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Abstract

Few-shot intent detection is a challenging task,
particularly in scenarios involving multiple la-
bels and diverse domains. This paper presents
a novel prototype learning approach that com-
bines the label synset augmentation and the
coarse-to-fine prototype distillation for multi-
label few-shot intent detection. To tackle the
data scarcity issue and the lack of information
for unseen domains, we propose to enhance the
representations of utterances with label synset
augmentation and refine the prototypes by dis-
tilling the coarse domain knowledge from a
universal teacher model. To solve the multi-
lingual intent detection in real-world dialogue
systems, we fine-tune a cross-lingual teacher
model to make our method fast adapt to differ-
ent languages and re-annotate two non-English
task-oriented dialogue datasets CrossWOZ and
JMultiWOZ in multi-label form. Experimen-
tal results on one English and two non-English
datasets demonstrate that our approach signifi-
cantly outperforms existing methods in terms
of accuracy and generalization across different
domains.

1 Introduction

Intent detection which aims to identify intents be-
hind user utterances is a core component of task-
oriented dialogue systems (Shen et al., 2021; Chen
et al., 2017), as its performance directly affects
downstream decisions and policies. In real-world
conversation scenarios, a single utterance could
contain multiple intents, and the ways of express-
ing an intent are diverse. The data scarcity issue
makes intent detection rather challenging as user
intents constantly emerge in rapidly changing do-
mains (Vuli€ et al., 2022). Therefore, the impera-
tive to accurately recognize multiple intents in the
low-data regime motivates the multi-label few-shot
intent detection (FS-MLID).

*Corresponding author.

Existing works mainly focus on the popular
metric-based meta-learning paradigm for the FS-
MLID task, which aims to learn a metric space that
can make label predictions by calculating distances
between query samples and prototypes of differ-
ent classes. By training on a set of sampled FS-
MLID tasks, the model learns general knowledge
to rapidly generalize to new tasks with novel intent
classes. In particular, CTLR (Hou et al., 2021) pro-
poses to estimate label-instance relevance scores
and uses a meta-calibrated threshold to select multi-
ple associated intent labels. DCKPN (Zhang et al.,
2023) constructs a dual class knowledge propaga-
tion network that combines label information and
feature structure to guide intent prediction.

However, existing methods neglect that it is diffi-
cult to estimate the class prototypes in low-resource
settings, and they also lack domain information to
predict novel classes (Wang et al., 2024), thereby
diminishing the discriminability of the metric space
and model generalization. In addition, previous
works merely focus on monolingual setting and
only conduct on English datasets (Khalil et al.,
2019). In contrast to English, most other languages
lack sufficient annotated data to train high-quality
intent detection models, which will ultimately hin-
der the application of task-oriented dialogue sys-
tems to a much wider spectrum of languages.

To address the aforementioned issues, we revisit
the FS-MLID task from a multilingual perspec-
tive and propose a novel Coarse-to-Fine Prototype
Learning method (CFPL), which is shown in Figure
1. Considering the scarcity of samples in few-shot
learning and the rich semantic information beneath
class labels, we propose to enhance the representa-
tions of utterances with label synset augmentation.
Specifically, we first generate a synset for each in-
tent label using Open Multilingual Wordnet (Bond
et al., 2016), then we propose a refinement method
to further eliminate the noise in the expanded la-
bel set. To precisely estimate the class prototypes
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Figure 1: The framework of the CFPL method. First, a label synset is generated from WordNet, using semantic
similarity to select the top augmented labels for each class. These augmented labels are then concatenated with
support utterances to form enhanced embeddings. In the coarse-to-fine prototype distillation and inference stage,
the enhanced embeddings of support data, the query embeddings, and the label embeddings are combined to
learn instance-level and class-level representations for the support and query data in each episode. Then these
representations are interacted to obtain the intra-domain prototypes via self-attention and cross-attention. Meanwhile,
the inter-domain prototypes are learned by fine-tuning a cross-lingual teacher model, and are further distilled into
fine-grained prototypes via cross-attention. Finally, the intra-domain and fine-grained prototypes are fused into
calibrated prototypes, which are input into a prototypical classifier to predict multiple intents for each query data.

in the absence of domain knowledge, we further
devise the coarse-to-fine prototype distillation. In
particular, intra-domain student prototypes are first
learned through feature interactions at the instance
and class levels for a specific dataset. Then the
inter-domain teacher prototypes that contain coarse
domain knowledge from the teacher model are dis-
tilled into fine-grained prototypes for a specific
dataset, which are further fused with intra-domain
student prototypes to constitute more precise pro-
totypes. Moreover, we fine-tune a cross-lingual
teacher model to make our method fast adapt to
different languages. To verify this, we re-annotate
two non-English task-oriented dialogue datasets
in multi-label form, i.e., CrossWOZ (Zhu et al.,
2020) and JMultiWOZ (Ohashi et al., 2024), which
contain multiple domains and thus can simulate the
few-shot scenario in unseen domains. The contribu-
tions of this paper can be summarized as follows:

(1) We propose a coarse-to-fine prototype learn-
ing approach to recognize multiple intents for an
utterance in low-resource settings. We first design a
label augmentation strategy with semantic similar-

ity refinement to generate enhanced data represen-
tations. During the prototype distillation, we first
conduct feature interactions between samples at
the instance and class levels to learn intra-domain
student prototypes, then we distill related coarse do-
main knowledge from the universal teacher model
into fine-grained prototypes for a specific dataset.

(2) To bridge the multilingual gap, we propose
a simple but efficient fine-tuning method that en-
ables the teacher model to fast adapt to different
languages. Furthermore, we introduce and release
two non-English FS-MLID datasets, which is an
important attempt towards multilingual intent de-
tectors for task-oriented dialogues.

(3) Extensive experiments demonstrate that our
proposed methods outperform competitive base-
lines on three FS-MLID benchmarks, and is adept
at handling low-resource situations.

2 Related Works

2.1 Multi-Label Intent Detection

Intent detection aims to mine the main purpose be-
hind user utterances. Many studies (Goo et al.,
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2018; Qin et al., 2019; Liu et al., 2021) have
achieved promising performance for intent detec-
tion. However, they neglect the more practical and
challenging scenario, multi-label intent detection,
which aims to assign multiple intents to samples.
Rychalska et al. (2018) firstly propose to conduct
multi-label intent detection. Considering the close
relationship between intent detection and slot fill-
ing, Gangadharaiah and Narayanaswamy (2019),
Qin et al. (2020) and Qin et al. (2021) design dif-
ferent strategies to leverage slot information to en-
hance multi-intent detection. Zhu et al. (2024) in-
troduce the global static and local dynamic hetero-
geneous label graph to model interactions among
samples. Wu et al. (2021) propose to construct a
label embedding space by using label words. Vulic
et al. (2022) conduct contrastive conversational
fine-tuning on pre-trained sentence encoders.

2.2 Multi-Label Few-Shot Learning

Few-shot learning (FSL) aims to learn from lim-
ited labeled samples and recognize novel classes
that have not been seen during the training process.
Compared with single-label FSL, multi-label FSL
is more common in many real scenarios, but only a
few works have been done. Previous works focus
on image domain (Alfassy et al., 2019) or audio
domain (Cheng et al., 2019). In natural language
processing domain, Liu et al. (2022) propose to ad-
dress the multi-label aspect category detection task
with a novel label-enhanced prototypical network.
Only a few studies such as CTLR (Hou et al., 2021)
and DCKPN (Zhang et al., 2023) have addressed
the FS-MLID scenario, but they cannot well solve
the data scarcity issue and the lack of information
for unseen domains. Moreover, they only focus on
monolingual setting.

3 The Proposed Method

3.1 Problem Definition

Few-shot learning aims to train a model that can
recognize unknown categories with few labeled ex-
amples (Snell et al., 2017). In accordance with
prior works, we follow the episodic paradigm on
account of its effectiveness (Yang et al., 2021).
Given a set of training classes Cyyin and testing
classes Cresr, Where Cogin N Crest = 0. The model
is trained with numerous samples from Cyy4;,, then
directly adopted to unseen classes Cy.5 With few
labeled samples. In each episode, we have a sup-

port set S = {(x;,y;) f\i le where x; represents

a data sample, y; is the corresponding class la-
bel, IV is the number of classes and K is the num-
ber of support data in each class, and a query set
Q = {(zj, yj)}JCi'):1 where Q is the number of
query samples.

Multi-label few-shot intent detection allows that
each utterance is associated with multiple intents.
Given an utterance z, its label can be represented
with a vector y = [y', 92, ...,y"], where y’ €
{0,1} and N is the number of possible intents.

3.2 Framework Overview

Our method consists of three components: La-
bel Synset Augmentation, Coarse-to-Fine Proto-
type Distillation, and Optimization and Inference.
We begin with Label Synset Augmentation to con-
duct label augmentation for each class and enhance
the representations of support data with these aug-
mented labels. Then we implement Coarse-to-Fine
Prototype Distillation, which involves four parts.
Inter-Domain Prototype Learning applies a pre-
trained teacher model to capture coarse domain
features. In Cross-Lingual Teacher section, a cross-
lingual teacher model is fine-tuned to adapt quickly
to different languages. Intra-Domain Prototype
Learning conducts feature interactions for the sup-
port and query data within each episode. Prototype
Distillation produces fine-grained prototypes from
the coarse inter-domain prototypes and combines it
with intra-domain student prototypes to get the final
prototypes. During the Optimization and Inference,
we adopt a prototypical classifier and multi-label
inference to train the whole model and achieve
multi-intent prediction for each query data.

3.3 Label Synset Augmentation

Many prior methods on data augmentation have val-
idated the effectiveness of label enhancement in the
few-shot learning setting (Luo et al., 2021; Zhang
et al., 2022; Liu et al., 2022). For intent detection,
the core issue is to extract user intents related to the
utterance from all aspects and granularities. Hence,
we choose Open Multilingual Wordnet (Bond et al.,
2016), a large lexical database of synsets for over
150 languages, to generate multiple synonyms re-
lated to each original label. The process of label
synset augmentation is shown in Figure 1. For each
training label y;, we generate a set of augmented
labels Vi = {¥i1,0iz2, - Uin}. Different from
previous research that only uses Synonym Replace-
ment (Wei and Zou, 2019) which randomly selects
an augmented label to replace the original intent
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label, we further propose a label refinement method
to eliminate the noisy labels from the set );.

An ideal augmented label § should have high
semantic similarity with the original label y as well
as the corresponding user utterance x (Hu et al.,
2022). Thus we concatenate the utterance and its
original label into a sequence s as a basis for se-
lecting enhanced labels. We introduce an auxiliary
semantic similarity calculation function sim( . , . )
to guide the selection, where sim( . , . ) is a model
that can output the semantic similarity between two
text samples. In particular, for a sequence s, we
use multilingual USE (Chidambaram et al., 2019)
to compute the similarity between s and each aug-
mented label, and select the top k augmented labels
to enhance the representations for support data.

J = top-k([sim(s, §i;)|j=1), (D

where top-%(.A) returns the indices of the largest
k elements of the set A, and k is a hyperparameter.

Denoting {; ;}jc7 as a subset of k& augmented
labels from );, we can add them before the utter-
ance and obtain the label enhanced embedding for
each utterance x; through the student model:

u; = AvgPooling([e1;--- ;ej;hy,]), (2)
where ; represents concatenation along the token
length dimension, and AvgPooling(+) is to obtain a
vector by performing average pooling on a set of
vectors along the token length dimension. e; is the
embedding of the label y; ;, and h, is the feature
vector of the utterance x;, which are all obtained
from the student model fy(-) such as Bert.

Finally, we learn the label enhanced represen-
tations of all the support data through the student
model.

3.4 Coarse-to-Fine Prototype Distillation

In this section, we propose to learn the proto-
types in each episode with knowledge distillation.
Knowledge distillation algorithms aim to exploit
the hidden knowledge from a large teacher model,
denoted as T, to guide the training of a small student
model, denoted as S (Hinton et al., 2015). Different
from conventional distillation that teacher provides
soft-targets for students, we propose to distill fea-
tures to help the student to leverage the semantic
knowledge of related domains from the teacher.

Inter-Domain Prototype Learning To pre-train
a teacher model, we adopt the multilingual-BERT

EN Please reschedule the meeting to six —, PLM m
& p.m. tomorrow and inform members.
EEQ\;J <Shared) [KLloss | LCL
TN s e
-7 4 ¥/ EHEDOFRARICE
@t vn—cBmLTCRE N [ }—‘ Logits -

Figure 2: Fine-tuning cross-lingual teacher.

target language

as the backbone, and train it on the Massive dataset
(FitzGerald et al., 2023) in English which covers
60 intent classes from 18 domains.

Then for each utterance x; in the support set, we
learn its representation through the teacher encoder

fo:

where g; is the state vector corresponding to the
[CLS] token. Based on its label y;, we can con-
struct an inter-domain teacher prototype, which
incorporates related semantic information from 18
domains.

c 1
PT =15l E gi; “)
yi=c

where c is the intent category of the given domain,
and |S,| is the number of support data belonging to
category c in the support set.

Cross-Lingual Teacher The vast majority of pre-
vious methods focus on developing models on En-
glish datasets (Wu et al., 2022; Chen et al., 2017),
which can hardly adapt to the datasets of other lan-
guages unless they train a model from scratch for a
target language. In this paper, we propose to fine-
tune the teacher model f so that it can fast adapt
to different languages, which is shown in Figure 2.
In particular, given a pre-trained teacher model in
the source language such as English, we add an ex-
tra model parameter W;,,, to fine-tune the teacher
model to convert it from the source language to the
target language. The predicted soft labels or logits
of x; in the source language and target language
are calculated by:

y; = Softmax(W;,,g;), 5)

9t = Softmax(W;,,,g!),
where g§ and g! are the embeddings of an utter-
ance x; in the source language and target language,
respectively. We aim to align the labels of each sup-
port data in different languages, so that the teacher
model in the source language could convert to the
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one in the target language.

N

1 NS Aty s
Lrcr =5 D (KL@GI5)+ KLE99). ©)
i=1

where L is the Kullback-Leibler divergence loss
to enforce the label probability distributions in the
source and target languages similar. Moreover, we
hope the predicted labels are close to the ground
truth:

L4 = CrossEntropy(y;, U;), 7

L; = CrossEntropy(y;, 9.). 8)

Finally, we obtain the overall loss for fine-tuning
the cross-lingual teacher model:

Lo =Lk + Ls+ Ly )

Intra-Domain Prototype Learning The inter-
domain teacher prototypes learned through Eq. (4)
can capture the high-level semantic knowledge
from 18 domains, which incorporate the related
inter-domain information into the prototype of each
class. But these teacher prototypes ignore to uti-
lize the data information of each episode (which is
from a single domain), thus we further propose to
learn the intra-domain prototypes according to the
support and query data within each episode.

Intuitively, if the data with the same label have
similar representations, the prediction will become
easier and more precise. Therefore in this sec-
tion, we hope to further use attention mechanism to
perform message passing among the data of each
episode, so that the support embeddings and query
embeddings could interact with each other.

Firstly, we merge the label enhanced representa-
tions of the support set and the original representa-
tions of the query set, and obtain the instance-level
representations for the data of each episode:

T = [ug,uz, - ,ws), hi,he, - hyg], (10)

where wu; is the label enhanced support embedding,
and h; is the query embedding obtained by the
original utterance. |S| and |Q| are the sizes of
support and query sets in each episode.

Similarly, according to the labels of support data,
we merge the label embeddings of the data in each
episode, and obtain the class-level representations:

0], (D

where e; = fy(y;) is the label embedding for the
label y;. Since the labels for the query data are

C — [615625” : )e|S|701702,' :

unknown, we represent the label embeddings of
query data with a zero vector 0.

Then we perform self-attention on instance-level
representations and class-level representations re-
spectively to achieve information interaction within
each episode:

IWhH)(EWH)T
Al = Softmax <( Q\)/(@ ) ) (ZWY),
(12)

CW2)(CW2)T
AC:Softmax<( Q\)/(@ i) >(CW5),
(13)

where A’ and A€ are the interacted instance-level
representations and class-level representations of
the data in each episode, respectively.

We further use cross-attention operations to se-
lect the most related class-level representations ac-
cording to the instance-level representations:

A ATWE)(A“WE)T
AC:SOftmax<( Qiﬁ% i) )(ACW‘?})
(14)

We fuse the instance-level representations with
the aligned class-level representations through con-
catenation operations and obtain the representa-
tions of all the data in each episode:

A= Al||AC. (15)

Finally, we use the fused data representations A
to construct the intra-domain student prototype for
each class c:

P = |81, > A (16)
yi=c

Prototype Distillation To this end, we propose to

distill the most representative inter-domain teacher

prototypes into fine-grained prototypes with cross-

attention:

(PTW3) (PsWi)"
Vi

= s ) sy

(17)
where ps and p are the intra-domain student pro-
totype matrix and the inter-domain teacher proto-
type matrix, respectively. Then we combine it with
intra-domain student prototypes to get the final pro-
totypes for each episode:

p = aps + (1 — a)p7, (18)

where « is a trade-off hyperparameter ranging be-
tween 0 and 1.
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3.5 Optimization and Inference

Prototypical Classifier Given a query utterance
x; € Q, we can compute the conditional proba-
bility p(y = c|x;, S) to predict its labels based on
negative squared Euclidean distance.

exp(—|la; —p.[[3)
> ecexp(—llai —p|I3)’
(19)
where p . is the prototype of class ¢ from p, and a;
is the representation of x; from A.

Note that in the multi-label setting, as an utter-
ance may have multiple labels, we need to consider
|N| labels for each query sample. We perform
cross-entropy loss on all the query samples, which
is calculated as:

p(y = c\xi,S) =

IV

ce: ‘Q| Z ZygIOgP _J’xu )a (20)

z;€Q j=1
where y; = {y}, ..., yy\”} is the label of z; and y/
€{0,1}.

Multi-Label Inference Inspired by (Sun et al.,
2020), we introduce the class-specific circle loss
to conduct multi-label prediction for each query

sample z;:
1 Y

cir Nzlog UTC)+Z€(Z)

c=1 zi€Ac

+

1 aTc+Za(zj

zj€le

2D

where o is the temperature scale parameter, A, =
{p(y = c|x;,S)|y$ = 0} is the negative score set,
I'e = {p(y = c|z;, S)|y§ = 1} is the positive score
set, and 7, is the threshold of class c. The goal of
Ly 1s that the positive scores of class ¢ are greater
than 7. and the negative scores of class c are less
than 7.
The overall training objective is:

L= Ece + )\ﬁcim (22)

where A € (0, 1) is a trade-off hyperparameter.

4 Experiments

4.1 Datasets and Experimental Setups

Datasets We follow (Zhang et al., 2023) to evalu-
ate our method on public English FS-MLID dataset
StanfordLU and introduce two new non-English

Dataset ‘ StanfordLU CrossWOZ IMultiwOZ
Domain | Sc Na We At Ho Re Sh Ho Re
Ns 14 10 8 8 10 9 8 10 10

Prop. 21% 25% 4% 48% 48% 53% 45% 60% T9%

Table 1: Dataset statistics. Ns denotes the number of
classes in each domain and Prop. denotes the proportion
of multi-label utterances.

FS-MLID datasets, i.e., CrossWOZ and JMulti-
WOZ. (1) StanfordLU is a dataset of Stanford
dialogues (Eric et al., 2017), which contains 8038
utterances re-annotated by (Hou et al., 2021) from
3 domains: Sc (Schedule), Na (Navigate) and We
(Weather). (2) CrossWOZ is an re-annotated ver-
sion of the first large-scale Chinese multi-domain
task-oriented dialogue dataset (Zhu et al., 2020)
containing 8697 user utterances and includes 3 do-
mains: At (Attraction), Ho (Hotel) and Re (Restau-
rant). (3) JMultiWwOZ consists of 8076 utter-
ances and includes three travel-related domains:
Sh (Shopping), Ho (Hotel) and Re (Restaurant),
which is re-annotated from the first Japanese multi-
domain task-oriented dialogue dataset IMultiwOZ
(Ohashi et al., 2024). We re-annotate the two pub-
licly available non-English datasets into multi-label
form and follow (Hou et al., 2020) to construct
few-shot episodes. For each dataset, we take two
domains as the training set and validation set re-
spectively, and take another domain as the test set.
We construct 200, 50, and 50 episodes for training,
validation and testing, respectively. Table 1 shows
detailed dataset statistics .

Implementation Details The proposed approach
CFPL is implemented with PyTorch and all the
experiments are conducted on NVIDIA GeForce
RTX 3090. In terms of feature extraction, we
use bert-base-uncased, bert-base-Chinese and bert-
base-Japanese as the student model respectively,
and we use multilingual-BERT (mBERT) as the
teacher model (Devlin et al., 2019). The size of the
hidden state is 768 and the number of hidden layers
is 12. We use AdamW (Loshchilov and Hutter,
2019) for optimization with the initial learning rate
of 2e-5 on StanfordLU, le-4 on CrossWOZ, and
Se-5 on IMultiWOZ. We set the dropout rate as 0.2,
hyperparameter « as 0.8, o as 0.05 and the num-
ber of augmented labels k as 2 (detailed analysis
is shown in 4.5). For the loss function, we set A
as 0.1. All the hyperparameters are determined by

'The source code and data are available at

https://github.com/CFPL2024/CFPL

2494



StanfordLU 1-shot

StanfordL.U 5-shot

Models
Sc Na We Avg. Sc Na We Avg.

TransferM  18.00+0.62 24.65+0.79 22.26+0.64 21.64+0.68 16.62+0.18 23.69+0.46 26.64+2.04 22.31+0.89
MMN 39.18+0.52 35.35+1.72 45.87+2.81 40.13£1.68 43.65+6.24 51.94+1.03 46.65+048 47.41+2.58
MPN 39.34+1.38 36.09+0.77 45.86+2.50 40.43+1.55 41.45+2.83 50.51+2.94 54.96+9.76 48.97+5.18
CTLR 42.55+0.40 56.95+0.77 53.14+1.89 50.88+1.02 52.17+129 60.36+1.55 59.63+2.23 57.39+1.69
DCKPN 53.81+0.72 58.48+0.31 74.02+0.74 62.10+0.59 57.81+0.62 63.71+0.35 93.83+0.36 71.78+0.44
CFPL 67.11£0.93 68.04:1.07 80.57+1.26 71.91:1.09 70.28+1.03 75.89+0.32 93.56+0.10 79.91x0.48

Table 2: F1 scores on the StanfordLU dataset under N-way 1-shot and N-way 5-shot settings.

CrossWOZ 1-shot

CrossWOZ 5-shot

Models
At Ho Re Avg. At Ho Re Avg.

TransferM  19.31+0.65 18.24+0.58 18.57+0.77 18.7120.67 19.79+0.56 18.92+0.86 19.21+0.63 19.31+0.68
MMN 37.16+1.25 35.20+0.83 36.38+2.12 36.25+1.40 39.14+1.48 36.39+0.96 38.21+2.01 37.91+1.48
MPN 38.29+2.07 36.47+137 37.42+095 37.39+1.46 46.35+3.46 43.26+2.57 49.58+2.33 46.40£2.79
CTLR 47.51+2.18 40.23+1.97 43.78+2.42 43.84+2.19 56.77+3.97 52.34+2.17 71.03+2.94 60.05+3.03
DCKPN 80.62+3.80 68.67+3.33 81.49+330 76.93+3.48 83.36x4.62 72.20+3.20 81.40+3.28 78.99+3.70
CFPL 91.41+0.25 77.32+0.57 87.09+0.53 85.27+0.45 90.89+0.49 80.45+0.23 89.93+0.31 87.09+0.35

Table 3: F1 scores on the CrossWOZ dataset under N-way 1-shot and [N-way 5-shot settings.

the performance on the validation domains. For the
baseline results on CrossWOZ and JIMultiWwOZ, we
reimplement all the baselines with official codes.

Evaluation Metrics Following previous multi-
label few-shot intent detection methods (Zhang
et al., 2023), we adopt micro F1 as the metric to
evaluate the overall performance. All reported re-
sults are the average of 5 different runs.

4.2 Baselines

We evaluate and compare our proposed method
with the following strong baselines. (1) Trans-
ferM is a transfer learning framework (Dai et al.,
2007) with a pre-trained language model as the
encoder and a multi-layer perceptron as the clas-
sifier. It trains on source domains and fine-tunes
with support sets from target domains. (2) Multi-
label Prototypical Network (MPN) represents a
modification of the vanilla prototypical network
(Snell et al., 2017), which measures the negative
Euclidean distance between queries and prototypes,
and applies a fixed threshold tuned on dev set for
multi-label classification. (3) Multi-label Match-
ing Network (MMN) closely resembles MPN but
utilizes the Matching Network (Vinyals et al., 2016)
to calculate label-instance relevance scores, result-
ing in classification based on cosine similarity. (4)
CTLR (Hou et al., 2021) proposes a method for es-
timating label-instance relevance scores and select-

ing multiple intent labels using a meta-calibrated
threshold, which involves learning universal experi-
ence on data-rich domains and adapting thresholds
to certain few-shot domains. (5) DCKPN (Zhang
et al., 2023) constructs a dual class knowledge prop-
agation network that integrates label information
and feature structure into graph neural network to
guide the intent prediction and employs a multi-
label inference method to predict the intent count
of each utterance adaptively.

4.3 Main Results

The main results on StanfordLU, CrossWOZ, and
JMultiWOZ are shown in Table 2, 3 and 4 respec-
tively. Most baseline results are taken from (Zhang
et al., 2023) and the best results are highlighted
in bold. We have following observations from the
experimental results: (1) CFPL achieves signifi-
cantly superior average results on three benchmarks
across all domains compared to baseline methods,
demonstrating the superiority of our method. (2)
The performance on 1-shot setting shows more im-
provements compared to 5-shot setting, which fur-
ther confirms the efficiency of our method in few-
shot tasks. (3) CFPL shows better average 1-shot
and 5-shot performance in domains that contain
more novel classes (12.9% in Sc domain of Stan-
fordLU and 8.5% in Ho domain of CrossWQOZ), in-
dicating that the teacher model introduces more do-
main features to help recognize unseen classes. (4)
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JMultiwOZ 1-shot

JMultiwOZ 5-shot

Models
Sh Ho Re Avg. Sh Ho Re Avg.

TransferM  16.32+1.04 15.85+0.87 14.56+1.52 15.58+1.14 17.112093 16.03+£1.08 16.34+1.26 16.49+1.09
MMN 27.21+0.61 23.29+1.54 25.64+1.97 25.38+1.37 32.56+0.74 25.78+1.83 29.30£1.25 29.21+1.27
MPN 30.87+2.84 28.61+3.07 29.67+246 29.72+279 36.35+2.98 29.14+3.14 34.71+2.77 33.40+2.96
CTLR 27.09+1.47 36.13+2.13 28.30+2.25 30.51x1.95 37.41+125 31.95+2.69 31.90+0.57 33.75+1.50
DCKPN 71.61£2.69 57.93+222 57.40+2.69 62.31+2.53 70.22+338 63.11+1.51 62.36+3.47 65.23+2.79
CFPL 74.40+0.52 63.40+£0.48 62.91+0.52 66.90£0.51 76.69+0.66 64.13+0.24 65.65+0.51 68.86x0.47

Table 4: F1 scores on the IMultiWOZ dataset under N-way 1-shot and N-way 5-shot settings.

. Stanford LU CrossWOZ JMultiwOZ

Setting

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CFPL 7191 7991 8527 87.09 6690 68.86
-LSA 66.07 74.15 7829 80.54 60.37 62.79
- Inter- 6543 7352 76.17 7873 59.85 63.14
- Intra- 6328 6940 72.14 7377 56.60 58.13
- Leir 66.87 75.12 77.63 80.38 61.02 64.51

Table 5: Ablation study results. The average F1 scores
of all domains are reported.

In terms of the non-English datasets, CFPL outper-
forms DCKPN 8.2% on CrossWOZ and 4.1% on
IMultiwOZ, while eliminating the need of part-of-
speech tagging required by CTLR, thereby demon-
strating the effectiveness and convenience of our
method.

4.4 Ablation Study

To examine the influence of each component, we
conduct ablation studies on three datasets, as shown
in Table 5. When removing the Intra-domain Pro-
totype Learning (denoted as - Intra-), the model
performs the worst, indicating the effectiveness
of intra-domain feature interaction within each
episode for classification. Similarly, when exclud-
ing the Inter-domain Prototype Learning (denoted
as - Inter-), the model exhibits a significant per-
formance decline, indicating that the teacher model
introduces unseen domain knowledge, which en-
hances the ability of recognizing novel classes.
When we omit the Label Synset Augmentation
(denoted as - LSA), the model performance de-
creases, indicating that augmented labels help to
provide more discriminative representations. When
removing the class-specific circle loss (denoted as -
Lcir), the model performance degrades, indicating
the superiority of contrastive loss for multi-label
classification.

4.5 Analysis and Discussions

Impact of the Hyperparameter © We conduct
sensitivity analysis using different values of k for
label augmentation. Figure 3 shows the respective
results in different domains and the average results
on each dataset. The performance improves signifi-
cantly as k increases from 0 to 2 in most domains,
which indicates the effectiveness of augmented la-
bels. As the value of £ continues to increase, the
model performance increases very slowly or even
decreases after reaching maximum, which implies
that excessive label expansion may introduce con-
fusing information or even noise. In addition, an
oversized k results in substantial resource consump-
tion. Therefore, we set k = 2 for all the datasets in
our experiments.

Parameter Efficiency Due to the computational
intensity of Bert-base (110M params) in real in-
dustry deployments, we further assess our model
performance with the much lighter Bert-tiny (7TM
params), which is nearly 16 times smaller. Ex-
periments are conducted under different sizes of
training set (N-way 1/3/5-shot). The comparison
results with the strong baselines in Figure 4 demon-
strate that our model still maintains competitive per-
formance when reducing the computational load,
reflecting the superiority of our method.

Exploration of LLMs for Multilingual FS-MLID
Large language models (LLMs) have achieved sig-
nificant advancements in numerous few-shot tasks
via in-context learning. We conduct a preliminary
experiment to explore the performance of LLMs on
non-English FS-MLID tasks using gpt-3.5-turbo.
Restricted by the input length, we only conduct
the N-way 1-shot setting. The experimental results
and the in-context learning prompt template that
includes task description, demonstration and query
are detailed in the Appendix B.
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Figure 3: Experimental results of different values of k.
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Figure 4: Comparison with CTLR and DCKPN on Stan-
fordLU when using Bert-tiny as the backbone.

5 Conclusion

In this paper, we propose a CFPL method for multi-
label few-shot intent detection, which designs a
label synset augmentation strategy to enhance the
representations of the support data due to the data
scarcity issue and proposes to refine the proto-
types with knowledge distillation from a universal
teacher model. To solve the multilingual intent de-
tection, we fine-tune a cross-lingual teacher model
to enable our method to adapt quickly to differ-
ent languages. To verify our proposed method in
detecting intents for multilingual dialogues, we re-
annotate two non-English task-oriented dialogue
datasets CrossWOZ and JMultiWOZ in multi-label
form. Experimental results demonstrate the superi-
ority of our method.

6 Limitations

In this paper, we leverage a multilingual BERT
pre-trained on intent corpora as the teacher model.
However, we do not explore larger, more powerful

generalist language models like LLaMa (Touvron
et al., 2023) and Claude (Bai et al., 2022). On
the other hand, we hypothesize that related target
domain knowledge is compressed in the teacher
model, but it may be insufficient for all new do-
mains. Retrieval from related corpora could be
a good choice. We leave the exploration of better
teacher models and richer target knowledge sources
for future study. Additionally, since our method
involves some self-attention and cross-attention op-
erations, we plan to speed up the runtime by opti-
mizing attention mechanisms in future work.

7 Ethics Statement

We re-annotate two publicly available non-English
task-oriented dialogue datasets, i.e., CrossWOZ
and JMultiWOZ, for future multilingual intent de-
tection studies. During the re-annotating process,
we make sure that there is no any sensitive informa-
tion in these datasets, meaning that our work poses
no risks to society or individuals.

Acknowledgment

This work was supported by National Natural
Science Foundation of China (No. 62206038,
62106035), Liaoning Binhai Laboratory Project
(No. LBLF-2023-01), and Chunhui Project Foun-
dation of the Education Department of China (No.
HZKY20220419).

References

Amit Alfassy, Leonid Karlinsky, Amit Aides, Joseph
Shtok, Sivan Harary, Rogerio Feris, Raja Giryes, and
Alex M Bronstein. 2019. Laso: Label-set operations
networks for multi-label few-shot learning. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6548—6557.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom B.
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Benjamin Mann, and Jared Kaplan. 2022. Train-
ing a helpful and harmless assistant with rein-
forcement learning from human feedback. CoRR,
abs/2204.05862.

Francis Bond, Piek Vossen, John P. McCrae, and Chris-
tiane Fellbaum. 2016. CILI: the collaborative inter-
lingual index. In GWC 2016, pages 50-57.

2497



Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Recent
advances and new frontiers. ACM SIGKDD Explo-
rations, 19(2):25-35.

Kai-Hsiang Cheng, Szu-Yu Chou, and Yi-Hsuan Yang.
2019. Multi-label few-shot learning for sound event
recognition. In 217st IEEE International Workshop
on Multimedia Signal Processing.

Muthuraman Chidambaram, Yinfei Yang, Daniel Cer,
Steve Yuan, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2019. Learning cross-lingual sentence rep-
resentations via a multi-task dual-encoder model. In
RepIl4NLP@ACL 2019, pages 250-259. Association
for Computational Linguistics.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong
Yu. 2007. Boosting for transfer learning. In Proceed-
ings of the 24th International Conference on Machine
Learning, pages 193-200.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, pages 4171-4186.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In Proceedings
of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, pages 37-49.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tiir, and Prem Natara-
jan. 2023. MASSIVE: A 1m-example multilin-
gual natural language understanding dataset with 51
typologically-diverse languages. In ACL 2023, pages
4277-4302.

Rashmi Gangadharaiah and Balakrishnan
Narayanaswamy. 2019. Joint multiple intent
detection and slot labeling for goal-oriented dialog.
In NAACL-HLT, pages 564-569.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint slot
filling and intent prediction. In NAACL-HLT, pages
753-757.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1381—
1393.

Yutai Hou, Yongkui Lai, Yushan Wu, Wanxiang Che,
and Ting Liu. 2021. Few-shot learning for multi-
label intent detection. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence, pages
13036-13044.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong
Sun. 2022. Knowledgeable prompt-tuning: Incor-
porating knowledge into prompt verbalizer for text
classification. In ACL 2022, pages 2225-2240.

Haoyang Huang, Tianyi Tang, Dongdong Zhang, Xin
Zhao, Ting Song, Yan Xia, and Furu Wei. 2023.
Not all languages are created equal in llms: Improv-
ing multilingual capability by cross-lingual-thought
prompting. In EMNLP 2023, pages 12365-12394.
Association for Computational Linguistics.

Talaat Khalil, Kornel Kielczewski, Georgios Christos
Chouliaras, Amina Keldibek, and Maarten Versteegh.
2019. Cross-lingual intent classification in a low
resource industrial setting. In EMNLP-IJCNLP 2019,
pages 6418-6423.

Han Liu, Feng Zhang, Xiaotong Zhang, Siyang
Zhao, Junjie Sun, Hong Yu, and Xianchao Zhang.
2022. Label-enhanced prototypical network with
contrastive learning for multi-label few-shot aspect
category detection. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1079-1087.

Han Liu, Feng Zhang, Xiaotong Zhang, Siyang Zhao,
and Xianchao Zhang. 2021. An explicit-joint and
supervised-contrastive learning framework for few-
shot intent classification and slot filling. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP, pages 1945-1955.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
7th International Conference on Learning Represen-
tations.

Qiaoyang Luo, Lingqiao Liu, Yuhao Lin, and Wei
Zhang. 2021. Don’t miss the labels: Label-semantic
augmented meta-learner for few-shot text classifica-
tion. In Findings of the Association for Computa-
tional Linguistics: ACL/IJCNLP, pages 2773-2782.

Atsumoto Ohashi, Ryu Hirai, Shinya lizuka, and
Ryuichiro Higashinaka. 2024. Jmultiwoz: A large-
scale japanese multi-domain task-oriented dialogue
dataset. In LREC/COLING 2024, pages 9554-9567.
ELRA and ICCL.

Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu. 2019. A stack-propagation frame-
work with token-level intent detection for spoken
language understanding. In EMNLP-IJCNLP, pages
2078-2087.

2498



Libo Qin, Fuxuan Wei, Tianbao Xie, Xiao Xu, Wanx-
iang Che, and Ting Liu. 2021. GL-GIN: fast and
accurate non-autoregressive model for joint multi-
ple intent detection and slot filling. In ACL/IJCNLP,
pages 178-188.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.
Towards fine-grained transfer: An adaptive graph-
interactive framework for joint multiple intent detec-
tion and slot filling. In Findings of the Association
for Computational Linguistics: EMNLP, pages 1807—
1816.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In AAAI 2020,
pages 8689-8696. AAAI Press.

Barbara Rychalska, Helena T. Glabska, and Anna
Wréblewska. 2018. Multi-intent hierarchical nat-
ural language understanding for chatbots. In Inter-
national Conference on Social Networks Analysis,
Management and Security, SNAMS, pages 256-259.

Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia
Jin. 2021. Enhancing the generalization for intent
classification and out-of-domain detection in SLU.
In ACL 2021, pages 2443-2453.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. In Pro-
ceedings of the Annual Conference on Neural Infor-
mation Processing Systems, pages 4077-4087.

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei.
2020. Circle loss: A unified perspective of pair simi-
larity optimization. In CVPR, pages 6397—6406.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for

one shot learning. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems,
pages 3630-3638.

Ivan Vulié, Iiigo Casanueva, Georgios Spithourakis,
Avishek Mondal, Tsung-Hsien Wen, and Pawel
Budzianowski. 2022. Multi-label intent detection via
contrastive task specialization of sentence encoders.
In EMNLP 2022, pages 7544-7559.

Ivan Vulic, Ifigo Casanueva, Georgios Spithourakis,
Avishek Mondal, Tsung-Hsien Wen, and Pawel
Budzianowski. 2022. Multi-label intent detection via
contrastive task specialization of sentence encoders.
In EMNLP 2022, pages 7544—7559.

Zichen Wang, Bo Yang, Haonan Yue, and Zhenghao
Ma. 2024. Fine-grained prototypes distillation for
few-shot object detection. In AAAI 2024, pages 5859—
5866.

Jason W. Wei and Kai Zou. 2019. EDA: easy data
augmentation techniques for boosting performance
on text classification tasks. In EMNLP-IJCNLP 2019,
pages 6381-6387.

Ting-Wei Wu, Ruolin Su, and Biing-Hwang Juang.
2021. A label-aware BERT attention network for
zero-shot multi-intent detection in spoken language
understanding. In EMNLP, pages 4884—4896.

Yangjun Wu, Han Wang, Dongxiang Zhang, Gang Chen,
and Hao Zhang. 2022. Incorporating instructional
prompts into a unified generative framework for joint
multiple intent detection and slot filling. In COLING
2022, pages 7203-7208.

Shuo Yang, Lu Liu, and Min Xu. 2021. Free lunch for
few-shot learning: Distribution calibration. In /CLR
2021. OpenReview.net.

Feng Zhang, Wei Chen, Fei Ding, and Tengjiao Wang.
2023. Dual class knowledge propagation network for
multi-label few-shot intent detection. In ACL 2023,
pages 8605-8618.

Haoxing Zhang, Xiaofeng Zhang, Haibo Huang, and Lei
Yu. 2022. Prompt-based meta-learning for few-shot
text classification. In EMNLP 2022, pages 1342—
1357.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and
Minlie Huang. 2020. Crosswoz: A large-scale chi-
nese cross-domain task-oriented dialogue dataset.
Trans. Assoc. Comput. Linguistics, 8:281-295.

Zhihong Zhu, Xuxin Cheng, Hongxiang Li, Yaowei Li,
and Yuexian Zou. 2024. Dance with labels: Dual-
heterogeneous label graph interaction for multi-intent
spoken language understanding. In WSDM, pages
1022-1031.

2499



A Dataset Re-annotation Details

We re-annotate the two public multi-domain task-
oriented dialogue datasets, i.e., CrossWOZ (Zhu
et al., 2020) and JMultiWwOZ (Ohashi et al., 2024),
into multi-label form. Specifically, in order to align
with the setting of the multi-label intent detection
task, we have expanded the original task-oriented
dialogue dataset which includes the basic user in-
tent in the form of multiple labels. The utterance in
both non-English multi-domain task-oriented dia-
logue datasets is originally labeled with one simple
user intent, but it actually has more than one intent
labels. The entire process of re-annotation consists
of three stages: first, we follow the existing multi-
label intent datasets (Qin et al., 2020; Rastogi et al.,
2020) to determine multiple more precise intent
labels; then, we re-annotate the two public multi-
domain task-oriented dialogue datasets; finally, we
carefully review the re-annotated data.

In our re-annotation process, we first identify
the domains of the FS-MLID task in two non-
English datasets. The principle is to make the do-
mains of the two datasets as similar as possible to
evaluate the generalizability of our method across
different languages. For the CrossWOZ dataset,
the three re-annotated domains are At (Attraction),
Ho (Hotel), and Re (Restaurant). For the JMulti-
WOZ dataset, the three re-annotated domains are
Sh (Shopping), Ho (Hotel), and Re (Restaurant).
Due to the constraints imposed by the length of
user utterances, the intents expressed by users in
the two non-English datasets are not as diverse as
those in the StanfordL.U. This lead to fewer label
classes being identified in our study compared to
the StanfordLU. For the two non-English datasets,
we engage three native speakers of each dataset’s
language as annotators to reannotate the sentences
with multi-label annotations. This process spans
five days. For the CrossWOZ dataset, a total of
8697 user utterances are reannotated, and for the
JMultiWwOZ dataset, a total of 8076 utterances are
reannotated. Finally, the reannotated results un-
dergo a manual review process by two proficient
speakers of each language to ensure accuracy.

B LLM:s for Multilingual FS-MLID Tasks

LLMs Prompt Template in N-way 1-shot Setting
Given a target user intent list from task-oriented
dialogue, an user utterance, please identify all in-
tents behind user utterances. Note that the setting
of this task conforms to the N-way 1-shot setting,

which includes two stages: meta-training and meta-
testing. In the meta-training phase, there are 200
few-shot episodes from source domain. In the meta-
testing phase, there are 50 few-shot episodes from
target domain. Each episode contains a support set
and a query set, and the query set size is 32.

Target user intent list of source domain:

<1>: <User intent 1>

<2>: <User intent 2>

<N,>: <User intent N>

Episodes in meta-training phase from source do-
main (Each episode contains support set and query
set):

<Episode 1>:{"support":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

"query":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

<Utterance 32>: <User intent 1 of Utterance
32>; <User intent 2 of Utterance 32>; ...... }}

<Episode 2>:{"support":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

"query":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

<Episode 200>:{"support": {

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

"query":{
<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1> ......
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<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

<Utterance 32>: <User intent 1 of Utterance
32>; <User intent 2 of Utterance 32>; ...... 1}

Target user intent list of target domain:

<1>: <User intent 1>

<2>: <User intent 2>

<Ny>: <User intent [N;>

Episodes in meta-testing phase from target do-
main (Each episode contains support set and query
set):

<Episode 1>:{"support":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

"query":{
<Utterance 1>: <User intent ID>; <User intent

<Episode 2>:{"support":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

"query":{
<Utterance 1>: <User intent ID>; <User intent

<Episode 50>:{"support":{

<Utterance 1>: <User intent 1 of Utterance 1>;
<User intent 2 of Utterance 1>; ......

<Utterance 2>: <User intent 1 of Utterance 2>;
<User intent 2 of Utterance 2>; ......

llqueryll: {
<Utterance 1>: <User intent ID>; <User intent

<Utterance 2>: <User intent ID>; <User intent

Experimental Results and Analysis We con-
duct experiments using gpt-3.5-turbo > on two non-
English datasets: CrossWOZ and JMultiWwOZ. We
input the data and instructions into gpt-3.5-turbo
(GPT-3.5) according to the N-way 1-shot setting,
where N is the number of classes in each domain.
To simulate the meta-learning paradigm of few-
shot learning, we divide the entire process into the
meta-training and the meta-testing phase. All the
few-shot episode construction is consistent with
our experiment. For the meta-training phase, we
construct 200 few-shot episodes for each source
domain and 50 few-shot episodes for each target
domain. And the size of query set is 32. We input
GPT-3.5 with an user intent list of each source or
target domain and the task descriptions, and the
requested response is the intent ID of each query
user utterance.

The experimental results on CrossWOZ and
JMultiWwOZ are shown in Figure 5. From the re-
sults, it can be observed that CFPL performs much
better than GPT-3.5, which indicates the superi-
ority of our method. During the experiment, we
observe that some of the responses provided by
GPT-3.5 are blank, which has a substantial impact
on accuracy. Additionally, we observe that the ca-
pability of GPT-3.5 for predicting the number of
multiple labels still requires further improvement.
It is very intuitive to observe that the performance
of GPT-3.5 on FS-MLID task is more related to
languages rather than specific domains. Specifi-
cally, the average F1 scores of GPT-3.5 are 68.54%
on CrossWOZ and 62.48% on JMultiWOZ. How-
ever, for different domains within the same dataset,
the maximum and minimum F1 scores only dif-
fer by 1.2% on the CrossWOZ dataset and 2.2%
on the JMultiWOZ dataset. Inspired by (Huang
et al., 2023) and combined with our experimental
results, we analyze the reason is that LLMs do not
have equal capability of handling all the languages,
leading to imbalanced performance across different
languages. This further underscores the importance
of dealing with intent detection from a multilingual
perspective.

2https: //platform.openai.com/docs/models/
gpt-3-5
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Figure 5: Results of LLMs for multilingual FS-MLID tasks.

Datasets CTLR (train) CTLR (test) DCKPN (train) DCKPN (test) CFPL (train) CFPL (test) Cross-Lingual (CFPL)
StanfordLU (1-shot) 25 10 24 6 86 26 /
StanfordLU (5-shot) 32 13 28 5 87 27 /
CrossWOZ (1-shot) 44 11 36 7 128 27 350
CrossWOZ (5-shot) 56 10 38 8 130 28 350

Table 6: Total training and inference time (wall clock time in second).

C Error Rate Analysis

The corresponding class label sets for schedule,
navigate and weather domains are as follows:
[‘request_location’, ‘inform’,‘query’, ‘con-
firm’, ‘appreciate’, ‘command_appointment’,
‘remind’, ‘request_information’, ‘list_schedule’,
‘request_time’, ‘request_party’, ‘request_agenda’,
‘schedule’, ‘request_date’],  [‘request_poi’,
‘inform’, ‘query’, ‘confirm’, ‘appreciate’, ‘re-
quest_address’, ‘request_route’, ‘request_traffic’,
‘show_in_screen’, ‘navigate’], and [‘re-
quest_low_temperature’, ‘request_time’, ‘appre-
ciate’, ‘request_temperature’, ‘request_weather’,
‘inform’, ‘request_high_temperature’, ‘query’].
These three domains all contain semantically
highly similar class labels, such as ‘request_time’
and ‘request_date’ in the schedule domain.
Moreover, there are also class labels with
highly similar structures and meanings, such as
‘list_schedule’ and °‘schedule’ in the schedule
domain, ‘request_poi’ and ‘request_address’ in
the navigate domain. Our error rate for similar
categories is significantly lower than that of the
strong baseline DCKPN. Taking the schedule
domain as example, for our method CFPL, the
probability of the data belonging to ‘request_time’
that are misclassified into ‘request_date’ is 6.7%,
whereas DCKPN has a more higher error rate,
which is 9.1%. The class label with the highest
error rate in our method is ‘query’ in all three
domains. Its error rate is 16.2% in the schedule

domain, 12.1% in the navigate domain, and 8.3%
in the weather domain. The basic reason is that
users express questions in diverse forms, so the
method has weak ability to classify ‘query’. We
also observe that in the scheduling domain, the
error rate of ‘schedule’ is very high at 14.9%, the
reason is that the label set contains several labels
with similar meanings (e.g.‘request_agenda’,
‘list_schedule’, etc), which interferes with the
classification of the data belonging to ‘schedule’.

D Runtime Analysis

CFPL involves several non-trivial steps, which im-
pact the total wall clock time. The total training
and inference time is summarized in Table 6. It can
be seen that our method requires more time com-
pared to the baselines, particularly in the training
phase. The increase in time can be attributed to the
multiple parts of CFPL. Although CFPL requires
more time, it provides more accurate and robust
results, especially in the cross-lingual scenarios.
Since our method involves some self-attention
and cross-attention operations during inference,
which takes up a lot of time. In future work, we
plan to speed up inference time by optimizing at-
tention mechanisms. This will involve reducing
both the computational and memory overheads as-
sociated with attention calculations, as well as min-
imizing the memory access costs related to IO op-
erations. By focusing on these areas, our method
could achieve significant speed improvements.

2502



