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Abstract

Vision-extended LLMs have made significant
strides in Visual Question Answering (VQA).
Despite these advancements, VLLMs still
encounter substantial difficulties in handling
queries involving long-tail entities, with a ten-
dency to produce erroneous or hallucinated
responses. In this work, we introduce a
novel evaluative benchmark named SnapNTell,
specifically tailored for entity-centric VQA.
This task aims to test the models’ capabilities
in identifying entities and providing detailed,
entity-specific knowledge. We have developed
the SnapNTell Dataset, distinct from tradi-
tional VQA datasets: (1) It encompasses a wide
range of categorized entities, each represented
by images and explicitly named in the answers;
(2) It features QA pairs that require extensive
knowledge for accurate responses. The dataset
is organized into 22 major categories, contain-
ing 7,568 unique entities in total. For each
entity, we curated 10 illustrative images and
crafted 10 knowledge-intensive QA pairs. To
address this novel task, we devised a scalable,
efficient, and transparent retrieval-augmented
multimodal LLM. Our approach markedly out-
performs existing methods on the SnapNTell
dataset, achieving a 66.5% improvement in the
BELURT score.

1 Introduction

Vision-extended LLMs have shown significant ad-
vancements, excelling at capturing complex seman-
tics and context-aware attributes needed for intri-
cate tasks. However, their abilities in factual VQA
tasks, which demand accurate, concrete answers
about real-world entities and phenomena, expose
certain limitations. Particularly, torso-to-tail or
long-tail entities, which constitute a large propor-
tion of real-world data but appear infrequently in
training datasets, pose a challenge. This scarcity
in representation often leads to VLLMs resorting
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Figure 1: Comparing SnapNTell with existing methods
reveals a distinctive focus. In the SnapNTell benchmark,
the answers are predominantly entity-centric, charac-
terized by a greater depth of knowledgeable information
pertaining to the specific entity depicted in the image as
the answer.

to generating plausible but incorrect or imaginative
content in their outputs, a problem that manifests
as “hallucinations" within the context of model re-
sponses. To ensure the confident deployment of
VLLMs in practical scenarios, there is an urgent
need for dedicated research that not only recognizes
but actively strives to tackle and reduce instances of
hallucinations, especially in the context of factual
queries involving these long-tail entities.

The lack of publicly available evaluation datasets
specifically tailored to assess models’ ability in rec-
ognizing real-world long-tailed entities presents a
notable gap in VQA. Existing datasets fall short
in serving this purpose due to a narrow range of
entity categories, the prevalence of overly simplis-
tic yes/no QA pairs, and a general lack of entity
specificity, often using broad terms like “Tiger"
instead of more specific ones like “Siberian Tiger".
To address this gap, we introduce a novel eval-
uation task called SnapNTell, which focuses on
entity-centric knowledge-based VQA. The Snap-
NTell benchmark has been designed to evaluate
models’ abilities in accurately identifying entities
and generating responses that showcase a deep un-
derstanding of these entities. To support this task,
we have curated a new evaluation dataset that de-
parts from existing datasets in two crucial ways: (1)
It includes a wide range of fine-grained and catego-
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rized entities, each accompanied by corresponding
images and clear mention of the entity name within
the answer sets. (2) It features QA pairs designed
to prompt knowledge-intensive responses, moving
beyond the binary yes/no format to challenge and
assess the depth of the model’s comprehension.

Furthermore, the limitations identified in factual
query generation underscore the need for new so-
lutions to address the problem of hallucinations.
Recent advancements suggest that retrieval-based
approaches hold significant promise in this regard
(Guu et al., 2020; Srinivasan et al., 2022; Yang
et al., 2023a,b). These methods enhance LLMs by
integrating external knowledge sources or incor-
porating retrieval mechanisms to access relevant
information from extensive knowledge bases. The
synergy between the advanced inference capabil-
ities of LLMs and the wealth of external knowl-
edge has the potential to significantly reduce issues
related to long-tail entities and, consequently, de-
crease the occurrence of hallucinatory responses.

In this work, we aim to propose an evaluation
task to investigate the model’s ability to recog-
nize real-world long-tailed entities and provide
knowledge-intensive answers. We also propose
a retrieval-augmented method to reduce hallucina-
tions and enhance the precision and trustworthiness
of generated responses.

Our contribution is summarized as follows:

• SnapNTell task. We propose a novel task for
entity-centric VQA, specifically designed to
assess the proficiency of models in accurately
identifying and generating responses that ex-
hibit a deep comprehension of these identified
entities.

• SnapNTell model. We proposed a retrieval-
augmented multimodal LLM, devised as a
baseline model capable of undertaking the
SnapNTell task, which is scalable, effective,
and explainable.

• SnapNTell dataset. We collected a new eval-
uation dataset with distinctive characteristics,
which stands out for two key features: (1) It
encompasses a diverse range of fine-grained
entities, each accompanied by correspond-
ing representative images. (2) The question-
answer pairs contain knowledge-intensive re-
sponses with entity names specifically men-
tioned in the answer sets.

• Our model demonstrates superior perfor-
mance on the SnapNTell dataset, surpassing

current methodologies with a 66.5% improve-
ment in BELURT score.

2 Related Works

Knowledge-based VQA Research in vision-
language tasks, which necessitate understanding
image content to answer questions, has seen sig-
nificant advancements over recent years. Begin-
ning with datasets like FVQA (Wang et al., 2016),
which extracted facts from pre-established knowl-
edge bases, the field has progressed to more chal-
lenging ones like the OK-VQA dataset (Marino
et al., 2019), encompassing diverse knowledge cat-
egories. MultiModalQA (Talmor et al., 2021) intro-
duced complexity with questions demanding cross-
modal reasoning over snippets, tables, and images.
The successor of OK-VQA, AOK-VQA (Schwenk
et al., 2022), raises the bar by providing ques-
tions that transcend simple knowledge base queries.
ManyModalQA (Hannan et al., 2020) shifts the
focus to answer modality selection, MIMOQA
(Singh et al., 2021) emphasizes multimodal answer
extraction, and WebQA (Chang et al., 2021) in-
troduces real-world knowledge-seeking questions,
albeit with some limitations regarding entity catego-
rization and granularity. More comparison details
can be found in Section 3.5.

Multimodal LLMs Integrating visual under-
standing into text-based LLM typically combines
them with a visual encoder and uses image cap-
tioning datasets for alignment (Koh et al., 2023;
Wu et al., 2023; Chowdhery et al., 2022). Tech-
niques like adapter-based tuning (Alayrac et al.,
2022) and prefix tuning (Tsimpoukelli et al., 2021)
allow these models to process visual inputs while
maintaining their linguistic capabilities, without
requiring full model retraining (Yin et al., 2023).

Retrieval-augmented LLM Previous studies
have explored retrieval augmentation in text-only
settings or image captioning tasks. Guu et al.
(2020) introduced a retriever for language models
to access large corpus during various stages. Srini-
vasan et al. (2022) showed retrieval-augmented
queries enhance LLMs’ context understanding. Ya-
sunaga et al. (2023) and Yang et al. (2023a) de-
veloped methods for integrating multimodal doc-
uments and speeding up LLM inference, respec-
tively. Yang et al. (2023b) created a visual lan-
guage model, inspired by Flamingo (Alayrac et al.,
2022), for image captioning with external database
retrieval. Similarly, Gui et al. (2021) combined im-
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plicit and explicit knowledge in an encoder-decoder
setup to improve answer generation.

Open-domain visual entity recognition Hu et al.
(2023) developed OVEN for associating images
with Wikipedia entities via text queries, while Chen
et al. (2023) introduced INFOSEEK, a dataset for
Visual Question Answering focused on informa-
tional queries. While OVEN is proficient in entity
recognition using a knowledge base, INFOSEEK
mainly supplies factual responses. Our study seeks
to merge these strengths, creating detailed para-
graphs that provide context for a more compre-
hensive understanding beyond basic facts. More
related work can be found in Appendix E.

3 SnapNTell Dataset

3.1 Entity Categorization

To tackle the challenge of the new SnapNTell task,
the first step involves creating a comprehensive
dataset that represents a wide array of real-world
entities. Our dataset creation methodology entails
selecting a diverse set of entity names from vari-
ous categories that mirror the diversity of the real
world. This selection encompasses both commonly
encountered entities and less frequently encoun-
tered ones. We have identified 22 categories that
adequately represent a cross-section of entities one
might encounter in daily life. These categories
include landmark, painting, sculpture, food, fruit,
vegetable, mammal, amphibian, insect, fish, bird,
reptile, celebrity, instrument, plant, electronics,
tool, transportation, sport, book, household, and
car. More details about the categories can be re-
ferred to Table 10 in the Appendix.

To populate each category with specific enti-
ties, we leveraged Wikipedia as a primary resource
due to its extensive and detailed entries. (See Ap-
pendix A for more details.) Our selection criteria
are heavily biased towards specificity; for instance,
in the category of mammals, we deliberately opted
for precise names such as “German Shepherd” or
“Alaskan Malamute” instead of the generic “Dog”.
This level of specificity is critical as it enables the
model to demonstrate its capacity for fine-grained
recognition and its ability to generate detailed, ac-
curate information about each entity. This dataset-
building approach is what distinguishes our dataset
from existing VQA datasets, which often lack fine-
grained entities and specificity.

3.2 Image collection

The dataset comprises 22 primary categories, en-
capsulating a total of 7,568 unique entities. For
each individual entity, a set of 10 images has been
curated, where the statistic of the entity list is
shown in Table 10 in the Appendix.
Filtering Initially, a comprehensive list of enti-
ties, encompassing 22 primary categories, was com-
piled, in a total of 14,910 diverse entities. Then the
entity list underwent filtering by cross-referencing
each entry with its corresponding Wikipedia page.
Entities lacking valid Wikipedia pages were sub-
sequently removed from the list. For each corre-
sponding entity, images were sourced from Cre-
ative Commons (CC). Further filtering was con-
ducted by removing entities that didn’t have a suffi-
cient number of images obtained via Google Image
Search engine. The collected metadata was stored
in a CSV file containing essential information such
as image URLs, source page URLs, renamed im-
age names, and the corresponding Wikipedia page
URLs. After filtering, the final number of entities
in the SnapNTell dataset is 7,568. (More filtering
details can be found in Appendix B.)

3.3 Knowledge-intensive Question-Answer
Pairs

In our SnapNTell dataset, we considered five types
of questions:

• Static facts (absolute facts, discrete facts).
These are objective facts that are concrete and
are not contingent on other conditions. They
can usually be answered with a unique answer.
i.e., “When was he (Barack Obama) born?"

• Narrative facts. These facts encompass com-
prehension of larger contexts (e.g., song lyrics,
movie plot). They are factual in the sense that
the content of the narrative should accurately
reflect the source material or events, but a cor-
rect answer is usually not unique, as they can
vary in their level of detail and focus. i.e.,
“What is the plot of that (‘The Godfather’)?"

• Dynamic facts. These are facts that are sub-
ject to change over time. i.e., “What is the
Yelp customer rating of it (the Eleven Madi-
son Park restaurant) in NYC?"

• Procedural facts. These are usually answers
to “how” questions, outlining a sequence of
steps to accomplish a task. While the steps
may not be unique and could be subjective,
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the answer can still be classified as logical or
nonsensical. Note that these facts may some-
times overlap with dynamic facts or narrative
facts, i.e., “How do you check the battery level
of my item (Ray-Ban Stories Glasses)?"

• Subjective facts. (opinion-based facts).
These “facts” are not objective indisputable
facts, but based on individual perspectives
or experience. Recommendations fall in this
category. While there’s generally no single
correct answer to questions seeking subjec-
tive facts, it still requires the system to un-
derstand the topic and provide reasonable an-
swers grounded by world facts. i.e., “Why do
you like it (Niagara Falls)?"

To construct a comprehensive and knowledge-
intensive QA dataset, we employ a three-step
process. Firstly, we extracted and condensed perti-
nent information from Wikipedia for each entity,
i.e., the summary of the introduction, the caption of
the image, etc. (See Appendix A for more details).
Following similar approaches proposed by LLaVA
(Liu et al., 2023b), Dettmers et al. (2023) is utilized
to generate QA pairs for each entity automatically
based on five pre-defined question types, ensuring
diversity and informativeness. Then, we enlisted
three annotators (2 male and 1 female) from
Amazon SageMaker to assess QA pair quality
and make necessary revisions to meet specific
criteria. The responsibilities of these annotators
include: (1) ensuring that the images and QA
pairs are semantically aligned, (2) validating the
accuracy of the provided answers, (3) making sure
the questions are free of particular entity names
but demanding such specificity in the answers,
(4) assessing if the modified QA pairs adhere
to the criteria for knowledge-intensive content,
and (5) removing specific entity-related details
from the questions. This last step guarantees that
the question queries cannot be answered without
understanding the accompanying visual context.

Quality and consistency In order to verify the
quality of the QA pairs, we conducted a quality
evaluation by randomly choosing 1,000 QA pairs
from our dataset. We assigned three independent
human evaluators (1 male, 2 female) from Amazon
SageMaker to review these pairs for accuracy [ac-
curate, inaccurate] and agreement on whether to
save the QA pair by Fleiss’ Kappa (Fleiss, 1971).
The outcome of this assessment revealed 98% ac-

curacy and κ = 0.95 agreement rate among the
evaluators, demonstrating a significant degree of
uniformity in the quality of the QA pairs.

3.4 Statistics and Analysis of Our Dataset

Entity statistics To provide a clear summary of
this comprehensive dataset, we have condensed the
details of the entity list into Table 10 and Figure 9
(in Appendix F). Our analysis indicates that the
dataset displays a well-balanced distribution across
different categories, enhancing its balanced and
diverse characteristics. Such a balanced and diverse
composition enhances the representativeness of our
proposed evaluation dataset.

Popularity The importance of entity popularity
in search engines is a key aspect to consider, simi-
lar to examining the head, torso, and tail sections of
knowledge bases within search engine frameworks.
As demonstrated in Figure 11 in Appendix F, we
use the average Wikipedia pageviews per entity
over the last 60 days as the metric. This average is
calculated by summing up the pageviews and then
dividing by the number of entities. The insights
from Figure 11 reveal that entities in the celebrity
category have the highest average popularity. For
a broader comparison among different categories,
we also present a comprehensive analysis of total
pageviews for all categories in Figure 10 in Ap-
pendix F, which shows that the celebrity category
remains at the forefront in terms of overall entity
popularity. This is attributed to the combination of
a higher number of entities in this category and the
generally higher popularity of each entity within it.

3.5 Comparison with Existing VQA Datasets

In Table 2 and Figure 2, we present a compari-
son with existing VQA datasets. It is evident that
some existing VQA datasets lack categorization,
fine-grained entities, and knowledge-intensive an-
swers, as observed in VQA 2.0 (Goyal et al., 2016)
and GQA (Hudson and Manning, 2019). OK-VQA
(Marino et al., 2019) contains images that may not
be sufficient to answer the questions, encouraging
reliance on external knowledge resources. How-
ever, the answers in OK-VQA are often simplistic
binary (yes/no) responses or selections from the
questions. A-OKVQA (Schwenk et al., 2022), the
successor of OK-VQA, aims to provide questions
that require commonsense reasoning about the de-
picted scene but use general object names in the
answers. MultiModalQA (Talmor et al., 2021) fo-
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Table 1: More detailed comparison with existing knowledge-based VQA datasets. Anonymity means whether the
question already contains a knowledge clue related to the entity in question. (* Unclear)

Dataset Categories Unique Entity QA Pairs Images Average Ans Length Number of Images / Entity Anonymity

ViQuAE 3 2,400 3,700 3,300 1.8 * ✗
Encyclopedic VQA (test) 12 * 5,750 5,750 3.2 * ✗
SnapNTell (Ours) 22 7,568 75,680 75,680 25.7 10 ✓

Table 2: Comparison with existing VQA datasets Knowl-
edge means the QA pairs are knowledgeable, not simple
yes/no answers or selection questions. Entities means
whether there are fine-grained entities specifically con-
tained in answers. Categorization means the entities are
categorized, not randomly crawled online.

Dataset Knowledge Entities Categorization

VQA 2.0 (Goyal et al., 2016)
GQA (Hudson and Manning, 2019)
OK-VQA (Marino et al., 2019)
ManyModalQA (Hannan et al., 2020) ✓
MultiModalQA (Talmor et al., 2021) ✓
MIMOQA (Singh et al., 2021) ✓
A-OKVQA (Schwenk et al., 2022) ✓
WebQA (Chang et al., 2021) ✓ ✓ ✓
ViQuAE (Lerner et al., 2022) ✓ ✓ ✓
Encyclopedic VQA (Mensink et al., 2023) ✓ ✓ ✓
SnapNTell (Ours) ✓ ✓ ✓

cuses on cross-modal knowledge extraction but re-
lies on question templates for question generation.
ManyModalQA (Hannan et al., 2020) focuses on
answer modality choice rather than knowledge ag-
gregation or extraction. In MIMOQA (Singh et al.,
2021), the task of extracting a multimodal answer
is not necessarily knowledge-intensive. WebQA
(Chang et al., 2021) does have categorization but
lacks fine-grained entities in many QA pairs, result-
ing in more general questions and answers. Our
proposed SnapNTell differs by including a wide
range of fine-grained entities with representative
images and explicit entity names in the answer sets.
Additionally, it incorporates question-answer pairs
that demand knowledge-intensive responses, going
beyond simplistic binary answers. Examples of our
dataset can be found in Figure 8 in Appendix F.

ViQuAE (Lerner et al., 2022) and Encyclope-
dic VQA (Mensink et al., 2023) both incorporate
entity-level knowledge-based information along
with categorization. Therefore, we performed a
more in-depth analysis comparing them in Table 1.
Our dataset surpasses these in terms of the vari-
ety of categories, the number of distinct entities,
and the overall number of QA pairs. Additionally,
our dataset boasts a higher count of images and a
longer average length for answers. Specifically, our
dataset is structured to include 10 images for each
entity, whereas the exact number of images per en-
tity in ViQuAE and Encyclopedic VQA remains
unspecified. Most notably, our dataset’s questions
are highly anonymous, implying that they do not

Figure 2: Comparison with existing datasets, where pre-
vious VQA datasets mostly focus on freeform answers
(such as yes/no for verification questions and choice for
selection questions).

reveal any knowledge hints about the entity. This
design ensures that the questions cannot be straight-
forwardly answered without interpreting the image
data, setting our dataset apart from both ViQuAE
and Encyclopedic VQA.

4 Method

In this section, we will introduce the details of our
proposed retrieval-augmented multimodal LLM
model. The architecture of our model is shown
in Figure 3 (larger figure in Appendix D due
to space limit). Our model can be considered
twofold: (1) Retrieval augmentation. Given the
input image-question pair, we retrieve useful entity-
centric information within knowledge sources. (2)
Entity-centric knowledge-based answer genera-
tion. The retrieved information will be combined
with the image and question together to generate a
knowledgeable answer.

4.1 Retrieval Augmentation

The retrieval augmentation process can be sub-
divided into: (i) Semantic region extraction via
language-guided object detection, (ii) Entity recog-
nition via image retrieval, and (iii) Knowledge re-
trieval via multi-source aggregation.

Semantic Region Extraction via Language-
Guided Object Detection To improve recogni-
tion performance, we focus on extracting specific
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Figure 3: Our SnapNTell model architecture takes an
image-question pair as input. It begins with retrieval
augmentation to source relevant information about the
entity in the image. This information, along with the
question, feeds into the word embedding layer. Text
embeddings merge with image-projected embeddings
before entering the LLM, culminating in a knowledge-
able answer as the output.

image regions containing the entity, rather than
general image-level recognition. We employ a
language-guided object detection model, i.e., GLIP
(Li et al., 2021), for language-guided object detec-
tion, extracting regions relevant to textual queries
by understanding the query context. This targeted
approach ensures precise region extraction, enhanc-
ing the system’s accuracy and contextual relevance.

Entity Recognition via Image Retrieval We
construct a similarity index using CLIP embed-
dings (Radford et al., 2021) and Faiss (Johnson
et al., 2017) for indexing. Our database, built on
the WIT dataset (Srinivasan et al., 2021), maps
CLIP image embeddings to their text descriptions,
leveraging Faiss’s robust similarity search capa-
bilities. After setting up the indexing database,
given an input query image I , we perform a k-
nearest neighbor retrieval based on cosine simi-
larity. The retrieval outcomes are represented as
R(I) = {(i1, c1) , · · · , (ik, ck)}, where for each j
within the range of 1 to k, ij and cj correspond
to the retrieved image and its associated caption,
respectively. By comparing I with similar images
from the database, we identify the entity in the
image region, which enables precise image-level
entity recognition.

Knowledge Retrieval via Multi-Source Aggrega-
tion Facing diverse user queries, we gather extra
information to compile resources for accurate re-
sponses. Some queries require up-to-date informa-
tion, not present in existing databases. We then turn
to external sources to collect critical data like “year
built," “description," and more. By using Knowl-
edge Graph (KG) and web searches, we access rele-

vant knowledge links, enriching our understanding
of the specified image region, and improving our
ability to comprehend and contextualize the ex-
tracted content. More details of the method can be
found in Appendix D.

4.2 Entity-centric Knowledge-based Answer
Generation

Following information collection, we enter the inte-
gration phase, blending the input image, question,
and retrieved data to generate a knowledgeable
response, which is illustrated in Figure 3. Our
method enhances multimodal understanding by
pre-training a LLM with image-text paired data.
Taking cues from Moon et al. (2023), we employ
lightweight adapters for each modality, converting
inputs into the text token embedding space of the
chosen LLM.

In our method, the LLM’s text token embedding
space morphs into a unified space, representing
both text and image content, with each modality
assigned 64 to 256 token embeddings. We freeze
the LLM’s parameters during alignment training
to quicken convergence and retain the LLM’s rea-
soning skills for inference. To ensure feature align-
ment, we use an image encoder, g(·), previously
synchronized with a text embedding space, like
in CLIP (Radford et al., 2021; Schuhmann et al.,
2022). For text-image pairs (Xtext,Ximage), we
align them using specific objectives and a projec-
tion module, like the Perceiver Resampler (Alayrac
et al., 2022), applied to the vision encoder as:

p(Xtext|Ximage) =
L∏

i=1

pθ(X
[i]
text|Zimage,Z

[1:i−1]
text ) (1)

Zimage = Projθ(hlatents, g(Ximage)) (2)

5 Experiments and Results

5.1 Experimental Setup
Evaluation Metrics (1) In our evaluation pro-
cess, the quality of the answers is first assessed
using established NLP metrics such as BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), ROUGE (Lin, 2004), and BLEURT
(Sellam et al., 2020; Pu et al., 2021). (2) Addition-
ally, we incorporate accuracy and hallucination rate
metrics from (Sun et al., 2023). These metrics used
GPT4 to automatically measure the proportion of
questions for which the model provides correct
answers or incorrect/partially incorrect answers,
respectively. (3) We conduct human evaluation
following Ye et al. (2023); Moon et al. (2023).
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Table 3: Performance comparison of different ap-
proaches on the SnapNTell dataset.

Method ROUGE ↑ BLEU ↑ METEOR ↑ BLEURT ↑
Instruct-BLIP (Dai et al., 2023) 10.72 0.95 7.59 0.09
BLIP2 (Li et al., 2023) 15.00 0.52 8.49 0.16
Mini-GPT4 (Zhu et al., 2023) 26.12 5.62 25.55 0.27
LLaVA (Liu et al., 2023b) 26.86 6.03 26.97 0.31
Open-Flamingo (Awadalla et al., 2023) 30.57 6.52 22.53 0.32
COGVLM (Wang et al., 2023) 30.25 6.67 23.35 0.31
mPLUG-Owl2 (Ye et al., 2023) 31.39 6.72 24.67 0.33
LLaVA 1.5 (Liu et al., 2023a) 32.87 6.94 25.23 0.33
SnapNTell (ours) 35.28 7.81 29.27 0.55

Model Setting We chose LLaMA2 (70B) (Tou-
vron et al., 2023) as our LLM. For image encoding,
the CLIP image encoder (ViT-B/32) is employed
(Radford et al., 2021; Schuhmann et al., 2022). Ad-
ditional configurations comprise a batch size of
2,048, the integration of two resampler layers, and
the use of 64 modality tokens.

Model Training We used a cleaned subset of the
LAION-2B dataset, filtered using the CAT method
(Radenovic et al., 2023b) and with any detectable
faces blurred (Radenovic et al., 2023a). Signifi-
cant resources are essential to scale pre-training
to 70 billion parameter models on a substantial
dataset of over 200 million instances. Often, this
necessitates the utilization of an FSDP wrapper, as
outlined in Dettmers et al. (2023), to distribute the
model across multiple GPUs efficiently. To opti-
mize our training process, we employ quantization
strategies, specifically 4-bit and 8-bit quantization
techniques (Dettmers et al., 2023), within our mul-
timodal framework. In this approach, we maintain
the LLM component of our model in a frozen state,
allowing only the image modality tokenizers to
be trainable. This strategy drastically reduces the
memory requirements by an order of magnitude.
As a result of these optimizations, we can success-
fully train a 70 billion parameter model on a single
GPU with 80GB VRAM, using a batch size of 4.

5.2 Results and Discussion

Table 3 displays the comparative results between
the baseline models and our proposed method.
Analysis of this table indicates that for every met-
ric assessed, our retrieval-augmented multimodal
LLM surpasses the performance of all existing
baseline models. This strong performance empha-
sizes the efficiency of retrieval augmentation in
producing responses enriched with entity-centric
information, thereby illustrating its substantial im-
pact on the task at hand.

Moreover, to gain deeper insights into which
evaluation metric more accurately reflects the out-
comes, we computed the Kendall correlation coef-

Table 4: Effectiveness of evaluation metrics.

ROUGE BLEU METEOR BELURT

τ 0.999 0.799 0.600 0.999
P_value 0.014 0.050 0.142 0.014

ficient (Kendall, 1938; Knight, 1966; Kendall et al.,
1995), comparing the results with those from the
human evaluation in Section 5.4. Kendall’s τ is a
measure of the correspondence between two rank-
ings. Values close to 1 indicate strong agreement,
values close to -1 indicate strong disagreement. Ta-
ble 4 revealed that both the ROUGE and BLEURT
scores were more indicative in distinguishing the
differences among various models. This finding
suggests that these two metrics are particularly sig-
nificant in evaluating model performance in a way
that aligns closely with human judgment.

5.3 Ablation Study
For a more in-depth understanding, we conducted
several ablation studies to delve into the finer de-
tails of our approach.
Effectiveness of Entity Detection To assess the
impact of entity detection (ED) in our model, we
performed an ablation study. This involved com-
paring the performance of our approach with and
without the ED component. As indicated in Ta-
ble 5, our approach incorporating entity detection
markedly surpasses the variant lacking this feature.
This highlights the significant contribution and ne-
cessity of the entity detection step in our model’s
overall effectiveness.

Table 5: Ablation study on the effectiveness of entity
detection (ED).

Method ROUGE ↑ BLEU ↑ METEOR ↑ BELURT ↑
w/o ED 28.02 3.73 26.26 0.45
w/ ED 35.28 7.81 29.27 0.55

Head/Torso/Tail Entities Head knowledge per-
tains to well-established entities for which there is
a wealth of available training data. Ideally, LLMs
could be trained to possess this knowledge, fa-
cilitating efficient retrieval. On the other hand,
torso-to-tail knowledge pertains to less-known or
obscure entities, often characterized by scarce or
non-existent training data. Providing access to such
knowledge involves effectively determining when
external information is necessary, retrieving the
relevant knowledge efficiently, and seamlessly inte-
grating it into responses.

To assess the performance improvement for
head/torso/tail entities, we randomly selected 10%

253



Table 6: Ablation study on head/torso/tail entities,
where RA is short for Retrieval Augmentation and ∆ is
the performance difference of with and without RA.

Accuracy ↑ Hallucination ↓

Head
w/o RA 24.4 75.6

w/ RA 27.1 72.9
∆ (100%) 11.1 % ↑ 3.6 % ↓

Torso
w/o RA 19.1 80.9

w/ RA 22.7 77.3
∆ (100%) 18.8 % ↑ 4.4 % ↓

Tail
w/o RA 6.8 93.2

w/ RA 12.6 87.4
∆ (100%) 85.3 % ↑ 6.2 % ↓

entities for each category, where head/torso/tail
entities are defined based on pageview statistics
(popularity) in Section 3.4. The results presented
in Table 6 clearly demonstrate that retrieval aug-
mentation can significantly enhance performance
across various entity types. Notably, the perfor-
mance improvement for torso-to-tail entities far
exceeds that of head entities, effectively address-
ing the challenge of hallucinations in long-tailed
entities through retrieval augmentation.

Performance of Different VQA Datasets To
demonstrate the uniqueness of our SnapNTell
dataset compared to existing VQA datasets, we an-
alyzed the performance of various baseline models
on both traditional VQA datasets and our SnapN-
Tell dataset. According to the findings presented in
Table 7, the performance disparities among base-
line models on existing datasets are not particularly
marked. In contrast, on the SnapNTell dataset,
we observed significantly larger differences and
notably lower performance. This indicates that
our SnapNTell dataset is particularly effective in
evaluating the capabilities of different models to
recognize entities and produce responses centered
around these entities.
Table 7: Ablation on the accuracy performance of dif-
ferent VQA datasets.

Method VQAv2 TextVQA OK-VQA SnapNTell

Instruct-BLIP (Dai et al., 2023) – 46.6 55.5 8.88
BLIP2 (Li et al., 2023) 52.6 43.1 54.7 16.16
Flamingo (Alayrac et al., 2022) 56.3 37.9 57.8 32.17

5.4 Human Evaluation Results

In alignment with the methodology presented in
Ye et al. (2023); Moon et al. (2023), we involved
a human evaluation process conducted by a panel
of five human judges (3 male, 2 female). These
judges were given specific instructions for their as-
sessment, which encompassed three key aspects:

0%

25%

50%

75%

100%

MIni-GPT4
Open-Flamingo

COGVLM
mPLUG-Owl2

LLaVA 1.5
SnapNTell

Lose Tie Win

Figure 4: Human evaluation results on pairwise com-
parisons (% win, tie, lose) with baseline outputs against
the manually annotated ground-truth from SnapNTell.

(1) Recognition Accuracy, where they evaluated
whether the model correctly identified the entity in
the image relevant to the question; (2) Response
Accuracy, in which they assessed the factual cor-
rectness of the model’s responses while checking
for any signs of hallucination (Rawte et al., 2023);
and (3) Pairwise Comparison, where judges se-
lected the response that better addressed the given
question in terms of contextual appropriateness and
accuracy, categorizing responses as winning, tying,
or losing.

In our study, we conducted pairwise compar-
isons for each baseline model against ground-truth
data across 1,000 samples. As depicted in Figure 4,
our model outperforms the baselines by displaying
a significantly smaller difference when measured
against manually annotated ground-truth samples,
highlighting its robustness.

6 Conclusion

In this work, we tackle the significant challenge
VLLMs face with long-tail entity queries, which of-
ten lead to inaccurate or hallucinated responses. To
address these issues, we introduce an entity-centric
VQA task named SnapNTell. This task is designed
to test models on entity recognition and their abil-
ity to provide detailed, entity-specific knowledge
in their responses. We collected a unique eval-
uation dataset for this task, which distinguishes
itself from existing VQA datasets by including a
wide array of fine-grained categorized entities, sup-
ported by images and explicit entity mentions in
the answers. This dataset emphasizes knowledge-
intensive responses over simple binary answers. In
addition, we propose a retrieval-augmented multi-
modal LLM solution for the SnapNTell task as an
effective baseline. Our experimental results show
that our model outperforms existing approaches,
providing more accurate and coherent answers.
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Limitations

In this study, we introduce a novel SnapNTell task
and its accompanying dataset, which features five
unique types of questions, each paired with metic-
ulously formulated answers. It’s important to rec-
ognize that in cases involving human preferences,
which are subjective by nature, the given answers
might not represent the only correct options. Fur-
thermore, the relevancy of some answers may di-
minish over time, highlighting the need for peri-
odic updates to the dataset to ensure its ongoing
relevance and accuracy. Our proposed method ex-
hibited superior performance over existing base-
lines. However, human evaluation results suggest
significant potential for further improvement. Al-
though our approach often neared human-level per-
formance, it did not consistently outperform human
annotations, showing opportunities for future ad-
vancements.

Ethics Statement

In this study, the dataset was sourced from pub-
licly accessible databases, and all author details
remain anonymous. We conscientiously excluded
any content from our dataset that could be consid-
ered ethically sensitive. To our understanding, and
with careful consideration, we do not anticipate any
detrimental applications arising from the findings
or methodologies presented in this research.

Broader Impact

Current models have made commendable progress
in grasping the nuanced semantics and context-
sensitive aspects of Visual Question Answering
(VQA). However, their efficacy in factual VQA
tasks, which require precise and factual answers
about tangible entities and events, reveals certain
deficiencies. This is especially true for torso-to-tail
or long-tail entities. Despite their prevalence in
the real world, these entities are underrepresented
in training datasets, leading to a common issue
where models produce plausible yet inaccurate or
invented responses, a phenomenon often termed
“hallucinations" in the realm of model-generated
content. Tackling and minimizing these hallucina-
tions is vital for enhancing the trustworthiness and
applicability of these models in practical scenarios.

The existing VQA datasets, however, are inade-
quate for evaluating a model’s ability to recognize
entities, as they do not explicitly highlight these

entities within the dataset. Our newly introduced
dataset bridges this gap. It is designed to test mod-
els’ capabilities not just in identifying entities but
also in generating informed and entity-aware re-
sponses. Furthermore, our proposed dataset might
serve as resources for either pre-training or fine-
tuning existing models, to improve their ability in
recognizing entity-level real-world objects.
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A More Details about the Dataset Building

More details about the dataset building process are shown in Figure 5.

Figure 5: The pertinent information collected during dataset building, i.e., from Wikipedia for each entity, which
includes the summary of the general introduction, toponym, lococation information, and so on.

B More Details about the Filtering Process

More details about the filtering process are shown in Table 8.

C Types of Questions

More introduction of different types of question in the SnapNTell dataset are shown Table 9.

D Method

In this section, we will introduce the details of our proposed retrieval-augmented multimodal LLM model.
The architecture of our model is shown in Figure 7. Our model can be considered twofold: (1) Retrieval
augmentation. Given the input image-question pair, we retrieve useful entity-centric information within
knowledge sources. (2) Entity-centric knowledge-based answer generation. The retrieved information
will be combined with the image and question together to generate the answer. More details are introduced
in the following sections.

D.1 Retrieval Augmentation
The retrieval augmentation process can be subdivided into three distinct steps: (i) Semantic region
extraction via language-guided object detection, (ii) Entity recognition via image retrieval, and (iii)
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Table 8: Filtering statistics of the entity dataset. [1st Wiki filtering]: removing ones without wiki page. [2nd Google
filtering]: removing ones without enough images via google search API. [3rd Wiki filtering]: removing entity name
with ambiguous wiki pages.

Main category Original Entity 1st Wiki filtering 2nd Google filtering 3rd Wiki filtering

Category

landmark 1595 1000 899 753
painting 1057 367 358 288
sculpture 300 164 164 134
food 883 338 337 271
fruit 361 236 233 180
vegetable 389 290 286 214
mammal 778 633 619 434
hibian 211 148 139 124
insect 366 179 176 145
fish 1089 1054 987 722
bird 739 546 545 480
reptile 279 232 231 210
celebrity 1514 1484 1466 732
instrument 477 375 368 277
plant 606 601 593 489
electronics 432 354 342 269
tool 801 213 209 150
transportation 334 296 290 227
sport 694 478 464 395
book 1030 826 777 645
household 475 319 299 221
car 500 320 320 208

Summary 22 14910 10453 10102 7568

Figure 6: Collecting images for building the evaluation dataset. Licenses: CC Publicdomain, CC Attribute, AA
Sharealike, CC Noncommercial, or CC Nonderived licenses. Metadata: image URLs, source page URLs, renamed
image names, and the corresponding Wikipedia page URL.

Knowledge retrieval via multi-source aggregation.

Semantic Region Extraction via Language-Guided Object Detection Due to the presence of entities
within the image that occupy only a portion of the available space, employing a comprehensive image-level
entity recognition approach may lead to a decrease in recognition performance. Instead, we opt to initially
extract the image region containing the entity and utilize this specific region in subsequent recognition
processes to enhance accuracy. During this phase, we leverage a language-guided object detection model,
i.e., GLIP (Li et al., 2021), to extract meaningful regions from complex images. This approach helps
precisely identify and extract image regions directly relevant to specific textual queries. It accomplishes
this by understanding the context of the query and adjusting its object detection method to find the most
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Table 9: Types of questions.

Types of questions Definition

Static facts (absolute
facts, discrete facts)

These are objective facts that are concrete and are not contingent on other conditions.
They can usually be answered with a short, unique answer. For example: When was
Barack Obama born?

Narrative facts These facts encompass comprehension of larger contexts (e.g., song lyrics, movie plot,
historical events). They are factual in the sense that the content of the narrative should
accurately reflect the source material or events, but a correct answer is usually not unique,
as they can vary in their level of detail and focus. For example: What is the plot of “The
Godfather”?

Dynamic facts These are facts that are subject to change over time. For example: What is the Yelp
customer rating of the Eleven Madison Park restaurant in NYC?

Procedural facts These are usually answers to “how” questions, outlining a sequence of steps to accom-
plish a task. While the steps may not be unique and could be subjective, in many cases,
an answer can still be classified as logical (factual) or nonsensical (a hallucination). Note
that these facts can overlap with dynamic facts or narrative facts. For example, How do
you check the battery level of my Ray-Ban Stories Glasses?

Subjective facts
(opinion-based facts)

These “facts” are not objective, indisputable facts, but are based on individual perspec-
tives or experiences. Recommendations fall in this category. While there’s generally no
single correct answer to questions seeking subjective facts, it still requires the system
to understand the topic and provide reasonable answers grounded by world facts. For
example: Where should I visit Tokyo next month?

important image areas. This step enables the system to better understand the query’s context, resulting in
more accurate and contextually meaningful region extraction.

Entity Recognition via Image Retrieval To accomplish this goal, we begin by constructing a similarity
index using CLIP embeddings, specifically employing Faiss (Johnson et al., 2017) as our indexing tool.
Our indexing database is established based on the WIT dataset (Srinivasan et al., 2021). This database
follows a key-value mapping structure, where the keys represent CLIP ViT-B/32 image embeddings, and
the corresponding text descriptions serve as the values. Faiss, known for its efficiency in similarity search,
is utilized for indexing (Johnson et al., 2017).

Once the indexing database is set up, we are ready to proceed with the query process. Given an input
query image, denoted as I (which is the entity image region extracted in the preceding step), we perform
a k-nearest neighbor retrieval based on cosine similarity between the embeddings of the query image and
those of the database images. The retrieval outcomes are represented as R(I) = {(i1, c1) , · · · , (ik, ck)},
where for each j within the range of 1 to k, ij and cj correspond to the retrieved image and its associated
caption, respectively. Subsequently, by using the extracted image region as input for a search in the
indexing database, we identify the entity within the extracted image region. This identification is achieved
by comparing it with the most similar images retrieved from the indexing database, ultimately resulting in
image-level entity recognition.

Knowledge Retrieval via Multi-Source Aggregation Given the wide array of questions users may pose,
we need to obtain additional information to compile the necessary resources for crafting accurate responses.
Furthermore, certain queries may demand the latest information, which is not readily available within
pre-existing databases or knowledge graphs. In such cases, we rely on external sources of knowledge, such
as online references, to gather essential data, encompassing elements like “year built," “description," and
other pertinent details. To accomplish this, we leverage Knowledge Graph (KG) and conduct web searches
to access relevant knowledge connections. This approach enables us to acquire a wealth of information
concerning the specified image region, thereby bolstering our capacity to grasp and contextualize the
extracted content effectively.
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Figure 7: The architecture of our SnapNTell model. The input to the model is an image-question pair, and our model
first uses retrieval augmentation to retrieve useful information regarding the entity in the image. Then, the retrieved
information is combined with the question as input to the word embedding layer, where the text embeddings will be
combined with image-projected embeddings as the input to LLM, which finally generates a knowledgeable answer
as the output.

D.2 Entity-centric Knowledge-based Answer Generation

Following the preceding step, where we’ve gathered insightful information from diverse sources, we now
proceed to the second phase: determining how to integrate the input image, the question, and the retrieved
information in order to produce a knowledge-driven response.

Our approach is illustrated in Figure 7. Our strategy for improving the model’s multimodal compre-
hension entails pre-training a LLM using paired multimodal data, which comprises images alongside
corresponding textual descriptions. To achieve this, we draw inspiration from Moon et al. (2023) and
create lightweight adapters for each modality. These adapters facilitate the transformation of inputs into
the text token embedding space of a designated LLM.

Our approach transforms the text token embedding space of the LLM into a unified token embedding
space, where tokens can represent either textual or image content. The number of token embeddings
allocated to each input modality is predetermined for each adapter, ranging from 64 to 256. Throughout
the alignment training process, we keep the model parameters of the underlying LLM frozen. This
approach not only accelerates convergence compared to training the model from scratch but also allows
the model to inherit the reasoning capabilities of the LLM during inference. Additionally, to maximize
feature compatibility, we employ an encoder denoted as g(·) for the image modality. This encoder has
previously been aligned with a text embedding space, for instance, in the case of CLIP (Radford et al.,
2021; Schuhmann et al., 2022). For each pair of text and image, represented as (Xtext,Ximage), we
align them using specific objectives along with a projection module, such as the Perceiver Resampler
(Alayrac et al., 2022) for the vision encoder.

p(Xtext|Ximage) =

L∏

i=1

pθ(X
[i]
text|Zimage,Z

[1:i−1]
text ) (3)

Zimage = Projθ(hlatents, g(Ximage)) (4)
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E More Related Works

Knowledge-based VQA Various vision-language tasks often require knowledge to answer questions
based on image content and have evolved in recent years. Beginning with datasets like FVQA (Wang
et al., 2016), which extracted facts from pre-established knowledge bases, the field has progressed to
more challenging ones like the OK-VQA dataset (Marino et al., 2019), encompassing diverse knowledge
categories. MultiModalQA (Talmor et al., 2021) introduced complexity with questions demanding
cross-modal reasoning over snippets, tables, and images. The successor of OK-VQA, AOK-VQA
(Schwenk et al., 2022), raises the bar by providing questions that transcend simple knowledge base queries.
ManyModalQA (Hannan et al., 2020) shifts the focus to answer modality selection, MIMOQA (Singh
et al., 2021) emphasizes multimodal answer extraction, and WebQA (Chang et al., 2021) introduces
real-world knowledge-seeking questions, albeit with some limitations regarding entity categorization and
granularity. More comparison details are introduced in Section 3.5.

Multimodal LLMs Expanding text-only LLMs to interpret visual information typically involves in-
tegrating a visual encoder with a frozen LLM, using extensive image captioning datasets for alignment
(Koh et al., 2023; Wu et al., 2023; Chowdhery et al., 2022). This integration can be accomplished through
methods such as adapter-based tuning (Alayrac et al., 2022), which fine-tunes a small portion of the model
to process visual inputs, or prefix tuning (Tsimpoukelli et al., 2021), where trained prefixed vectors are
inputted to guide the frozen LLM towards contextually relevant text outputs based on the visual data.
These techniques allow LLMs to maintain their linguistic prowess while gaining visual understanding
without full model retraining (Yin et al., 2023).

Retrieval augmented LLM Several prior approaches have investigated retrieval-augmented in the
text-only setting or image captioning tasks. Guu et al. (2020) augmented language model pretraining
with a latent knowledge retriever, which allows the model to retrieve and attend over documents from
a large corpus such as Wikipedia, used during pretraining, fine-tuning, and inference. Srinivasan et al.
(2022) demonstrated that retrieval augmentation of queries provides LLMs with valuable additional
context, enabling improved understanding. Yasunaga et al. (2023) proposed a retriever to retrieve relevant
multimodal documents from external memory and use the generator to make predictions for the input.
Yang et al. (2023a) proposed an accelerator to losslessly speed up LLM inference with references through
retrieval. Yang et al. (2023b) introduced a retrieval-augmented visual language model, built upon the
Flamingo (Alayrac et al., 2022), which supports retrieving the relevant knowledge from the external
database for zero and in-context few-shot image captioning. Another related work by Gui et al. (2021)
integrated implicit and explicit knowledge in an encoder-decoder architecture for jointly reasoning over
both knowledge sources during answer generation.

Open-domain visual entity recognition Hu et al. (2023) introduced Open-domain Visual Entity
Recognition (OVEN) for linking images to Wikipedia entities through text queries. Chen et al. (2023)
presented INFOSEEK, a Visual Question Answering dataset designed for information-seeking queries.
OVEN excels at entity recognition but relies on a knowledge base for entity names, while INFOSEEK
primarily provides factual answers. Our research aims to bridge these gaps by generating informative
paragraphs that offer context, enabling a deeper understanding beyond mere facts.

F More Statistics of the SnapNTell Dataset

In Table 10 and Figure 9,10,11, we show more statistics of the SnapNTell dataset.
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Figure 8: Examples from our SnapNTell dataset.

Table 10: Category statistics of the SnapNTell dataset.

Category Number of entities

Category

landmark 753
painting 288
sculpture 134

food 271
fruit 180

vegetable 214
mammal 434

fish 124
bird 145

reptile 722
amphibian 480

insect 210
celebrity 732

instrument 277
plant 489

electronics 269
tool 150

transportation 227
sport 395
book 645

household 221
car 208

Summary 22 7568
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Figure 9: Statistics of number of entities in each category.
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Figure 10: Statistics of all pageviews for all categories.
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Figure 11: Average pageview per entity within each category, where average pageview is defined as the sum of
pageviews/ number of entity.
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G Some Result Examples and Human Evaluation

In Table 11, we showed several example result by different models, and the corresponding human
evaluation results.

Table 11: Examples of answers generated by different models, where Ground-truth, BLIP2, MiniGPT4, Open-
Flamingo, InstructBLIP, LLaVA, SnapNTell are assigned as M0, M1, ..., M6 in rating.

Image

Question Where is the attraction located?

Ground-truth (M0) Abel Tasman National Park is located at the northern tip of the South Island of
New Zealand between Golden Bay and Tasman Bay

BLIP-2 (M1) california

Mini-GPT4 (M2) The image shows a beach with a body of water in the foreground and trees and
mountains in the background.

Open-Flamingo (M3) It is located in New Zealand.

Instruct-BLIP (M4) beach 1

LLaVA (M5) The image is located at the beach, which is surrounded by a forest of trees.

SnapNTell (Ours)
(M6)

The image is not located in the Republic of Altai, but rather in the South Island
of New Zealand. The location is the Abel Tasman National Park, specifically
the area around Awaroa Beach.

Human Rating M0 = M6 > M3 > M1 = M2 = M5 > M4

Image

Question What date did it open to the public?

Ground-truth (M0) The Acropolis Museum was inaugurated on June 20, 2009 after many years of
planning and construction

BLIP-2 (M1) 1 January 2009

Mini-GPT4 (M2) The museum opened to the public on January 1, 2018

Open-Flamingo (M3) The museum opened to the public on December 12, 1987.

Instruct-BLIP (M4) 2007

LLaVA (M5) The museum opened to the public on April 13, 2019.

SnapNTell (Ours)
(M6)

The Acropolis Museum opened to the public on June 20, 2009.

Human Rating M0 = M6 > M1 > M2 = M3 = M4 = M5
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Image

Question What is the name of the view in this picture?

Ground-truth (M0) Lake Titicaca is a large freshwater lake located in the Andes Mountains spanning
the borders of both Bolivia and Peru

BLIP-2 (M1) a town in Peru

Mini-GPT4 (M2) It is a small town with colorful buildings and boats in the water.

Open-Flamingo (M3) This is the city of Puerto Natales in Chile.

Instruct-BLIP (M4) harbor 2

LLaVA (M5) It is a cityscape with boats in the water, located near a mountainous area.

SnapNTell (Ours)
(M6)

It’s Lake Titicaca in the Andes Mountains.

Human Rating M0 = M6 > M1 > M3 > M2 = M5 > M4

Image

Question What is the age of the building now?

Ground-truth (M0) The Chapel Bridge is over 700 years old having been built in 1333

BLIP-2 (M1) 16th century

Mini-GPT4 (M2) The age of the building in the image is not known.

Open-Flamingo (M3) The age of the bridge is over 100 years old.

Instruct-BLIP (M4) old

LLaVA (M5) The age of the building in the image is not specified. However, it is described
as an old building, which suggests that it could be quite old or historic.

SnapNTell (Ours)
(M6)

The Chapel Bridge (Chapel Bridge or Kapellbrücke) in Lucerne, Switzerland,
is a medieval wooden bridge that dates back to the 14th century. It was built
in 1333 and is one of the oldest covered bridges in Europe, which is over 700
years old now.

Human Rating M6 >= M0 > M1 = M2 = M3 = M4 = M5
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