacotron (Wang et al.,
2017), WaveNet (van den Oord et al., 2016), and
more recently, FastPitch and HiFi-GAN, have
demonstrated significant progress in the realm of
TTS. These models leverage deep learning archi-
tectures to generate natural and expressive speech,
contributing to the evolving landscape of TTS tech-
nologies.

3 Dataset

In creating our Bahasa text-to-speech (TTS)
dataset, we curated a linguistically diverse tex-
tual foundation. This dataset is integral to our in-
novative TTS model, EnGen-TTS. Drawing from
sources like Wikipedia and incorporating content
from chat-GPT translation, our approach involved
a strategic gathering of text samples. This fusion
of varied linguistic contexts lays the groundwork
for a robust Bahasa TTS dataset, capturing the lan-
guage’s nuanced breadth of expression.

3.1 Text collection

The textual foundation for our Bahasa text-to-
speech (TTS) dataset was meticulously curated
from diverse sources, enriching the dataset with
varied linguistic contexts. We gathered text sam-
ples from prominent repositories such as Wikipedia,
ensuring a broad representation of topics and lan-
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guage styles. Additionally, we incorporated content
generated through chat-GPT translation, further di-
versifying the dataset with conversational and trans-
lated expressions. This eclectic mix of sources
contributes to a comprehensive and linguistically
diverse textual corpus, laying the groundwork for a
robust Bahasa TTS dataset.

3.2 Speaker selection

To imbue the TTS dataset with authentic and ex-
pressive voices, we engaged two skilled voice
artists—one male and one female. These artists
were selected based on their proficiency in Bahasa
and their ability to convey the nuances of the lan-
guage with clarity and naturalness. Both of the
speakers are from southern Indonesia. The inclu-
sion of both male and female voices ensures a bal-
anced representation, catering to the diverse pref-
erences of users interacting with the TTS system.
The careful selection of voice artists contributes to
the overall quality and authenticity of the recorded
audio samples.

3.3 Recording Setup

Ensuring optimal recording quality is paramount
for the success of any TTS dataset. Our recording
setup was designed to capture the richness of Ba-
hasa phonetics and nuances. A controlled acoustic
environment was maintained to minimize exter-
nal interference, and high-quality recording equip-
ment was employed to capture the nuances of the
voice artists’ performances accurately. The setup
included professional microphones, soundproofing
measures, and studio-grade audio interfaces, cre-
ating an environment conducive to the production
of high-fidelity Bahasa TTS audio samples. All
the data we have recorded is at a sample rate of 48
kHz.

3.4 Corpus Statistics

We have a report of few statistics of our Bahasa
Corpus in Table 1. Upon collecting the text data
and organizing it into coherent sentences, the resul-
tant Bahasa TTS corpus exhibits notable statistics
reflecting the dataset’s scale and diversity. The cor-
pus comprises a total of 55 hours of recorded voice
across 52K recordings. This extensive dataset is
a testament to the effort invested in capturing a
comprehensive range of linguistic expressions, en-
suring the TTS system’s adaptability to various
applications and user preferences. These corpus
statistics lay the foundation for subsequent model
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Figure 1: Architectural (EnGen-TTS) Framework for
Bahasa Text-to-Speech Synthesis

training and evaluation, fostering advancements in
Bahasa TTS technology.

3.5 Dataset Characterstics

The dataset encompasses 52K recordings, featuring
a vocabulary size of 23,000 unique terms. Compris-
ing a total of 55 hours, evenly distributed between
male and female speakers, we strategically allo-
cated 5 hours from each speaker for validation and
an additional 5 hours from each speaker for test-
ing purposes.So a total of 10 hours of testing &
10 hours of validation. This balanced selection en-
sures comprehensive coverage and representation
in both the validation and test sets, fostering robust
evaluation and training of our Bahasa TTS model,
EnGen-TTS.

4 Architecture

Our research introduces the EnGen-TTS, a novel
Bahasa text-to-speech synthesis system inspired
by the state-of-the-art Encodec-based TTS Bark
(Schumacher and LaBounty Jr, 2023).The system
leverages the architectural framework illustrated in
Figure 1:

1. m-T5 Encoder: A frozen multi-li T5 encoder
is utilized for conditioning on text latents. This
encoder is pre-trained and is kept frozen during
training.

2. Audio Encodec: Audio Encodec from meta
(Kumar et al., 2024) is pre-trained on an exten-
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sive 60K-hour audio dataset and kept frozen during
training. This discretizes the audio into tokens, pro-
viding a robust audio representation without further
training.

3. Neural Codec Language Model: This module
generates the audio sequence in an autoregressive
manner. It conditions on both the text embeddings
from the m-T5 encoder and the speaker embed-
dings, yielding a sequence that closely follows the
linguistic and speaker-specific nuances of the input.

4. Speaker Encoder: A frozen encoder (Wan
et al., 2018) trained on the LibriSpeech dataset.
This module produces speaker latent vectors that
condition the TTS output on the speaker’s unique
voice characteristics.

5. HiFi-Gan Vocoder: It is for converting the mel
spectrogram into natural speech, this vocoder is
fine-tuned to adapt to the specific frequency profiles
of the Bahasa language. The system is designed
to synthesize natural-sounding Bahasa speech by
conditioning on both linguistic content and speaker
identity.

Audio Codec Setting: We adopt the pre-trained
EnCodec model(Kumar et al., 2024) as our tok-
enizer, a convolutional encoder-decoder model han-
dling 22050 Hz audio at variable bitrates. The
encoder generates embeddings at 75 Hz for 22050
kHz input, reducing the sampling rate by 320 times.
These embeddings use residual vector quantization
(RVQ) with 4 hierarchical quantizers of 1024 en-
tries each, corresponding to a 3K bitrate for audio
reconstruction at 22050 Hz.bFor our purposes, we
use only the first entity of the 750 × 4 discrete
representation matrix, as it contains all phonetic
and content information, resulting in a 750 × 1 ma-
trix. Higher bitrates, such as 12K, require more
quantizers (e.g., 16) and offer better reconstruction
quality. The EnCodec decoder then reconstructs
the waveform at 22050 Hz from the discrete codes.

4.1 Method
Let, Xs be the input audio, Xt is the text corre-
sponding to Xs, and, Xr be the reference audio of
the same speaker. The methodology commences
with byte pair encoding (BPE) to convert Xt into in-
put IDs. These are fed into the frozen m-T5 encoder
to derive text embeddings Xte. Concurrently, Xs

is discritized by the frozen Audio-Encodec encoder
Ee, producing discrete audio tokens in between
(0 to 1023). The Speaker Encoder processes Xr

to generate a speaker latent vector for each frame.
These vectors (Xse) are then used to condition the

Mel-Loss

CE-loss

GAN-Loss

Avg-Loss

Figure 2: Loss plots

model on the speaker’s voice, providing a direct
sequence that correlates with the length of the Xr

sample. Then, Neural Codec Language Model-
ing Nc predicts the audio sequence conditioned on
Xte and Xse. The Sequential cross-entropy loss
(Lce) between the generated audio sequence and
the ground truth audio sequence is computed here
to ensure the fidelity of the audio tokens Xf . The
predicted audio sequence is then passed through
the Encodec Decoder Ed to produce an interme-
diate audio representation. We calculate the loss
(Lmel) between the predicted mel-spectrogram Xp

and the GT-Mel (ymel) to ensure the model accu-
rately captures the handcrafted audio features.
Lce = − log(Nc(Ee(Xs), Xte, Xse)))

Xf = Nc(Ee(Xs), Xte, Xse))

Lmel = − | ymel − Ed(Xf ) |
At last, To achieve natural-sounding audio, we

pass intermediate udio representation to the HiFi-
Gan vocoder Vc which is conditioned on the
speaker embeddings Xse to prevent mode collapse.
The loss (Lgan) between the predicted speech and
input speech is computed to align the output with
the input audio distribution. To compute the Gan
loss we use the temporal Discriminator module as
a D. The loss follows:

Lgan = − log(D(Vc(Ed(Xf ), Xse))) + |Xs − Vc(Ed(Xf ), Xse)|

We adopt a composite loss function, taking a
weighted average of Lce, Lmel, and Lgan to update
the model’s weights. This combination of losses
ensures that the model learns not only the accu-
rate prediction of audio tokens but also the refined
generation of melspectrograms and the final audio
output. From Figure 2 we can see that all the 3
losses are helping model to learn optimally. The
overall loss (Lt) is expressed as follows:
Lt = αLce + βLmel + γLgan

From our experiment, we determined the optimal
values for the coefficients as follows: α = 1.2,
β = 0.7, γ = 0.6.
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4.2 Audio Codec language modeling

In this section, we delve into the core component
of our model, namely the Audio Codec Language
Modeling Module. This pivotal module encom-
passes a Masked Self-Attention mechanism, Layer
Normalization, two Cross-Attention blocks, and
FeedForward layers, all integrated with GeLU non-
linearity. As depicted in Figure 3, the process be-
gins with discrete audio tokens being right-shifted
and passed through the embedding layer to obtain
audio embeddings. These embeddings are then di-
rected through the Masked Self-Attention block.
This specific block is utilized to decode the audio
sequence autoregressively, akin to the GPT model,
where the full scope of tokens isn’t available dur-
ing decoding. Utilizing normal self-attention could
lead to overfitting on particular sequences and a
lack of generalization across different audio se-
quences. The output from the masked self-attention
undergoes layer normalization, augmented with a
residual connection from the input audio embed-
dings. Subsequently, the embeddings are processed
through a cross-attention module, conditioned on
the text embeddings (Xte) derived from the m-T5
encoder. The output from this cross-attention phase
is then subject to another layer normalization, fol-
lowed by a residual connection from the preceding
text-conditioned cross-attention block.

In contrast to previous methods (Zhang et al.,
2023) that concatenate speaker embeddings di-
rectly with audio embeddings, our approach em-
ploys an additional cross-attention step for con-
ditioning on speaker embeddings (Xse), enhanc-
ing the model’s generalizability across multiple
speakers in TTS applications. This output is fi-
nally channeled to a feedforward layer, followed
by GeLU non-linearity and layer normalization.
The architecture maintains a consistent embedding
dimension of 1024 and 16 attention heads across
all sub-modules. During inference, we also imple-
ment a KV-cache mechanism to enhance efficiency.
Our larger model configuration comprises 26 such
blocks, each meticulously designed to optimize per-
formance and accuracy in audio processing tasks.

4.3 Inference

During inference, the Neural Codec Language
Model (Nc) is initialized with the <SOS> (start
of sequence) token as the input. The model then au-
toregressively generates the entire sequence, condi-
tioned on the text embeddings produced by the pre-
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Figure 3: Audio Codec language modeling module

trained m-T5 model and the speaker embeddings
derived from the specified reference audio. During
training, audio codec inputs help the model learn
the mapping between audio and text embeddings.
However, during inference, the model relies on
learned embeddings and the autoregressive mecha-
nism to generate the sequence. Our current training
does not use scheduled sampling or a weaning-
off period typical of teacher forcing. The model
smoothly transitions from training to inference due
to robust text and speaker conditioning.

5 Experiments

5.1 Experimental Setup

We assessed our Text-to-Speech (TTS) models
quality using Mean Opinion Score (MOS) and
Comparative Mean Opinion Score (CMOS). MOS
measures average listener preferences, indicating
the models’ naturalness, pleasantness, and intelli-
gibility. CMOS compares models directly, identi-
fying slight differences in perceived quality. To-
gether, these metrics offer detailed insights into
each model’s performance and real-world applica-
bility.

5.2 Real-Time Factor (RTF)

It is a measure of how quickly a TTS system can
generate speech relative to the length of the input
text. Specifically, the RTF is calculated as the ra-
tio of the time taken to synthesize speech to the
duration of the resulting audio. For example, an
RTF of 1.0 means that the TTS system takes one
second to generate one second of speech. An RTF
of less than 1.0 indicates that the system is faster
than real-time, whereas an RTF greater than 1.0
indicates that the system is slower than real-time.
Lower RTF values are generally preferred as they
indicate a more efficient and faster TTS system.
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Baseline MOS CMOS RTF

GradTTS (Popov et al., 2021) 4.01 ± 0.11 -0.0515 0.019
GlowTTS (Kim et al., 2020) 4.16 ± 0.14 -0.0422 0.031

VITs (Kim et al., 2021) 4.19 ± 0.12 -0.0366 0.023
NaturalSpeech (Tan et al., 2024) 4.39 ± 0.19 -0.0201 0.014

XTTS (Casanova et al., 2024) 4.39 ± 0.12 -0.0222 0.013
CLaM-TTS (Kim et al., 2024) 4.41 ± 0.09 -0.0189 0.027

VAENAR-TTS (Lu et al., 2021) 4.36 ± 0.21 -0.0326 0.014
EnGen-TTS-L (Without pretrained) 4.41 ± 0.10 -0.0161 0.016

EnGen-TTS-L 4.45 ± 0.13 -0.0101 0.016

Table 2: Comparison of all models on Bahasa Datasets

5.3 Quantitative Results

As the Bahasa language is written in Latin script,
So there is always phonetic misalignment between
speech and the input text. To learn those align-
ments we first trained our models and baselines on
LJ-speech(Ito and Johnson, 2017) and VCTK(Yam,
2019) dataset. After pertaining we use these learn
weights for fine-tuning on our proposed bahasa
dataset. We found that Our EnGen-TTS-L (Large)
model outperforms other previous baselines at Ba-
hasa text-to-speech synthesis. We Evaluate our
model and baseline on MOS and CMOS metrics
from Table 2 Our EnGen-TTS-L model achieves
the highest MOS of 4.45 ± 0.13, surpassing all
other models in the comparison. This indicates that
listeners rated the speech generated by EnGen-TTS-
L as more natural and closer to human speech than
that of the competing models. Notably, EnGen-
TTS outperforms NaturalSpeech and CLaM-TTS,
which have MOS scores of 4.39 ± 0.19 and 4.41 ±
0.09, respectively.

Even without pre-training on Lj_speech and
VCTK dataset, our Engen-TTS-L model achieves
results comparable to NaturalSpeech, CLaM-TTS,
and XTTS, shows EnGen-TTS-L is good at adapt-
ing to new languages, which is important for cre-
ating high-quality speech synthesis for languages
like Bahasa.

In terms of CMOS EnGen-TTS also exhibits
superior performance. It achieves the lowest (best)
score in Metric A with -0.0101, indicating a closer
alignment with target speech characteristics than
other models.

We also evaluate baselines and our model on the
RTF (real-time factor) for generating the speech.
From Table 2 we found that EnGen-TTS is com-
parable fast, producing speech almost in real-time.
The EnGen-TTS is not only fast, but it also pro-
duces high-quality speech unlike Other methods,
GradTTS and GlowTTS, are a bit slower and don’t

generate speech quality as well as EnGen-TTS. Our
findings are important for people who want to pro-
duce speech systems and want the real-time infer-
ence with high and robust quality of speech.

These results collectively affirm that EnGen-
TTS not only advances the state-of-the-art in TTS
by delivering the most natural-sounding speech but
also maintains high performance across various
evaluation metrics. Which highlights the strength
of our model’s architecture and training methodol-
ogy.

5.4 Quntiative Results based on
Multi-Lingual Dataset

We have trained the model in 7 languages, For
Latin languages (Spanish, Portugeas, German, and
Dutch) we used the CML tts-dataset (Oliveira et al.,
2023) and for indic languages (Hindi, Marathi, and
Tamil), we used the indic-speech (Srivastava et al.,
2020b) dataset. For Fair comparison, We loaded
the models that are pre-trained from LjSpeech and
VCTK datasets. We evaluate each model with the
MOS score. We with our EnGen-TTS-L, we used
two more baselines to showcase our novelty.

The Table 3 presents a comparison of Mean
Opinion Scores (MOS) across different languages
for three models: VITS, NaturalSpeech, and
EnGen-TTS-L. The languages evaluated include
Spanish, Portuguese, German, Dutch, Hindi,
Marathi, and Tamil, with varying amounts of train-
ing data for each language. EnGen-TTS-L consis-
tently outperforms both VITS and NaturalSpeech
across all the languages evaluated. For example, in
Spanish, EnGen-TTS-L achieves a MOS of 4.28,
significantly higher than both VITS (3.39) and
NaturalSpeech (3.72). Similarly, in Portuguese,
EnGen-TTS-L scores 4.37, surpassing VITS (3.41)
and NaturalSpeech (3.78).

The performance gap is especially pronounced
for languages like Marathi and Tamil, where
EnGen-TTS-L achieves the highest scores of 4.87
and 4.78, respectively. In contrast, NaturalSpeech
performs noticeably worse with MOS scores of
4.01 and 3.96 for Marathi and Tamil, respectively,
while VITS scores lower at 3.92 for Marathi and
3.88 for Tamil.

Notably, EnGen-TTS-L also performs exception-
ally well in Hindi with a MOS of 4.55, signifi-
cantly outperforming both VITS (3.56) and Nat-
uralSpeech (3.88). In German and Dutch, which
have relatively more training data, EnGen-TTS-L
continues to lead with MOS scores of 4.17 and
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Languages No of Hours VITS NaturalSpeech EnGen-TTS-L

Spanish 23.34 3.39 3.72 4.28
Portuguese 17.82 3.41 3.78 4.37

German 18.03 3.27 3.47 4.17
Dutch 29.76 3.18 3.31 4.14
Hindi 15.11 3.56 3.88 4.55

Marathi 09.07 3.92 4.01 4.87
Tamil 10.56 3.88 3.96 4.78

Table 3: Comparison of MOS scores for different languages using VITS, NaturalSpeech, and EnGen-TTS-L models.

GT-Wavform Generated-Wavform

Figure 4: Comparison between Ground truth and Gen-
erated Audio

4.14, respectively, demonstrating consistent high-
quality speech synthesis across languages, even for
those with limited training data.

Overall, the results clearly indicate that EnGen-
TTS-L excels in generating more natural-sounding
speech across multiple languages, especially when
compared to the baseline models, VITS and Nat-
uralSpeech. This demonstrates the robustness of
the EnGen-TTS-L model in multilingual TTS tasks,
even with varying amounts of training data for each
language.

5.4.1 Model Performance
The model generates audio at a 24 kHz quality.
When it comes to pronouncing acronyms, the task
can be challenging. A helpful strategy is to artic-
ulate each letter separately, spacing them out to
improve clarity. For numerical data, converting
digits into their word equivalents often yields bet-
ter results. An important observation is that the
model might inadvertently replicate the reference
speaker’s audio in its output, particularly when
the input text closely mirrors the reference mate-
rial. The overall quality of the output is heavily
influenced by the caliber of the reference audio.
Ideally, the reference should be between 4 to 6
seconds long and exclusively contain clear speech,
free from any background noises. It’s worth not-
ing that employing a cartoon-like voice in audio
references might lead to model failure, as such in-
puts are significantly different from the data used
during the training process. The model’s capacity
is constrained to 604 audio tokens and 1024 text
tokens, where 600 audio tokens equate to approxi-
mately 16 seconds of sound. Look in Figure 4 for
a comparison between the Ground truth waveform
and the EngenTTS Generated waveform. We can
see that our model-generated output is very close
to the ground truth.

5.4.2 Implementation details
The EngenTTS-L’s Audio Codec language model-
ing module utilizes transformer architecture with
26 blocks, 16 attention heads, a hidden dimension
of 1024, a feed-forward layer dimension of 1024.
The average length of the waveform in LJspeech
and VCTK is 9.8 seconds, for our Bahasa dataset
average length of the audio is around 7 seconds.
During training, we randomly crop the waveform
to a random length between 2 seconds and 6 sec-
onds. Its corresponding phoneme alignments are
used as the phoneme prompt. We remove the con-
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secutive repetitions in the force-aligned phoneme
sequence. While training we keep max sequence
length of 500. The models are trained using 3
NVIDIA RTX 3090Ti 24 GPUs with a batch size
of 4 with gradient accumulation steps of 24 per
GPU for 800k steps. We optimize the models with
the AdamW optimizer, warm up the learning rate
for the first 32k updates to a peak of 5× 10−4, and
then linear decay it.

For the evaluation of inference performance,
all models were tested under identical hardware
conditions to ensure consistency and comparabil-
ity. Specifically, we utilized an NVIDIA T4 GPU
equipped with 16 GB of VRAM. Inference was
performed with a batch size of 16, and each in-
put had an average token length of 20. Under this
setup, the inference speed was approximately 200
milliseconds per batch for all models. This uniform
testing environment ensured that the performance
metrics reported are directly comparable across all
evaluated TTS systems.

5.5 Ablation
In our experimentation with different vocoders for
generating high-quality audio from latent repre-
sentations, Univnet emerged as the top performer,
achieving a Mean Opinion Score (MOS) of 4.41 ±
0.12. This slight edge over MelGan (4.39 ± 0.11)
and Wavgrad (4.36 ± 0.13) suggests its superiority
in preserving speech quality and naturalness during
waveform reconstruction (see Table 5). While HiFi-
GANs (4.35 ± 0.13) exhibited comparable perfor-
mance, its slightly lower MOS indicates room for
further optimization. Overall, these results high-
light the importance of vocoder selection in the
Text-to-Speech pipeline, with Univnet demonstrat-
ing its potential for creating highly faithful and
human-sounding synthetic speech.

Additionally, to explore the impact of model size
on both perceptual quality and real-time efficiency,
we conducted an ablation study as outlined in Table
4. The table presents results for three variants of
our EnGen-TTS model, denoted as EnGen-TTS-S,
EnGen-TTS-M, and EnGen-TTS-L, with varying
parameters. As model size increases from 87M
to 570M, we observe a corresponding improve-
ment in Mean Opinion Score (MOS), indicating en-
hanced speech quality. Specifically, EnGen-TTS-L
achieves a MOS of 4.42 ± 0.08, outperforming the
smaller variants. However, this comes at the cost
of increased Real-Time Factor (RTF), with EnGen-
TTS-L demonstrating a slightly longer synthesis
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Figure 5: Input text sequence length vs MOS

time (0.021) compared to EnGen-TTS-S (0.014).
This trade-off between model size, perceptual qual-
ity, and synthesis speed provides valuable insights
into tailoring the EnGen-TTS architecture based
on specific application requirements and resource
constraints.

We also conducted an ablation study focusing
on the impact of different loss components. Table
6 summarizes the Mean Opinion Scores (MOS) ob-
tained from three model variants: Lgan, Lmel, and
the combination of both (Lgan + Lmel). The results
indicate that incorporating both the adversarial loss
(Lgan) and the mel-spectrogram loss (Lmel) leads
to a MOS of 4.35 ± 0.12, showcasing a marginal
improvement over individual losses. This nuanced
exploration of loss components provides valuable
insights into the synergy between adversarial and
mel-spectrogram losses in our training pipeline,
contributing to the optimization of our Bahasa TTS
model for enhanced speech synthesis quality. Note:
For every loss we are always computing Lce, with-
out it model can’t be trained.

We conducted an ablation study on three
different model sizes—large, medium, and
small—focusing on their performance with vary-
ing lengths of input text sequences. Our observa-
tions indicate that for text sequences ranging from
5 to 75 tokens, there is minimal variation in the
MOS metrics. However, as the sequence length
exceeds 75 tokens, we noticed a decline in MOS
metrics. This decline correlates with deteriorations
in pronunciation and timbre quality of generated
speech, along with an increase in the Word Error
Rate (WER). As depicted in Figure 5, extending
the sequence length beyond 100 tokens results in
a significant decrease in MOS metrics, likely due
to the models’ inability to manage longer contexts
effectively, leading to catastrophic forgetting which
is discuss in the paper (Liu et al., 2024).
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Model Parameters MOS Hidden Dim Attention Heads No. of Blocks RTF

EnGen-TTS-S 87M 4.12 ± 0.19 512 4 6 0.014
EnGen-TTS-M 280M 4.35 ± 0.12 768 8 13 0.016
EnGen-TTS-L 570M 4.42 ± 0.08 1024 16 26 0.021

Table 4: Ablation Based on Model Size

Models MOS

Wavgrad (Chen et al., 2020) 4.36 ± 0.13
MelGan (Kumar et al., 2019) 4.39 ± 0.11

Univnet (Jang et al., 2021) 4.41 ± 0.12
Hifi-Gans (Kong et al., 2020b) 4.35 ± 0.13

Table 5: Ablation With Different Vo-Coder

Model MOS

Lgan 4.30 ± 0.12
Lmel 4.32 ± 0.13

Lgan + Lmel 4.35 ± 0.12

Table 6: Ablation based on Loss

6 Conclusions

In conclusion, our study presents a pivotal advance-
ment in Bahasa text-to-speech (TTS) synthesis,
combining a richly curated dataset with a ground-
breaking model design. Our comprehensive Bahasa
TTS dataset, encompassing over 55 hours of audio
and 52K recording, is a robust resource, crafted
with inputs from proficient voice artists and varied
textual content. The introduced model, EnGen-
TTS, excels in performance, surpassing conven-
tional benchmarks with its innovative architecture,
which includes a multi-task T5 (m-T5) encoder and
a neural codec language modeling module, without
necessitating extra fine-tuning for Bahasa. This
design not only enhances speech synthesis quality
but also ensures computation efficiency, establish-
ing a new standard in TTS technology. Our work
not only pushes forward the boundaries of Bahasa
TTS but also lays the groundwork for future de-
velopments in multilingual text-to-speech systems,
promising high-quality and diverse linguistic appli-
cations.

7 Limitations

One limitation of our proposed method is its re-
liance on audio sampled at 22.05 KHz. This sam-
pling rate is necessitated by the use of Meta’s pre-

trained Audio Encodec, which requires 22.05 kHz
audio data. However, this presents a challenge for
applications such as automatic voice calling, where
telephony standards typically mandate an 8 kHz
sampling rate. The required down-sampling from
22.05 KHz to 8 KHz results in a significant re-
duction in audio quality, manifesting as "muffled
speech" due to the drastic decrease in sampling rate.
Future work will focus on enabling high-quality
audio generation directly at 8 kHz to better align
with telephony requirements without compromis-
ing speech clarity.

Another limitation of our method lies in the max-
imum sequence length used during training, which
is capped at 500 audio tokens. This constraint
is well-suited for generating high-quality speech
for shorter sentences or sentences containing up
to 70-80 words. However, when the word count
exceeds this limit, the generated speech may ex-
hibit unnatural pauses or occasional missing words.
This issue is likely due to catastrophic forgetting
of longer contexts. Our future research will fo-
cus on increasing the context window up to 2048
audio tokens to better handle larger sentences or
paragraphs, thereby improving the naturalness and
continuity of generated speech.
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