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Abstract

Large Language Models (LLMs) suffer from
huge number of parameters, which restricts
their deployment on edge devices. Weight shar-
ing is one promising solution that encourages
weight reuse, effectively reducing memory us-
age with less performance drop. However, cur-
rent weight sharing techniques primarily fo-
cus on small-scale models like BERT and em-
ploy coarse-grained sharing rules, e.g., layer-
wise. This becomes limiting given the preva-
lence of LLMs and sharing an entire layer or
block obviously diminishes the flexibility of
weight sharing. In this paper, we present a per-
spective on head-wise shareable attention for
large language models. We further propose two
memory-efficient methods that share parame-
ters across attention heads, with a specific focus
on LLMs. Both of them use the same dynamic
strategy to select the shared weight matrices.
The first method directly reuses the pre-trained
weights without retraining, denoted as Direct-
Share. The second method first post-trains
with constraint on weight matrix similarity and
then shares, denoted as PostShare. Experimen-
tal results reveal our head-wise shared models
still maintain satisfactory capabilities, demon-
strating the feasibility of fine-grained weight
sharing applied to LLMs1.

1 Introduction

Large Language Models (LLMs) have achieved
breakthrough performance in a variety of natu-
ral language processing tasks (Wei et al., 2022;
Bubeck et al., 2023; Zhao et al., 2023). However,
such remarkable capability typically comes at the
cost of a substantial increase in the model size (Ka-
plan et al., 2020). Thus, LLMs with billions of
parameters (Brown et al., 2020; Touvron et al.,
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2023) are more resource-hungry despite a wide
margin of superiority over small-scale models (De-
vlin et al., 2019; Liu et al., 2019). This can also
pose challenges for deployment on low-capability
devices due to limited storage and GPU memory.

To address the high memory requirements of
models, weight sharing (Takase and Kiyono,
2021a; Liu et al., 2023) aims to reuse the same pa-
rameters to achieve memory- and storage-efficiency
while preserving model performance. For small-
scale models, e.g., BERT, it is known that several
techniques (Lan et al., 2020; Liu et al., 2023) are
proposed to explore across-layer parameter sharing.
While, Zhang et al. (2022) demonstrate identical
weights across different layers are the main cause
of training instability and performance degradation.
Moreover, the effectiveness of similar techniques
at the scale of LLMs remains uncertain.

Thus, we strive to solve this central question:
Can we design one fine-grained weight sharing
strategy that can smoothly apply to large language
models? For an effective memory-efficient weight
sharing method tailored to LLMs, two key chal-
lenges must be tackled: a) the choice of shared
modules whose weights are reused; b) the trade-
off between reducing memory requirements and
preserving diverse capabilities.

In the preliminary work, we empirically evaluate
the feasibility of weight sharing across the atten-
tion heads in LLMs inspired by attention map (i.e.,
attention scores) reuse. Subsequently, we intro-
duce our design of head-wise shareable attention
strategy. It is a simple and intuitive technique for
parameter sharing that can be implemented in a
few minutes. Specifically, given the pre-trained
weight matrices, we concatenate the weight ma-
trix W q and W k for each head to measure the co-
sine similarity that determines which heads can be
shared. Meanwhile, head-wise weight sharing pro-
motes parameter diversity in the layers, and thus
its performance degradation is acceptable when the
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number of shared parameters is below 30%. Even
as weight sharing ratio increases rapidly, our pro-
posed constrained post-training method can narrow
the performance drop, which may necessitate addi-
tional time.

In summary, our key contributions include:

• We investigate the feasibility of head-wise
weight sharing for large language models and
propose two corresponding methods named Di-
rectShare and PostShare.

• The proposed DirectShare is time-efficient and
retain a large portion of the performance when
sharing ratio is below 30%. Complementarily,
PostShare yields satisfactory performance via
post-training, especially under large ratios.

• Experiments show our proposal achieves compa-
rable performance to the competitive memory-
efficient methods. Additional analysis also indi-
cates its efficiency in small-scale models.

2 Related Works

2.1 Memory-efficient Approaches for LLMs
With the growing size of language models, sev-
eral memory-efficient techniques are proposed to
solve. One line to reducing the memory consump-
tion involves network compression, like quantiza-
tion (Bai et al., 2021; Tao et al., 2022), pruning
(Yang et al., 2022; Tao et al., 2023; Yang et al.,
2024) and knowledge distillation (Wu et al., 2023;
Tan et al., 2023). However, when applied to LLMs,
many approaches have become infeasible (Fran-
tar and Alistarh, 2023). To recover performance,
they require extensive post-training of the model
(Dettmers et al., 2023; Sun et al., 2023).

In addition to these conventional methods, re-
searchers have also investigated more efficient vari-
ations of the self-attention mechanism for LLMs
(Kitaev et al., 2020; Lv et al., 2023). Reformer (Ki-
taev et al., 2020) leverages sparsity in the attention
layers to improve the efficiency on long sequences
and with small memory use. Lightformer (Lv et al.,
2023) deploys SVD weight transfer and parameter
sharing, which can significantly reduce the parame-
ters on the premise of ensuring model performance.
In this paper, our focus is on weight sharing across
attention heads.

2.2 Weight Sharing
Weight sharing is a widely used technique (Lan
et al., 2020; Liu et al., 2023; Lv et al., 2023; Xu and

McAuley, 2023) that aims to improve parameter
efficiency and reduce inference memory require-
ments. Weight sharing enables model compression
by eliminating redundant parameters and decouples
computation and parameters by reusing the same
parameters for multiple computations.

Task-oriented Weight Sharing. One of the
prevalent tasks using weight sharing mechanisms
is nerual machine translation (NMT). Tied Trans-
former (Xia et al., 2019) considers model-level
sharing and shares the weights of the encoder
and decoder of an NMT model. Dabre and Fu-
jita (2019) proposes a method, which shares the
weights across all Transformer layers and keeps
performance in NMT. Besides, Chi et al. (2021)
bring the idea of ALBERT (Lan et al., 2020) to the
speech recognition task.

Layer-wise Weight Sharing. Universal Trans-
former (Dehghani et al., 2019) shares the weights
across all layers with a dynamic halting mechanism
and improves accuracy on several tasks. Subformer
(Reid et al., 2021) utilizes sandwich-style param-
eter sharing, which only shares the central layers
while leaving the first and last layers independent.
Takase and Kiyono (2021a) study strategies to ex-
plore the best way to prepare parameters of M lay-
ers and assign them into N layers (1≤M≤N).

3 Motivation and Empirical Analysis

In this section, we analyze the feasibility of head-
wise weight sharing from the perspective of atten-
tion map reuse.

3.1 Attention Map Similarity: From
Layer-wise to Head-wise

Prior researches (Xiao et al., 2019; Ying et al.,
2021; Bhojanapalli et al., 2021) demonstrate the
effectiveness of attention map reuse due to the high
similarity of attention scores between different lay-
ers (especially for adjacency layers). Motivated by
this, we delve into attention map similarity, specif-
ically transitioning from layer-wise to head-wise
analysis. To measure the evolution of the attention
maps over layers and heads, we use the cosine sim-
ilarity Scos. When Scos equals one, it means that
the attention maps are perfectly similar. Consid-
ering two specific self-attention layers, the cosine
similarity is calculated as follows:

Scos(Ap,Aq) =
AT
p Aq

∥Ap∥∥Aq∥
(1)
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Figure 1: (a) Layer-wise Attention Map Similarity. Taking the last layer as an example, the most similar attention
layer with it is marked with

√
. (b) Head-wise Attention Map Similarity.

√
mark the top n heads whose attention

maps that are most similar to the 6-th head in the last layer(n=the number of heads per layer). (c) Weight Matrix
Similarity. ⃝ mark the connection between attention map similarity and weight similarity.

where Ap,Aq denote the attention map of layers p
and q.

We visualize the layer-wise and head-wise at-
tention map similarity across three task-specific
datasets: WMT14 (En-Fr) (Callison-Burch et al.,
2009), CommonsenceQA (Talmor et al., 2019) and
WSC (Levesque et al., 2012). As shown in Fig. 1(a)
and (b), the degrees of similarity in attention scores
computed in different layers and heads present a
certain level of consistency across different tasks.
In addition, we find that the cosine similarity val-
ues for pairs with high similarity are higher among
different heads compared to layers. Specifically,
the most similar self-attention layers reach a cosine
similarity value of approximately 0.90, while in the
case of head-wise comparisons, several pairs have
a remarkable similarity of nearly 0.99.

One observation is that as the number of pa-
rameters increases, modules with high similarity
exhibit variations, particularly in the fine-grained
(e.g., head-wise) comparisons within large-scale
pre-trained language models. Existing approaches
employ "learning to share" techniques to dynami-
cally adjust the sharing strategy (Xiao et al., 2019)
or use a uniform sharing strategy but train the mod-
ified model from scratch (Ying et al., 2021; Shim
et al., 2023). However, such strategies pay little
attention to reusing attention map among heads and
incur high computational costs for LLMs.

3.2 From Attention Map Similarity to Weight
Matrix Similarity

Attention weight matrix similarity provides a com-
plementary perspective to attention map similarity,

since the attention scores are calculated based on
the weight matrices W q,W k. Weight sharing is
traditionally based on the assumption that overpa-
rameterization is evident in large-scale Transformer
models, i.e., the difference in weights decreases as
model size increases (Li et al., 2020). In this pa-
per, we explore a potential relationship between
attention map similarity and weight similarity.

As mentioned in Section 3.1, head-wise atten-
tion map similarity is higher than the cross-layer
similarity, while to the best of our knowledge, head-
wise attention map reuse is yet to be explored. This
might be attributed to the difficulty in finding an
optimal dynamic head-wise sharing strategy across
different tasks. One intuitive solution is to first
measure the attention map similarity between ev-
ery pair of heads in each dataset separately, and
then choose the overlapping modules to share.

Combined with the analysis of weight matrix
similarity, we have made a key discovery: given a
pre-trained LLM, by concatenating the weight ma-
trix W q and W k for each head to measure the co-
sine similarity, the most similar weight matrix cor-
responds to the overlapping modules with highly
similar attention maps observed across different
datasets. As illustrated in Fig. 1(b) and (c), deep
green circles mark the connection between atten-
tion map similarity and weight similarity (more
analysis in Appendix B).

This finding implies that attention heads with
high weight matrix similarity also demonstrate
analogous attention map similarity regardless of
the datasets and model size. Furthermore, since
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Figure 2: ① DirectShare: Inspired by attention map reuse, directly share weight matrices across different heads
based on cosine similarity; ② PostShare: To balance the memory usage and the performance, implement post-
training with the constraint of weight matrix similarity and then share.

different heads within the layer present sufficient
diversity (Zhou et al., 2021; Vig, 2019), we suppose
that weight sharing among these heads can result
in higher model behavior consistency compared to
layer-wise weight sharing. Thus, we further pro-
pose a simple yet effective method for head-wise
weight sharing, especially validating its feasibility
in large-scale models.

4 Head-wise Shareable Attention

Inspired by Section 3, we present a perspective on
head-wise shareable attention for LLMs. Based
on one straightforward yet effective weight sharing
strategy, we propose two complementary methods,
named DirectShare and PostShare. The overview
of our proposal is presented in Figure 2.

4.1 Head-wise Weight Sharing Strategy

Multi-Head Attention (MHA) block is essentially
a procedure that computes the relevance of each
token in a sentence with respect to all other tokens.
Let L be the number of input tokens and M be
the number of attention heads in total. Given the
input X ∈ RL×D, we can obtain queries, keys, and
values in the i-th (1≤i≤M ) head via three weight
matrices, denoted by W q

i ∈ RD×dq , W k
i ∈ RD×dk

and W v
i ∈ RD×dv , respectively. D is the embed-

ding dimension, and dq, dk(= dq), dv represent the
dimensions of three weight matrices, respectively.

To investigate the strategy of weight sharing ap-
plied to all the above three weight matrices across
heads for LLMs, we perform preliminary experi-
ments in the choice of head-wise match functions
Match(·,·). For the match functions, inputs are the
weight matrices of head i, j and outputs are called
matching scores m. The higher the score, the more
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Figure 3: Experiments performed on PIQA and Open-
BookQA using different head-wise match functions for
Baichuan2-7B model.

likely it is to share parameters across the heads.

m∗
i,j = Match(W ∗

i ,W
∗
j ), ∗ ⊆ {q, k, v} (2)

Based on our intuitive analysis in Section 3.2, we
choose the cosine similarity between the concate-
nation matrix of W q

i and W k
i :

mq
i,j = mk

i,j = mv
i,j = Scos(W q

i ||W
k
i ,W

q
j ||W

k
j )

(3)
Besides, we try another five match functions to
compare: (1) Only W q

i used to measure the co-
sine similarity, i.e., m∗

i,j = Scos(W q
i ,W

q
j ); (2)

Only W k
i used to measure the cosine similarity,

i.e., m∗
i,j = Scos(W k

i ,W
k
j ); (3) Only W v

i used
to measure the cosine similarity, i.e., m∗

i,j =
Scos(W v

i ,W
v
j ); (4) Concatenate all the three ma-

trices and then calculate the cosine similarity, i.e.,
m∗

i,j = Scos(W q
i ||W k

i ||W v
i ,W

q
j ||W k

j ||W v
j ); (5)

Separately use W q
i ,W

k
i ,W

v
i to measure the cosine

similarity and do weight sharing respectively, i.e.,
m∗

i,j = Scos(W ∗
i ,W

∗
j ) and again ∗ ∈ {q, k, v}.

Figure 3 shows the results of our exploratory
study via DirectShare. As evidenced by the per-
formance curve, using separately weight sharing
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causes a significant decline in performance com-
pared with sharing the three weight matrices to-
gether. And it is enough to do head-wise weight
sharing focusing only on the concatenation ma-
trix of W q

i and W k
i , since it achieves a favorable

trade-off between reducing memory footprint and
maintaining performance.

4.2 DirectShare
In practice, we traverse all head pairs to compute
matching scores on Equation 3 and for each head,
select the one with the highest score to match.
When candidate shareable head pairs prepared, we
select the top-N pairs in descending order accord-
ing to the desired sharing ratio α. Finally, we can
share the weight matrices together between each
selected attention head pairs. A detailed algorithm
for our DirectShare is presented in Algorithm 1 and
Appendix A.

Algorithm 1: DirectShare using Head-
wise Weight Sharing Strategy

Input: Sharing ratio α, Original LLMM,
Number of layers L,
Number of heads per MHA blockH
Output: The LLMM∗ after weight sharing

1 Initialize candidate buffer Dτ ;
2 for layeri ← 2 to L do
3 for i← 1 toH do
4 indexi ← (layeri, i);
5 indexm← None;
6 sm← -1;
7 for layerj ← 1 to layeri − 1 do
8 for j ← 1 toH do
9 indexm ← (layerj , j);

10 Compute Scos using Eq. 3;
11 if Scos > sm then
12 sm ← Scos

13 Store candidate shareable head pair
< indexi, indexm, sm > in Dτ ;

14 Sort Dτ by descending matching scores sm;
15 N ← Top_N(Dτ , L,H, α);
16 M∗←Weight_Share(M, N ).

4.3 PostShare
Although DirectShare demonstrates effectiveness
in our experiments, we have also encountered no-
ticeable performance drop in minor reading com-
prehension datasets. To alleviate this problem, we

propose PostShare, softly aligning model weights
during the post-training process.

With the same sharing strategy (Section 4.1),
PostShare first selects the set of weight matrices
to share. Next, we incorporate a regularization
term into the loss function to constrain our post-
training process, encouraging selected weight ma-
trices more similar:

Lw =
1

|N |
∑

(i,j)∈N

 ∑
∗∈{q,k,v}

∥∥W ∗
i −W ∗

j

∥∥
2


(4)

where N is the set of selected attention head pairs
for sharing. With this regularization weight loss,
the proposed PostShare learn model weights by
minimizing the following combined loss function:

L = Lpost−training + γ × Lw (5)

where Lpost−training is the original post-training
loss, γ controls the strength of Lw. After the post-
training process, the corresponding weight matrices
can be shared as DirectShare does. Although post-
training indeed increases the time cost of weight
sharing, PostShare achieves stable and satisfactory
performance across different tasks when reducing
memory usage.

5 Experiments

5.1 Experimental Settings
Models. We evaluate DirectShare and PostShare
on two open-source LLMs: Llama2 (Touvron et al.,
2023) and Baichuan2 (Baichuan, 2023) with 7B
and 13B parameters. In PostShare, we use English
Wikipedia (Foundation) to post-train the backbone
models for weight sharing.
Evaluation. To comprehensively evaluate the
model capabilities, we experiment on five distinct
tasks: reasoning, understanding, language, knowl-
edge and examination. For consistent comparisons,
we deploy open-source LLM evaluation platform
OpenCompass (Contributors, 2023).
Baselines. Since existing weight sharing tech-
niques do not support LLMs, we compare Direct-
Share against Magnitude Pruning (Zhu and Gupta,
2017) and LLM-Pruner (Ma et al., 2023), two in-
fluential works for model pruning. Certainly, they
are not directly comparable. To ensure fairness in
the experiments, both of them only prune the multi-
head attention module and thus compare when the
same number of parameters is reduced. See Ap-
pendix C for additional information.
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Benchmark Type Reasoning NLU Knowledge

Ratio Method CMNLI OCNLI AX-b AX-g RTE RACE-
middle

RACE-
high OBQA CSL TNEWS Wino-

Grande BoolQ C-Eval MMLU

0% Llama2-7B 32.98 33.12 53.53 55.34 49.82 33.15 35.51 31.80 55.62 20.22 54.04 70.67 32.20 46.69

10%

Magnitude 32.99 30.63 56.70 49.44 47.29 25.42 26.47 28.20 49.38 14.85 51.58 60.80 22.16 28.20

LLM-Pruner 32.99 33.75 57.61 50.00 48.38 28.20 30.73 27.20 53.12 19.76 52.98 66.09 22.31 38.11

DirectShare 33.00 32.50 54.17 51.97 50.90 28.34 28.96 28.20 54.37 20.86 52.63 67.74 28.75 43.43

30%

Magnitude 33.16 35.00 54.71 50.56 46.93 21.80 21.53 25.00 45.62 7.01 50.88 44.59 24.38 23.15

LLM-Pruner 32.99 31.25 56.34 52.53 48.74 21.52 22.21 26.80 50.00 10.20 50.88 54.77 22.82 25.16

DirectShare 33.33 32.50 57.07 51.69 49.10 21.45 21.53 26.00 51.25 20.22 50.18 54.43 26.24 26.53

0% Llama2-13B 32.99 35.00 58.81 50.56 47.29 60.24 58.03 42.40 58.75 22.13 55.44 71.50 40.17 55.81

10%

Magnitude 32.82 33.12 51.99 50.56 48.38 22.42 21.78 27.40 51.25 15.39 49.82 62.32 22.52 27.54

LLM-Pruner 32.99 36.25 58.70 50.00 46.93 51.46 50.80 47.00 56.25 20.95 55.44 68.07 30.25 51.45

DirectShare 32.99 36.25 57.61 50.00 47.29 54.04 55.63 39.40 56.88 17.94 54.39 69.45 37.17 52.81

30%

Magnitude 33.78 33.75 46.65 50.00 51.99 21.80 22.01 28.80 46.25 4.19 49.12 56.45 23.99 22.86

LLM-Pruner 32.99 34.38 57.16 54.21 45.85 23.96 25.33 26.40 53.75 16.76 51.58 63.21 22.17 27.22

DirectShare 32.99 35.00 58.33 50.00 46.57 26.53 27.53 27.40 59.38 16.12 50.18 59.36 22.30 30.79

Table 1: Evaluation results of DirectShare based on the Llama2-7B and Llama2-13B models. Bold and underline
indicate the best and the second best results.

5.2 Main Results

5.2.1 Evaluation on DirectShare

Table 1 shows the overall performance of Direct-
Share based on Llama2 models. Benchmarks are
classified into three categories: reasoning, natu-
ral language understanding (NLU) and knowledge-
related. The corresponding results for Baichuan2
models can be found in Appendix D.
Logical and Common Sense Reasoning. In the
domain of reasoning, when applying a 30% param-
eter sharing to Llama2-7B, our DirectShare can
still maintain an average performance of 99.51%
across the five benchmarks, compared to the base
model. With the same setting, the shared Llama2-
13B retains 99.21% performance. This suggests our
finding of head-wise shareable attention for LLMs
indeed can work without significant performance
degradation in reasoning tasks.

The overall efficacy of our DirectShare rivals
with the structured pruning results of LLM-Pruner,
without any training. Moreover, our method is
quite simple and fast, independent on the origi-
nal training corpus, while structured pruning will
nearly fail in the zero-shot generation tasks without
dependencies (Ma et al., 2023).
Natural Language Understanding (NLU). Com-
pared to reasoning tasks, our experimental results

unveil a notable performance decrease of approxi-
mately 30% in large-scale reading comprehension
datasets when applying DirectShare to Llama2-7B
model. Beyond this, we discover that on content
summary and analysis tasks, DirectShare manages
to retain 94.23% of the performance exhibited by
the base model. The evaluation results of Llama2-
13B align with those of Llama2-7B and we find
the accuracy gap is larger as model size increases.
This trend also exists in Magnitude Pruning and
LLM-Pruner, even the performance drop is larger:
LLM-Pruner drops ≈ 3 points more than ours on
average while Magnitude Pruning is outperformed
by ours by a large margin.

To mitigate this degradation, some post-training
pruning methods like SparseGPT (Frantar and Al-
istarh, 2023) preserves accuracy via the weight
update procedure. Similarly, LLM-Pruner uses the
low-rank approximation (LoRA, Hu et al., 2022) to
post-train the pruned model. Motivated by this, our
PostShare proves to be beneficial, substantially im-
proving 17.80% accuracy, albeit at a certain amount
of time cost. For more details refer to Section 5.2.2.
However, this does not diminish the significance
of our DirectShare. The absence of post-training
allows us to better understand the feasibility of
head-wise weight sharing for LLMs.
Knowledge-related Tasks. As depicted in Table 1,
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Ratio Method WinoGrande BoolQ C-Eval MMLU RACE-middle RACE-high OBQA OBQA-fact

0% Llama2-7B 54.04 70.67 32.20 46.69 33.15 35.51 31.8 42.2

30% DirectShare 50.18 54.43 26.24 26.53 21.45 21.53 26.00 27.60
PostShare 52.98 ↑ 2.80 66.57 ↑ 12.14 26.38 ↑ 0.14 33.36 ↑ 6.83 29.81 ↑ 8.36 29.45 ↑ 7.92 27.60 ↑ 1.60 33.60 ↑ 6.00

Table 2: Overall Performance of PostShare based on Llama2-7B model. See Appendix E for results on Llama2-13B.

DirectShare takes a clear advantage over other ap-
proaches in the field of examination. Our chosen
C-Eval and MMLU span diverse disciplines to test
both world knowledge and problem solving abil-
ity exclusively in a Chinese and English context,
respectively. To make this more concrete, Fig-
ure 4 vividly contrasts the performance across dif-
ferent subjects based on Llama2-7B on C-Eval and
MMLU. But we have to admit directly do weight
sharing across attention heads results in a obvious
decline in knowledge-related abilities, which can
be solved in PostShare.
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Figure 4: Performance of DirectShare across different
subjects based on Llama2-7B on C-Eval and MMLU.

5.2.2 Evaluation on PostShare
Based on the evaluation conducted on DirectShare,
we experiment on PostShare, with a special focus
on those benchmarks where DirectShare experi-
ences a large accuracy degradation.

Table 2 reports how the performance improves
with only 0.5 training epoch for Llama2-7B model.
Specifically, in the reading comprehension and
knowledge-related tasks mentioned above, Post-
Share achieves 87.53% of the overall accuracy at-
tained by the original model. Most of the gap be-
tween models after DirectShare and the original
counterparts can be narrowed via PostShare, espe-
cially in BoolQ and RACE datasets.

Last, it is important to emphasize that here we
perform post-training with limited training corpus
and thus it runs the risk of overfitting when train-
ing only for one epoch. For example, PostShare
achieves the higher accuracy in BoolQ at 0.3 epoch
than at 0.5 epoch (68.29 vs. 66.57). In contrast, as
the training epoch increases from 0.5 to 0.9, the

accuracy in WinoGrande rises (52.98 vs. 54.39). It
means that due to the domain-constrained corpus,
overfitting to one specific dataset will potentially
compromise the capabilities in other tasks. The
in-depth analysis is provided in Appendix F.2.

5.3 Additional Analysis
Statistics of Memory Reduction. Table 3 presents
the statistics of the parameter count and memory
requirements when applying DirectShare. When
sharing 30% parameter sharing in the MHA block,
our method achieves 10-13% memory.

Moreover, we find our weight sharing strategy
(Section 4.1) also applies to FFN block. We directly
observe the weight matrix similarity in FFN and
find the concatenation matrix of gate_proj, up_proj
and down_proj can be used as matching function
for FFN block. Since FFN does not have explain-
able fine-grained sub-blocks (like attention heads
in MHA), we use Traversal Searching method to
choose the optimal size of sub-block and find shar-
ing the whole FNN layer works best in the perfor-
mance maintenance. Finally, when we share 30%
of parameter sharing in both MHA and FFN block,
the model can save 26-28% GPU memory.

Sharing Ratio #Params GPU Memory

Llama2-7B
0% 6.74B/100% 17826M/100%
30% MHA 6.09B/90.36% 15512M/87.02%
30% MHA+FFN 4.74B/70.33% 12932M/72.55%

Llama2-13B
0% 13.02B/100% 30800M/100%
30% MHA 11.76B/90.32% 27898M/90.58%
30% MHA+FFN 9.21B/70.74% 23002M/74.68%

Table 3: The actual memory savings brought by Direct-
Share on Llama2 models (recorded during inference on
the BoolQ Dataset in OpenCompassv1.0 platform).

Ablation on Head-wise Matching Functions. For
weight sharing, the choice of shared heads is criti-
cal. In Figure 3, we plot the performance curve on
PIQA (Bisk et al., 2020) and OpenBookQA using
different head-wise match functions for Baichuan2-
7B model. And the corresponding detailed results
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Method
Ratio=30% CMNLI OCNLI AX-b AX-g RTE Wino-

Grande BoolQ C-Eval MMLU RACE-
middle

RACE-
high OBQA OBQA-

fact CSL

DirectShare 33.33 32.50 57.07 51.69 49.10 50.18 54.43 26.24 26.53 21.45 21.53 26.00 27.60 51.25

DirectShare
+ 4bit GPTQ

34.61
↑ 1.28

30.63
↓ 1.87

57.79
↑ 0.72

47.47
↓ 4.22

49.82
↑ 0.72

49.12
↓ 1.06

51.95
↓ 2.48

21.88
↓ 4.34

25.38
↓ 1.15

21.24
↓ 0.21

21.33
↓ 0.20

23.40
↓ 2.60

26.60
↓ 1.00

50.00
↓ 1.25

Table 4: Performance of combining weight sharing and quantization on Llama2-7B model.

are presented in Appendix F.3. Notably, using the
cosine similarity between the concatenation matrix
of W q and W k attains the most favorable outcomes.
This may be because it guarantees the maximum
similarities between attention maps from the model
before and after weight sharing. Also, this choice
is much more stable and robust in some tasks like
reading comprehension(e.g., OpenBookQA).
Robustness on the Model Size. In previous
experiments, we adopt our approach in LLMs.
Since small-scale models are not highly over-
parameterized as large-scale models (Gao et al.,
2023), we further verify the effectiveness of our
method on smaller models like BERT-base, GPT2-
small. For analysis, we set the sharing ratio from
0% to 50% with a step of 10% for the fine-tuned
GPT-small model on WMT-14 En-Fr dataset. As
shown in Table 5, at a 50% sharing ratio, the GPT-
small can still yield a BLEU score of 39.44 without
any post-training. Such kind of variance in perfor-
mance is acceptable that to some degree proves our
method is also suitable for small-scale models.

Sharing Ratio 0% 10% 20% 30% 40% 50%

BLEU 43.62 42.49 41.95 41.34 39.96 39.44
Meteor 42.33 40.75 40.18 38.43 37.21 36.62

Table 5: Robustness on the model size via PostShare
(performed on GPT2-small using WMT-14 En-Fr).

Combine Weight Sharing with Quantization. In
terms of saving memory, post-quantization em-
ploys the strategy of reducing precision in the LLM
parameters, while weight sharing aims to reduce
the number of parameters. From these two differ-
ent directions, we suppose integrating weight shar-
ing and quantization may help towards even more
memory reduction of LLMs. Hence, we choose
GPTQ (Frantar et al., 2022) as a representative and
test the effectiveness of applying two techniques
in tandem. Specifically, we quantize Llama2-7B
model after 30% DirectShare to 4 bit precision. As
reported in Table 4, they can be effectively com-
bined with no more than 5 points performance drop.
Combine PostShare with DirectShare. Another
interesting research finding is the combination of
our DirectShare and PostShare, where PostShare

21.45

29.81
29.18

21.53

29.45 27.19

50.18
52.98 54.04

51.69

53.93
51.12

65.94
76.00

76.50
26.00

27.60

26.40

54.43

66.5768.96 26.24 26.38

27.65

Figure 5: Evaluation results when combining Direct-
Share with PostShare based on Llama2-7B model.

can play a role in fast performance recovery for Di-
rectShare. Specifically, if we set the sharing ratio to
30% and post-train only 0.5 epoch, the combination
based on Llama2-7B performs on par with the Post-
Share, as Figure 5 shows. It can also be seen that
DirectShare+PostShare outperforms in some spe-
cific datasets like BoolQ and WinoGrande, which
we speculate is due to the mitigation of overfitting
problem in PostShare to some extent.
Visualization Study on the Shared Weights. To
provide a more detailed explanation of our ratio-
nale behind head-wise weight sharing, we conduct
a visualization study on the ratios of weight shar-
ing across the MHA layers in two models of dif-
ferent scales (see Appendix F.6). Results indicate
the shareable weights distribution across attention
heads is similar regardless of the sharing ratio. We
also observe a relative balanced sharing ratio across
MHA layers than layer-wise weight sharing, which
may seem counter-intuitive. However, we find such
fine-grained operation on weights has already been
used in model pruning (Sun et al., 2023; Ma et al.,
2023), constantly superior to layer-wise pruning.

6 Conclusion

In this paper, we illustrate the feasibility of fine-
grained weight sharing strategy applied in LLMs,
namely, head-wise shareable attention. Conse-
quently, we propose two methods for head-wise
weight sharing called DirectShare and PostShare,
which are complementary in terms of time and
performance. Our DirectShare concentrates on a
simple, no-training yet effective sharing strategy,
performing competitively with one of the state-of-
the-art model pruning methods. PostShare, on the
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other hand, shows an impressive performance on
keeping LLM’s capabilities, needing to compro-
mise on time efficiency. Last, we hope our work
inspires researchers to explore better fine-grained
weight sharing techniques for LLMs.

Limitations

This paper primarily focuses on the head-wise
weight sharing in Multi-Head Attention (MHA)
block, inspired by the attention map similarity
across heads. Although we have explored the fea-
sibility of our proposal weight sharing strategy in
the Feed-Forward Network (FFN) block, we only
complete downstream evaluation on Baichuan2-7B
model. To further verify the effectiveness of apply-
ing weight sharing to both MHA and FFN block,
we should offer comprehensive experimental val-
idation across different models and compare the
results with baselines. We leave it as future work.

Furthermore, the computing resources limited
our ability to conduct experiments on LLMs with
a model size of more than 13B. Although we hy-
pothesize that our approach can still work in larger
models, which proves to have redundant parame-
ters (Frantar and Alistarh, 2023), it is crucial to
validate this hypothesis with further exploration.
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A Detailed Explanation for DirectShare

Algorithm 1 summarizes the procedure of Direct-
Share:

(1) Matching (line 1-13)
We first initialize the buffer Dτ (line 1) which

is then used to store each candidate shareable at-
tention head pairs. Next, the iterative process of
matching begins:

Prepare Candidate Pairs (line 2-9): Given the
number of layers L and the number of heads per
MHA block H, we can construct candidate atten-
tion head pairs for sharing. For each pair, we then
record the layer index and the head index accord-
ingly, i.e., indexi and indexm respectively.

Calculate Similarity (line 10-13): We use 10
randomly selected samples from Wikipedia as the
calibration samples for calculating the weight ma-
trix similarity. We present the design of head-wise
match function in Section 4.1. The final matching
score Scos is obtained by averaging across samples
(line 10). For every attention head, our approach
selects the most matching counterpart according to
Scos (line 11-12) and stores them as pairs in the
buffer Dτ (line 13).

(2) Weight Sharing (line 14-16)
We sort the candidate pairs in Dτ in descending

order of their matching scores sm (line 14). Then,
the top-N pairs N are selected according to the
desired sharing ratio α (line 15). Finally, for each
selected head pair, we keep the weight values of
the head in former layer unchanged and select to
change the weight values of the head in latter layer
(line 16), resulting in the final modelM∗.

B Relation between Matrix Weights and
Attention Map Similarities

Our visual analysis (in Section3.2) can intuitively
illustrate that the shared head pair with the high-
est similar weight matrices to a large degree ex-
hibits highly similar attention maps across different
datasets. Aside from this, we also provide a metric
to measure the relation:

Degree =
#num of matched heads

#num of samples
(6)

Algorithm 2: Weight_Share Function
Input: top-N matched head pairs N ,

Original LLMM
Output: The LLMM∗ after weight sharing

1 Initialize one dict D;
2 for pair in N do
3 indexi, indexj ← pair;
4 (layeri, i)← indexi;
5 (layerj , j)← indexj ;
6 if layeri < layerj then
7 D[indexi] = indexj ;
8 else
9 D[indexj ] = indexi;

10 Sort D by the key;
11 M∗ ←M;
12 for headi, headj in D do
13 M∗ ← tie_weight(M∗, headi, headj);

14 returnM∗;

Each time we use 100 randomly selected samples
from each dataset to calculate the average cosine
similarity value and repeat 5 times. According to
the sharing ratio α, we will respectively select the
top-K shared head pairs based on the weight matrix
similarity and attention map similarity (calculated
cosine similarity as metric), denoted as Set A and
B. The number of matched heads is calculated as
the cardinality of the intersection of Set A and Set
B, denoted as |A ∩ B|. From Table 6, it can be
seen the matched degree is relatively high, so it
is reasonable for us to do weight sharing directly
across heads.

Dataset WMT-14 CQA WSC Average

Llama2-7B 100% 91.30% 100% 97.10%

Table 6: The degree metric measured to quantify the
relation between matrix weights and attention map sim-
ilarities. CQA stands for CommonsenseQA benchmark.

C Implementation Details

In this section, we will provide additional informa-
tion about our experimental implementation.

C.1 Baselines
To our knowledge, there is no existing baseline
for our methods, due to the absence of prior re-
search on fine-grained weight sharing for LLMs.
To provide a comprehensive demonstration of the

2566



effectiveness of our DirectShare, we can choose
another important memory-efficient method of a
different category for comparison. Here, we se-
lect two model pruning methods applied in LLMs:
one classical model pruning method Magnitude
Pruning and one state-of-the-art structured pruning
method LLM-Pruner. We do not consider unstruc-
tured pruning methods in this paper since they can
not achieve real memory reduction without special-
ized hardware or software. Appendix G lists more
comparison results with some baselines modified
to support LLMs.

Based on the results presented in Table 1, 7, 8, 10,
it is evident that our DirectShare performs on par
with one of the prior best structured pruning meth-
ods regarding the overall performance, superior to
the standard magnitude pruning. Consequently, we
claim that designing such a fine-grained (i.e., head-
wise) weight sharing strategy with a specific focus
on LLMs is indeed simple but effective and this
would be a good direction for future work.

C.2 Benchmarks
Logical and Common Sense Reasoning. In the
domain of reasoning, we consider two Chinese
natural language inference benchmarks and three
English benchmarks: CMNLI (Xu et al., 2020),
OCNLI (Hu et al., 2020), along with AX-b, AX-g
and RTE from SuperGLUE (Wang et al., 2019).
Natural Language Understanding (NLU). In
this field, we cover multiple tasks, including
RACE (Lai et al., 2017) and OpenBookQA (Mi-
haylov et al., 2018) for reading comprehension,
CSL (Li et al., 2022) for content summary and
TNEWS (Xu et al., 2020) for content analysis.
Knowledge-related Tasks. We perform evalu-
ations regarding knowledge on various datasets:
WinoGrande (Levesque et al., 2012) about lan-
guage, BoolQ (Clark et al., 2019) testing knowl-
edge question answering, C-Eval (Huang et al.,
2023) and MMLU (Hendrycks et al., 2021) stand-
ing for two comprehensive examination bench-
marks.

C.3 Post-training Details
For carrying out the post-training process, we em-
ploy the code framework from LLaMA-Factory
repository2 with DeepSpeed ZeRO-13. The Adam
optimizer with a learning rate of 5e-5 is used in

2https://github.com/hiyouga/LLaMA-Factory
3Because of our designed special loss function in the post-

training stage, only DeepSpeed ZeRO-1 can work.

Ratio Method CMNLI OCNLI AX-b AX-g RTE
0% Baichuan2-7B 33.37 41.88 51.90 50.28 57.40

10%
Magnitude 33.11 33.12 55.62 50.84 55.96

LLM-Pruner 37.31 40.62 49.18 50.00 60.65
DirectShare 33.00 41.25 49.55 51.12 60.29

30%
Magnitude 32.97 31.25 48.28 51.97 46.57

LLM-Pruner 34.20 34.38 47.55 50.84 51.26
DirectShare 32.97 30.63 54.71 51.69 49.82

0% Baichuan2-13B 33.21 40.62 59.69 50.59 44.77

10%
Magnitude 33.21 31.25 55.62 48.60 46.93

LLM-Pruner 33.66 36.88 58.51 49.72 47.65
DirectShare 33.23 40.00 53.71 53.37 53.07

30%
Magnitude 33.21 30.00 50.91 48.03 43.32

LLM-Pruner 33.04 36.88 55.71 50.28 44.04
DirectShare 33.11 30.00 54.98 50.00 45.13

Table 7: Evaluation results on reasoning tasks when
applying DirectShare to Baichuan2 models.

Ratio Method RACE-
middle

RACE-
high OBQA CSL TNEWS

0% Baichuan2-7B 51.04 52.63 32.20 66.25 28.60

10%
Magnitude 24.37 28.13 30.20 57.50 27.60

LLM-Pruner 25.42 35.36 32.60 61.25 26.05
DirectShare 50.49 48.46 28.20 63.75 26.23

30%
Magnitude 21.80 21.67 27.60 57.50 13.66

LLM-Pruner 22.56 22.67 27.40 53.12 21.31
DirectShare 25.14 23.44 27.60 52.50 18.40

0% Baichuan2-13B 68.94 67.27 42.20 63.12 28.96

10%
Magnitude 25.56 26.33 26.20 45.62 11.38

LLM-Pruner 41.71 46.80 32.40 62.50 29.23
DirectShare 47.56 49.34 31.20 64.38 22.22

30%
Magnitude 24.58 24.58 25.40 50.62 6.65

LLM-Pruner 22.63 21.81 26.80 55.00 24.13
DirectShare 22.14 23.99 26.60 53.13 17.58

Table 8: NLU abilities of Baichuan2 models after Di-
rectShare.

our experiment and the parameter values assigned
during training are β1 = 0.9 and β2 = 0.95. For
Llama 2-7B model, we set the batch size to 32.
While for Llama 2-13B model, the batch size of
training is only 8 subject to the limited computa-
tional resources. Besides, the maximum context
size and γ are set to 4096 and 0.5, respectively.

D Experimental Results based on
Baichuan 2 Models

We re-implement Magnitude Pruning and LLM-
Pruner with their public code to accommodate
Baichuan2 models.

D.1 Logical and Common Sense Reasoning
Table 7 presents a comparison on five datasets
about reasoning abilities for three memory-efficient
methods performed on the Baichuan2 models. Our
results show that compared to NLU and knowledge-
related abilities (listed in Table 8,10), DirectShare
can indeed maintain its reasoning abilities to a large
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Ratio Method WinoGrande BoolQ C-Eval MMLU RACE-middle RACE-high OBQA OBQA-fact

0% Llama 2-13B 55.44 71.50 40.17 55.81 60.24 58.03 42.40 60.00

30% DirectShare 50.18 59.36 22.30 30.79 26.53 27.53 27.40 27.80
PostShare∗ 53.68 ↑ 3.50 71.25 ↑ 11.89 25.80 ↑ 3.50 33.90 ↑ 3.11 32.03 ↑ 3.30 29.07 ↑ 1.54 33.60 ↑ 6.20 38.80 ↑ 11.00

Table 9: Performance of PostShare based on the Llama2-13B backbone. * means choosing relatively good
performance across different training steps.

Ratio Method WinoGrande BoolQ C-Eval MMLU

0% Baichuan2-7B 54.04 63.30 56.19 54.65

10%
Magnitude 50.18 57.06 34.70 45.47

LLM-Pruner 50.53 59.30 48.14 51.78
DirectShare 51.58 58.01 50.41 49.96

30%
Magnitude 49.12 55.41 23.91 24.36

LLM-Pruner 51.23 48.93 22.11 25.62
DirectShare 51.58 51.53 21.86 24.05

0% Baichuan2-13B 56.14 67.00 59.21 59.58

10%
Magnitude 50.53 40.55 25.22 25.55

LLM-Pruner 51.23 65.87 49.60 51.49
DirectShare 53.33 61.04 53.65 52.60

30%
Magnitude 50.18 50.09 25.35 24.66

LLM-Pruner 50.53 59.42 21.09 24.95
DirectShare 48.77 40.83 23.25 24.82

Table 10: Results on knowledge-related tasks of
Baichuan2 models after DirectShare.

extent. Specifically, at 30% ratio, DirectShare re-
mains competitive with LLM-Pruner.

D.2 Natural Language Understanding

Table 8 presents the performance for each NLU
task discussed in Section 5.2.1 when applying Di-
rectShare to Baichuan2 models. Consistent with
the experiments on Llama2-7B and Llama2-13B
models, similar performance drop exists. Thus, at
the cost of post-training time, our PostShare can
narrow the gap observed across the majority of
datasets. With regard to individual datasets, it re-
mains to be seen if the gap can be largely recovered
given the best training epoch4.

D.3 Knowledge-related Tasks

The results of Baichuan2 models on knowledge-
related tasks are shown in Table 10. Similar decline
appears in Llama2-7B/13B models as well.

E PostShare on Llama 2-13B Model

In addition to Llama2-7B, we also experiment with
Llama2-13B to evaluate PostShare (See Table 9).
Compared to Llama2-7B, the best training epoch

4We speculate that it may be attributed to overfitting is-
sue. Furthermore, as the model size increases, it becomes
increasingly difficult to determine the optimal training epoch
for effectively mitigating overfitting.
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Figure 6: Accuracy across different training steps during
PostShare.

Epoch RACE-
middle

RACE-
high OBQA BoolQ PIQA Wino-

Grande

0.10 27.72 27.56 29.40 65.38 71.06 51.58
0.20 27.72 27.59 28.80 67.80 73.29 52.28
0.30 28.48 27.90 27.60 68.29 75.24 53.33
0.40 28.13 27.99 27.00 66.09 75.79 52.98
0.50 29.81 29.45 27.60 66.57 76.00 52.98
0.60 30.36 30.36 27.40 65.72 75.90 52.98
0.70 30.43 30.25 27.60 66.15 75.90 52.98
0.80 29.60 30.10 27.80 65.44 75.90 55.09
0.90 29.53 29.87 27.60 65.54 76.33 54.39
1.00 29.67 30.02 27.80 65.38 76.06 54.04

Table 11: Accuracy across different training steps during
PostShare.

on Llama2-13B is much smaller: approximately
hundreds of training steps is enough, otherwise it
may suffer from overfitting issue. However, the
overfitting problem seems to be obvious as model
size increases, resulting in the challenge with re-
gard to choosing the best training epoch.

F More Analysis

F.1 Training Time Costs of PostShare

For Llama2-7B model, our full-parameter post-
training in English Wikipedia corpus uses around
11.27 hours for 0.5 epoch due to our limited com-
putational resources. We list the post-training ex-
perimental settings in Appendix C.3. In the same
settings, the original full-parameter post-training
requires 10.78 hours for 0.5 epoch, which indicates
our PostShare does not increase much training costs
(gap≈30min).
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Sharing Ratio 5% 10% 15% 20% 25% 30% 35% 40%

Dataset PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA PIQA OBQA OBQA OBQA

W q 74.92 29.2 74.97 27.5 73.29 27.8 70.89 27.7 64.64 27.5 58.43 25.5 24.4 25.7
W k 74.92 28.7 74.27 27.6 71.71 27.7 70.35 27.6 68.77 27.6 64.36 27.2 27.6 26.9
W v 74.92 28.1 74.48 27.7 73.29 26.7 70.46 28.5 68.39 25.6 60.17 23.1 23.9 22.5

W q,W k,W v 71.71 27.6 63.55 27.8 54.03 26.8 50.16 24.5 51.41 25.5 51.09 25.5 29.0 25.3
W q||W k||W v 74.59 34.7 74.59 30.0 73.45 30.3 70.73 28.2 66.59 27.6 63.33 27.6 27.1 25.0
W q||W k(Ours) 75.84 33.9 75.30 28.2 74.54 27.5 73.01 27.3 69.37 27.5 65.56 28.0 27.6 28.6

Table 12: Results on PIQA and OBQA with different head-wise matching functions for Baichuan2-7B model.

CMNLI OCNLI AX-b AX-g RTE RACE-
middle

RACE-
high OBQA CSL TNEWS Wino-

Grande BoolQ C-Eval MMLU Avg.

Choosing A 33.33 32.50 57.07 51.68 49.10 21.45 21.53 26.00 51.25 20.22 50.18 54.43 26.24 26.53 37.25
Choosing B 33.59 31.25 51.09 53.09 53.43 25.00 25.53 22.20 49.38 12.20 52.63 57.22 28.27 25.63 37.18

Table 13: Performance comparison between choosing different shared weights for a pair of matched heads A, B.
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Figure 7: Ratios of weight sharing across the MHA Layers in Llama2-7B/13B and Baichuan2-7B/13B.

F.2 Overfitting Phenomenon in PostShare

Figure 6 shows the performance curves on different
kinds of datasets across various post-training steps.
Remarkably, our PostShare requires no more than 1
epoch that can push the selected weights closer for
sharing while keeping the performance. However,
we observe the slight overfitting phenomenon in
PostShare, i.e., the capabilities initially improve
and then experience a slight decline. Besides, it
is clear that the turning point about performance
varies with datasets. Detailed statistical data are
provided in Table 11.

F.3 Impact of Different Head-wise Matching
Functions

The selection of shared heads plays a crucial role
in weight sharing. An ablation experiment for this
is shown in Table 12.

F.4 How to Choose the Shared Weights?

We select the weight value from the head in the
former layer as the shared weights. The reason
behind is that we observe the weight values of the
earlier layers are more sensitive in our experiments,
which is also supported by previous studies (Men
et al., 2024; Chen et al., 2024). Thus, we tend
to keep the weight values of the head in former
layer unchanged. We also additionally make a per-
formance comparison between choosing different
shared weights for a pair of matched heads A, B.
Suppose head A is in the former layer and head B
is in the latter layer. In Table 13, it can be seen that
the performance gap is small on the downstream
tasks whether choosing A or B, but the overall per-
formance is a little better when choosing the head
weight in the former layers as the shared weights.
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Method CMNLI OCNLI AX-b AX-g RTE RACE-
middle

RACE-
high OBQA CSL TNEWS Wino-

Grande BoolQ C-Eval MMLU

DirectShare Ratio=10% 33.00 32.50 54.17 51.97 50.90 28.34 28.96 28.20 54.37 20.86 52.63 67.74 28.75 43.43

GQA group size=2 32.20 27.50 58.33 50.00 47.29 25.21 25.61 22.20 46.25 6.92 50.53 37.83 25.68 25.80

DirectShare Ratio=30% 33.33 32.50 57.07 51.68 49.10 21.45 21.53 26.00 51.25 20.22 50.18 54.43 26.24 26.53

Table 14: Comparison results with GQA across various datasets.

Ratio CMNLI OCNLI AX-b AX-g RTE RACE-
middle

RACE-
high OBQA CSL TNEWS Wino-

Grande BoolQ C-Eval MMLU

Llama2-7B 0% 32.98 33.12 53.53 55.34 49.82 33.15 35.51 31.80 55.62 20.22 54.04 70.67 32.20 46.69

DirectShare 10% 33.00 32.50 54.17 51.97 50.90 28.34 28.96 28.20 54.37 20.86 52.63 67.74 28.75 43.43
SEQ 10% 31.55 37.50 49.82 51.40 52.35 28.62 28.39 27.00 57.50 15.39 51.23 64.77 30.40 39.69

DirectShare 30% 33.33 32.50 57.07 51.68 49.10 21.45 21.53 26.00 51.25 20.22 50.18 54.43 26.24 26.53
SEQ 30% 31.72 32.50 47.55 50.00 46.93 22.63 22.30 26.20 50.62 9.83 49.47 52.60 22.05 23.49

Table 15: Comparison results with SEQ across various datasets.

F.5 Latency Evaluations
Our paper aims to reduce the memory requirements
for LLMs instead of accelerating. Since weight
sharing does not change the total matrix multipli-
cations, DirectShare can theoretically maintain the
original model inference speed but our current im-
plementation of head-wise weight sharing is hard
to save memory and speed up at the same time,
which may be a programming skill issue. Table 16
reports the inference speed tested under the test set
of WikiText2. We will consider further optimiza-
tion in future work to achieve a balance between
memory and speedup.

Model Sharing Ratio Speed

Llama2-7B 0% 41.70 tokens/s
30% MHA 8.52 tokens/s

30% MHA+FFN 8.34 tokens/s

Llama2-13B 0% 24.20 tokens/s
30% MHA 5.63 tokens/s

30% MHA+FFN 5.67 tokens/s

Table 16: The inference speed of our method tested on
a single A800-80GB GPU.

F.6 Visualization Study on the Shared Weights
As depicted in Figure 7, the distribution of ratios
of shared weights across attention heads is similar
regardless of the sharing ratio.

G More Comparison Results

G.1 Compared with Grouped Query
Attention

Grouped Query Attention (GQA) has been widely
adopted in LLMs to reduce the number of atten-

tion computations required, by grouping the query
vectors into a smaller number of groups. Although
GQA might be less flexible in choosing the reduc-
tion ratio of parameters, we also provide a per-
formance comparison with our method. To equip
the original Llama2-7B model with GQA, we per-
form the standard conversion proposed by Ainslie
et al. (2023) and uses neighbor grouping with group
size=2 to merge heads. The performance compar-
ison is shown in Table 14. Furthermore, we com-
pute the average scores per category (Reasoning,
NLU, Knowledge) along with the average scores
across all benchmarks (Avg.) to provide a more
intuitive comparison in Table 17. Overall, our
method demonstrates superior performance over
GQA.

Reasoning NLU Knowledge Avg.

DirectShare Ratio=10% 44.51 32.15 48.14 41.60

GQA group size=2 37.06 25.24 34.96 32.42

DirectShare Ratio=30% 44.74 28.09 39.35 37.39

Table 17: Average comparison results with GQA.

G.2 Compared with Modified Layer-wise
Weight Sharing

We state the reason why choosing model pruning
works as baselines in Section C.1. Prior layer-
wise weight sharing techniques are proposed to
apply to small-scale models like BERT. Consider-
ing one representative layer-wise weight sharing
method (Takase and Kiyono, 2021b), we need to
modify it to support LLMs, denoted as SEQ. For
fair comparison, we perform layer-wise weight
sharing in latter 60% layers instead of all lay-
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ers. The overall performance comparison based on
Llama2-7B model is presented in Table 15. More-
over, we calculate the overall average scores across
all benchmarks (Avg.), the average scores for each
category (Reasoning, NLU, Knowledge), and the
average performance percentages relative to the
original model across all benchmarks (Per.). The re-
sults in Table 18 indicate that our head-wise weight
sharing method performs better than layer-wise
weight sharing.

Ratio Avg. Per. Reasoning NLU Knowledge

Llama2-7B 0% 43.71 100% 44.96 35.26 50.90

DirectShare 10% 41.60 95.17% 44.51 32.15 48.14
SEQ 10% 40.74 93.21% 44.52 31.18 46.53

DirectShare 30% 37.39 85.54% 44.74 28.09 39.35
SEQ 30% 34.97 80.00% 41.68 26.32 36.90

Table 18: Average comparison results with SEQ.

H Generations from Models after Weight
Sharing

Table 19, 20 and 21 show more examples of the
models after head-wise weight sharing. We present
the generation results of both the shared model via
DirectShare and PostShare.

Model Generated Responses

Llama2-7B
w/ DirectShare

The future is going to be one that presents many
challenges, but also a great deal of opportunity.
Everybody knows this, and it’s why we have been
working so hard on the newest version of the
future. The problem with the future is that it’s not
always easy to see what you are doing wrong. It
can be difficult to find
Neural Sequential Model, especially transformers,
are a powerful tool for the analysis of time-series
data. surely, they can be used to predict the future.
Their use is not limited to the financial industry.
In this article, we will discuss the benefits and
limitations of the

Llama2-7B
w/ PostShare

The future is going to be one that presents many
challenges, and the world will need a new
generation of leaders. The United Nations has
identified the following as key issues for the future:
Climate change, Food security, Energy security,
Water scarcity, Global health, Human rights,
International law, Peacekeeping, Sustainable
Neural Sequential Model, especially transformers,
is a type of artificial neural network that uses a
sequence of vectors to represent the input and
output. The model was introduced by Geoffrey
Hinton in 1987. It has been used for speech
recognition, handwriting recognition,

Table 19: Responses from Llama2-7B (Sharing
Ratio=30%).

Model Generated Responses

Baichuan2-7B
w/ DirectShare
(English)

There are many reasons to support why persever-
ance is of great importance. The first and fore-
most, it’s the only way you can get better at what
ever your doing! It also gives us an opportunity to
learn from our mistakes or
Her eyes shone with happiness. “I’m so happy to
see you,” She said, “and I am very proud of the
work that we have done together in this project
and it is a great honor for me as an artist because
there are many people who has been working on
these projects over the years but not all of them
were able to do what was needed from us at any
given time when things got out of hand or if they
had lost their way”

Baichuan2-7B
w/ DirectShare
(Chinese)

如何健康的生活 1. 注意休息,保证睡眠。2.合
理饮食:多吃水果、蔬菜等。3.适当运动(如散
步) 4.保持乐观心态5.多饮水6.避免劳累7.不要
熬夜8.劳逸结合9.注意安全10.尊重生命

想要成功需要把握什么?1. 首先,要有一个好的
心态。2.其次,要有一定的经济基础3.接着就是
自己的实力了4. 最后一个条件是:自己一定要
努力!

Table 20: Responses from Baichuan2-7B (Sharing
Ratio=30%).

Model Generated Responses Reference

GPT2-small
w/
PostShare

In the letter, Mr Snowden said
he believed the support of the
international community could
persuade the US government to
abandon criminal charges again-
st him.<to-fr> Dans la lettre, M.
le député a dit que l’appui de
la communauté internationale
pourrait convaincre le gouverne-
ment américain de abandonner la
charge pénale contre lui.

Dans sa lettre, M. Snow-
den a écrit qu’il pensait
que le soutien de la com-
munauté internationale
pourrait persuader le
gouvernement améri-
cain d’abandonner les
charges pénales retenues
contre lui.

The letter extends an offer to co-
operate with German authorities
"when the difficulties of this hu-
manitarian situation have been
resolved."<to-fr> La lettre élar-
git une invitation à coopérer avec
les autorités allemands lorsque
les difficultés de cette situation
humanitaire sont réglées.

La lettre avance une of-
fre de coopération avec
les autorités allemandes
« lorsque les difficultés
de cette situation human-
itaire auront été résolues
».

The first test plane was unveiled
in March and took flight for the
first time in September after mo-
nths of delays.<to-fr> Le pre-
mier étudiant a été démontré
en mars et a fait l’avion pour la
première fois après des mois de
retard.

Le premier avion d’essai
a été dévoilé en mars et
s’est envolé pour la pre-
mière fois en septembre
après des mois de retard.

Table 21: Responses from GPT2-small (Sharing
Ratio=30%).
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