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Abstract

Graph learning has become essential in vari-
ous domains, including recommendation sys-
tems and social network analysis. Graph Neu-
ral Networks (GNNs) have emerged as promis-
ing techniques for encoding structural infor-
mation and improving performance in tasks
like link prediction and node classification.
However, a key challenge remains: the dif-
ficulty of generalizing to unseen graph data
with different properties. In this work, we pro-
pose a novel graph foundation model, called
OpenGraph, to address this challenge. Our
approach tackles several technical obstacles.
Firstly, we enhance data augmentation using
a large language model (LLM) to overcome
data scarcity in real-world scenarios. Sec-
ondly, we introduce a unified graph tokenizer
that enables the model to generalize effectively
to diverse graph data, even when encounter-
ing unseen properties during training. Thirdly,
our developed scalable graph transformer cap-
tures node-wise dependencies within the global
topological context. Extensive experiments
validate the effectiveness of our framework.
By adapting OpenGraph to new graph char-
acteristics and comprehending diverse graphs,
our approach achieves remarkable zero-shot
graph learning performance across various set-
tings. We release the model implementation at
https://github.com/HKUDS/OpenGraph.

1 Introduction

Graph learning is a crucial methodology in vari-
ous fields, such as recommender systems (He et al.,
2020), social network analysis (Sankar et al., 2021),
citation networks (Lv et al., 2021), and transporta-
tion networks (Wang et al., 2020). By utilizing
Graph Neural Networks (GNNs) and recursive
message passing, we capture the complex struc-
tures of graphs effectively. GNNs leverage inter-
dependencies among nodes to incorporate high-
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order connectivities into learned graph representa-
tions (Ying et al., 2018; Jin et al., 2020).

A primary challenge in current end-to-end graph
neural networks is their heavy reliance on scarce
and low-quality labeled data (Liu et al., 2022; Jin
et al., 2022). To overcome this, self-supervised
learning (SSL) has emerged as a solution by lever-
aging augmented self-supervision signals. Con-
trastive SSL, exemplified by DGI (Veličković et al.,
2018b) and GraphCL (You et al., 2020), incorpo-
rates contrastive objectives as self-supervised align-
ment loss. Recent advancements like JOAO (You
et al., 2021) and GCA (Zhu et al., 2021) automate
contrastive learning through adaptive augmentation.
By integrating SSL techniques, we enhance graph
neural networks with limited labeled data.

Graph pre-training excels at capturing intrinsic
graph properties but struggle to effectively gener-
alize to diverse downstream domains, particularly
when faced with distribution shifts (Sun et al., 2023;
Wu et al., 2021c; Gui et al., 2022). For example, in
recommender systems, handling previously unseen
user interaction graphs in cold-start recommenda-
tion scenarios is crucial (Chen et al., 2022a). Trans-
ferring knowledge from pre-trained graph domains
to other downstream domains is desirable (Zhang
et al., 2022a). However, applying these models to
unseen graphs results in significant performance
deterioration due to variations in node sets and re-
lation semantics across different scenarios.

Recent research explores prompt-tuning as a
task-specific alternative to fine-tuning, bridging the
gap between pre-training and downstream objec-
tives (Sun et al., 2022; Liu et al., 2023; Fang et al.,
2023). These approaches align the pre-trained
model’s understanding with specific task require-
ments. However, practical scenarios involve vari-
ations in node sets and feature semantics across
diverse downstream graph domains. Further explo-
ration is needed to enhance graph models’ general-
ization and adaptability to real-world graphs.
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This work aims to develop a scalable graph
model that enables zero-shot learning, effectively
making accurate predictions on unseen graphs.
Building such a model poses significant challenges.

• C1: Domain-Specific Data Scarcity. Data
scarcity is a common challenge across down-
stream domain tasks, driven by factors like pri-
vacy concerns. Limited availability of domain-
specific user behavior graphs restricts data collec-
tion. Therefore, developing label-less learning
frameworks within graph models is crucial to ef-
fectively understand the context of downstream
tasks in the face of data scarcity.

• C2: Node Token Set Shift. A key challenge
in zero-shot graph learning is the shift in node
token sets across graphs. This requires the model
to reconcile variations in node characteristics.
Generating universal graph tokens is crucial to
effectively represent and comprehend diverse un-
seen graphs with different topological contexts.

• C3: Efficient Graph Dependency Modeling.
Nodes in large-scale graphs have complex depen-
dencies. Understanding local and global inter-
dependencies among all nodes is crucial for accu-
rate prediction. Efficient node-wise dependency
encoding is vital to enhance the performance and
scalability of graph models.

Present Work. To overcome the challenges, we
introduce a graph model for zero-shot learning that
captures universal and transferable structural pat-
terns across multiple domains. To address C1, we
propose combining large language models (LLMs)
with data augmentation techniques for synthetic
graph generation. By generating augmented graphs
resembling real-world instances, we enhance the
pre-training process of OpenGraph and gain a
deeper understanding of downstream task contexts.
This is achieved through the integration of tree-of-
prompt regularization with Gibbs sampling.

To address C2, we propose a topology-aware
graph tokenizer that generates universal graph to-
kens from arbitrary graphs. For C3, we develop
a scalable graph transformer with efficient self-
attention using anchor sampling. Our approach
ensures computational efficiency through a two-
stage self-attention process and optimizes training
by leveraging token sequence sampling, reducing
sequence length while preserving crucial context.
We conducted extensive experiments on diverse
datasets, demonstrating the remarkable generaliza-
tion abilities of our model across various settings.

2 Preliminaries

Graph Learning. A graph G = (V, E ,F) consists
of a node set V = vi, an edge set E = (vs, vt),
and node attributes F ∈ R|V|×f . Graph learning
aims to produce node representations that encode
both structural and attribute information. These em-
beddings are used for tasks such as link prediction
and node classification, involving the prediction of
node connections and categories, respectively. The
corresponding losses to be minimized are:

Llink =
∑

vs,vt

(1− es,t)f(vs, vt)− es,tf(vs, vt),

Lnode = −
∑

vs,ys

(
f(vs, ys) /

∑

y′s ̸=ys

f(vs, y
′
s)
)

(1)

where es,t ∈ {0, 1} denotes the link label for nodes
vs and vt, and ys ∈ C indicate the groundtruth cate-
gory for node vs. Function f denotes the prediction
model with learnable parameters Θf .
Zero-shot Graph Learning. Current graph mod-
els excel in standard tasks but struggle to generalize
across diverse domains. Their performance dete-
riorates when applied to new graphs with varying
characteristics, such as node sets and features. To
address these limitations, we focus on zero-shot
graph learning, where a model is trained on a set
of graphs and evaluated on different test graphs
without shared graph tokens. It aims to assess
the model’s ability to learn generalized topolog-
ical structures and node-wise dependencies. For-
mally, we seek to minimize the error measurement
ϵ(Gt, f), with argminf denoting the optimization.

Θf =argminΘf
L({Gs}, f),

Vt ∩ Vs =∅, Et ∩ Es = ∅, Rft ̸= Rfs (2)

This objective is to develop a universal graph mod-
eling architecture f(·). Its parameters Θf are
learned by minimizng graph learning losses L on
the training graphs {Gs}. Notably, the training
graphs and test graphs Gt have no common nodes,
edges, or node features. This presents a unique
challenge for the graph model to handle the signifi-
cant distribution shift that occurs across different
graph domains with entirely distinct datasets.

3 Methodology

This section presents the design details of the pro-
posed OpenGraph framework. Figure 1 gives an
overall illustration for the model. In appendix, we
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elaborate on how OpenGraph handles node classi-
fiction (A.1.1) and graph features (A.1.2), detailed
configurations of our scalable graph transformer
(A.1.3), as well as the generation algorithms (A.2).

3.1 Unified Graph Tokenizer
To handle diverse graphs with varying nodes and
features, our goal is to develop a graph tokenizer
that transforms input graphs into unified token se-
quences: G → {ei}. Each token represents a node
accompanied by a semantic vector ei. By utiliz-
ing a shared representation space and a flexible
sequence structure, we aim to standardize distribu-
tions across graphs. Specifically, our tokenizer uses
the smoothed adjacency matrix Ã, and a topology-
aware projection function ϕ : R|V| → Rd.

3.1.1 Smoothed High-Order Adjacency
We start with the original adjacency matrix A ∈
R|V|×|V| built from edges E . The smoothing proce-
dure for the adjacency matrix is as follows:

Ã = Ā1
+ Ā2

+ · · · ĀL
, Ā = D− 1

2 AD− 1
2 (3)

For numerical stability, we use Laplacian normal-
ization Ā with the diagonal degree matrix D of
adjacency A. To capture high-order connectivity
and sparse node-wise relations, OpenGraph com-
bines Ā at different orders. This provides us with
topology information for further processing, with L
representing the maximum power order considered.

3.1.2 Topology-aware Projection with
Arbitary Graphs

To handle the varying dimensionality |V| × |V| of
adjacency Ã, OpenGraph applies a projection func-
tion ϕ : R|V| → Rd to transform the adjacency
into sequence data. A large hidden dimensionality
d is used to minimize information loss. Previous
research has shown that even random projections
with large dimensions can achieve satisfactory per-
formance (Zheng et al., 2022). To preserve topol-
ogy information, we employ fast singular value
decomposition (SVD) as the projection ϕ. SVD is
known for its efficiency and effectiveness in adja-
cency compression (Jamali and Ester, 2010). Our
empirical analysis demonstrates that two iterations
of fast SVD effectively preserve topology informa-
tion with minimal computational overhead. The
graph tokenizer performs the following operations
to calculate the resulting token sequence:

ev = ϕ(Ãv,:) = Ãv,: · LN((U
√
Λ ∥ V

√
Λ)) (4)

where U,V ∈ R|V|×d and Λ ∈ Rd×d are obtained
from SVD. The concatenation operator ∥ combines
them in the hidden dimension. Layer normalization
function LN(·) reduces numerical variance across
datasets. The resulting ev ∈ Rd incorporates topol-
ogy information from Ã and the topology-aware
projection ϕ. This information strengthens subse-
quent learnable neural networks.

3.2 Scalable Graph Transformer

With the universal topology-aware graph tokens,
the subsequent task is to empower our graph model
to grasp the complex node-wise dependencies
within the global context. Inspired by the success of
transformer architectures in modeling complex re-
lationships between instances, OpenGraph utilizes
a graph transformer as the backbone. To ensure
scalability and effectiveness for large-scale graphs,
we introduce the following techniques.
Token Sequence Sampling. For efficiency, we
train the graph transformer using sampled token
sequences from the current training batch, which
contains centric nodes vcb , positive nodes vpb , and
negative nodes vnb

. The input is as follows:

(ec1 · · · ecB ) ∥ (ep1 · · · epB ) ∥ (en1 · · · enB ) (5)

This approach significantly reduces the sequence
length from |V| to 3×B, enabling efficient train-
ing for large-scale graphs. Despite using a sub-
sequence, the topology-aware embeddings contain
local structural information for each node and re-
flect the overall graph structure. Additionally, this
sampling technique emphasizes the current training
batch, leading to further training improvements.
Efficient Self-Attention with Anchors. To ac-
celerate the self-attention part of OpenGraph with
quadratic complexity, we introduce a step of sam-
pling anchor nodes vas for s ∈ S, where S < 3B.
This splits the self-attention process into two stages:
propagating messages from all nodes to the anchor
nodes and then propagating the anchor embeddings
to all nodes. This decomposition reduces the com-
plexity from O(B2 × d) to O(B × S), ensuring
scalability for large-scale graphs.

3.3 Knowledge Distillation from LLM

Obtaining diverse graph datasets for different do-
mains can be challenging due to factors like privacy
issues that restrict access to essential data (Zhel-
eva and Getoor, 2007). Inspired by the remark-
able knowledge and understanding demonstrated
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Figure 1: Overall model architecture of the OpenGraph framework.

by large language models (LLMs), we leverage
their power to enhance the generation of diverse
graph-structured data. To improve the efficacy of
our LLM-augmented graph data for pre-training
our model, we have developed an augmentation
mechanism. This mechanism enables the LLM-
augmented graph data to closely approximate real-
world graph characteristics, enhancing the rele-
vance and usefulness of the augmented data.

3.3.1 LLM-based Node Generation
Our first step is to create a node set tailored to the
application scenario, characterized by text-based
profiles that generate subsequent edges. However,
dealing with real-world scenarios poses challenges
due to the large scale of the node set. For exam-
ple, e-commerce platforms may have billions of
products, making it challenging for the LLM to
efficiently generate a large number of nodes.

To address this challenge, we adopt an itera-
tive strategy of dividing general nodes into sub-
categories with finer semantic granularity. For in-
stance, in the case of generating product nodes,
we prompt the LLM with a query like "List sub-
categories of products on platforms like Ama-
zon." The LLM provides a list of sub-categories
such as "clothing" and "electronics." We repeat
this iterative division process, refining each sub-
category further, until we obtain nodes that resem-
ble real-world instances, such as "women’s cloth-
ing," "sweaters," "hooded sweaters," and "white
hooded sweaters." Appendix A.2.1 presents details
on our prompt template and generation examples.
Tree-of-Prompt Algorithm. The process of divid-
ing nodes into sub-categories and generating fine-
grained entities follows a tree structure. The initial
general node (e.g., "products," "deep learning pa-
pers") serves as the root, and fine-grained entities
act as leaf nodes. We employ a tree-of-prompt
strategy to traverse and generate these nodes. For
further details, please see Appendix A.2.2.

3.3.2 Edge Sampling using Node Profiles
To generate edges, we use the Gibbs sampling al-
gorithm (Gelfand, 2000) with the generated node

set V . The algorithm starts with a random sam-
ple.For instance, in a paper-wise citation network,
the initial sample is a node pair (vs0 , vt0). In
a person-entity relation scenario like an author-
paper network, the initial sample is a binary vector
a0 ∈ {0, 1}|V|. Each element ai ∈ a0 indicates
whether there is an interaction between the sampled
person and the i-th node vi. In the case of person-
entity relations, the Gibbs algorithm for edge sam-
pling is described in Appendix A.2.3. The key is
estimating the probability p(at ⊕ vt′ |at), with ⊕
representing setting the t′-th dimension of at to 1.
Node-wise Connection Probability Estimation.
To estimate the probability p(at ⊕ vt′ |at) of con-
necting two nodes in our generated graph, we lever-
age the reasoning capabilities of the LLM. How-
ever, directly prompting the LLM for predictions
on each edge can be computationally expensive,
with O(|V| × |V|) prompts required. To ensure
efficiency, we adopt an alternative approach. We
prompt the LLM to generate hidden representa-
tions hi for each node vi. Then, we calculate the
probability for each edge with dot-product as:

p(at ⊕ vt′ |at) =
∑

vi
ati(hi/∥at∥0)⊤ · ht′ (6)

By utilizing the text embeddings hi and ht′ pro-
vided by the LLM, we can effectively capture the
semantic relations between the respective nodes.
Dynamic Probability Normalization. To ensure
that the calculated probability scores fall within
a reasonable range like [0, 1], our generation al-
gorithm incorporates a dynamic probability nor-
malization approach.It maintains a record of the
most recent T ′ estimation values, denoted as P =
{p(at ⊕ vt′ |at) | t = −1, · · · ,−T ′}. By calcu-
lating the mean (µ) and standard deviation (σ) of
these values, we gain insight into their distribution.
New estimations are adjusted using µ± 2σ as the
bounds, resulting in p̄ = (p− µ)/(4σ).
Node Locality Incorporation. To address the lim-
itation of the previous edge sampling algorithm
based on semantic similarity, we introduce the
concept of locality. Each node is assigned a ran-
dom locality index, and we consider the difference
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in locality using an exponential decay function.
This results in an adjusted probability calculated
as p̂ = p̄ · α|ni−nj |, where 0 < α < 1. By in-
corporating locality, we account for the observed
patterns in real-world graphs and prevent excessive
connections among semantically-related nodes.

3.3.3 Graph Topological Pattern Injection
To enhance the incorporation of topological infor-
mation in the graph generation process, we refine
the node embeddings after the initial graph genera-
tion. By training a Graph Convolutional Network
(GCN) on the graph G, we obtain new node embed-
dings that capture the underlying topology patterns.
This aligns the node embeddings derived from the
graph with the textual embeddings of the entities
and avoids distribution shifts between graph and
textual spaces. The final graph is constructed using
our edge generation algorithm, which operates on
these enhanced node representations.

4 Evaluation

4.1 Experimental Settings
Datasets. We evaluate OpenGraph on two graph
learning tasks: link prediction and node classifi-
cation, using totally 8 real-world datasets. Ap-
pendix A.3.1 provides detailed descriptions.
Evaluation Protocol. Following previous
works (He et al., 2020; Kipf and Welling, 2017), we
adopt the original train-test data split for the exper-
imental datasets. We pre-train our OpenGraph on
generated datasets and conducts zero-shot predic-
tion for the evaluation datasets made of real graph
data. As most baselines struggle with cross-dataset
transferring, we evaluate them in two few-shot
training settings. Please refer to Appendix A.3.2
for more details about our cross-dataset zero-shot
setting, few-shot settings, and evaluation metrics.
Implementation Details. We provide detailed in-
formation about the implementation of OpenGraph
and the baseline methods, as well as the graph gen-
eration process, in Appendix A.3.3.
Baselines. Our empirical evaluation utilizes the
following 9 state-of-the-art baseline methods from
4 different research lines. Detailed descriptions for
the baselines can be found in Appendix A.3.4.

4.2 Overall Performance Comparison (RQ1)
Comparing the zero-shot performance of Open-
Graph with the few-shot performance of baselines
in link prediction and node classification (Table 1),
we have the following observations:

Predominant Performance of OpenGraph. Our
model outperforms baselines on all 8 datasets in
different categories without using any overlapping
data between pre-training and downstream tasks,
showcasing its remarkable ability to generalize.
This advantage can be attributed to three key fac-
tors: i) the unified graph tokenizer, bridging the
gap between pre-training and target datasets; ii)
the scalable graph transformer, capturing impor-
tant structural features and learning relations ef-
fectively; and iii) effective pre-training with LLM-
generated graph data, equipping our model with
versatile forecasting abilities. Overall, these de-
sign choices contribute to our model’s outstanding
generalization capabilities across diverse datasets.
Limitations of Existing Pretraining Methods.
Pre-training methods like GraphCL and DGI do not
consistently outperform foundational models (e.g.,
GIN and GCN) trained on few-shot data, suggest-
ing that they may hinder performance when applied
to different datasets. This is due to a significant
shift in data distribution between pre-training and
target datasets, leading to overfitting and impairing
adaptability to new graph structures in downstream
tasks. Prompt tuning methods like GraphPrompt
and GPF sometimes degrade more severely com-
pared to full-model fine-tuning approaches, indicat-
ing a higher susceptibility to overfitting to distinc-
tive patterns within the training set.
Tackling Node Classification by Structure
Learning. Our OpenGraph shows significant im-
provement in node classification tasks, highlight-
ing the effectiveness of using our pre-trained link
predictor to identify connections between ordinary
nodes and special nodes representing classes. This
advantage relies on OpenGraph’s strong ability to
generalize, transferring knowledge across datasets
and tasks. The credit for this versatility goes to the
universal applicability and flexibility of our graph
tokenization and encoding.

4.3 Investigation on Graph Tokenizer (RQ2)
In this section, we study the effectiveness of our
graph tokenizater by evaluating the impact of the
smoothed adjacency matrix and comparing our pro-
jection method with alternative compression meth-
ods. The results are summarized in Figure 2.
Impact of adjacency smoothing: We examine the
effect of graph smoothing on model performance
by testing different levels of smoothing for the in-
put adjacency matrix. The results are depicted in
Figure 2(a) and 2(b). Here, the use of 0 adjacency
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Table 1: Performance of OpenGraph (zero-shot) and baseline methods (one-shot, five-shot) on link prediction
(measured by Recall@N for N = 20, 40) and node classification (measured by Accuracy and Macro F1 Score).

Dataset ogbl-ddi ogbl-collab ML-1M ML-10M Amazon-book Cora Citeseer Pubmed
Model shot R-20 R-40 R-20 R-40 R-20 R-40 R-20 R-40 R-20 R-40 Acc F1 Acc F1 Acc F1

MF 1 .0087 .0161 .0261 .0349 .0331 .0604 .1396 .1956 .0034 .0043 .1710 .1563 .1740 .1727 .3470 .3346
5 .0536 .0884 .0412 .0609 .0987 .1584 .2060 .2989 .0196 .0284 .1500 .1422 .1520 .1484 .3540 .3435

MLP 1 .0195 .0336 .0112 .0185 .0548 .1019 .1492 .2048 .0017 .0028 .2300 .1100 .2590 .1993 .4430 .3114
5 .0621 .1038 .0115 .0185 .0851 .1470 .2362 .2563 .0092 .0152 .3930 .3367 .3690 .3032 .5240 .4767

GCN 1 .0279 .0459 .0206 .0321 .0432 .0849 .1760 .2086 .0096 .0160 .3180 .1643 .3200 .2096 .4270 .3296
5 .0705 .1312 .0366 .0513 .1054 .1656 .2127 .2324 .0251 .0408 .5470 .5008 .4910 .4190 .509 .4455

GAT 1 .0580 .1061 .0258 .0372 .0245 .0520 .1615 .2476 .0047 .0079 .2420 .1687 .2810 .2025 .4720 .3657
5 .0711 .1309 .0340 .0505 .1506 .2267 .2002 .2883 .0228 .0392 .585 .5438 .4940 .4441 .5780 .5582

GIN 1 .0530 .1004 .0163 .0247 .0466 .0884 .1541 .2388 .0069 .0114 .3190 .1753 .2820 .1705 .4410 .3064
5 .0735 .1441 .0311 .0458 .1458 .2344 .1926 .2829 .0252 .0418 .5400 .4941 .521 .4696 .5070 .4547

DGI 1 .0315 .0617 .0255 .0385 .0486 .0863 .1868 .2716 .0081 .0142 .3150 .1782 .2840 .1791 .4290 .3163
5 .0821 .1426 .0345 .0502 .1687 .2573 .2303 .3063 .0300 .0492 .4880 .4606 .4450 .4062 .4890 .4509

GPF 1 .0503 .0856 .0027 .0048 .1099 .1702 .1599 .2326 .0072 .0128 .3080 .1952 .3110 .1984 .4220 .2670
5 .0839 .1460 .0027 .0047 .0817 .1392 .2014 .2994 .0179 .0310 .5550 .5233 .4690 .4223 .5150 .4934

GPrompt 1 .0541 .1102 .0138 .0207 .0797 .1310 .1362 .2073 .0074 .0120 .3540 .1596 .2800 .1519 .4710 .3705
5 .0769 .1396 .0157 .0231 .1340 .2166 .2157 .3147 .0287 .0464 .5510 .5098 .5570 .5211 .5130 .4520

GraphCL 1 .0603 .1112 .0265 .0398 .0390 .0799 .1655 .2529 .0047 .0077 .2430 .1548 .2980 .1630 .4070 .4130
5 .0740 .1368 .0311 .0456 .1416 .2138 .2019 .3075 .0270 .0440 .5610 .5330 .4300 .3683 .5230 .5024

Ours 0 .0921 .1746 .0421 .0639 .1911 .2978 .2370 .3265 .0485 .0748 .7504 .7426 .7221 .6801 .6869 .6537

smoothing implies the input of an identity matrix
for the graph tokenizer. This approach significantly
damages the topological information for the graph
tokenizer, resulting in poor performance. This
outcome underscores the importance of consider-
ing the adjacency matrix within our unified graph
tokenizer. For the non-zero graph smoothing or-
ders, L = 2 produces the best performance for the
Movielens-1M dataset. L = 3 and 1 yield the best
performance for the OGBL-ddi data under the top-
20 and top-40 settings, respectively. This suggests
the benefits of exploring high-order graph smooth-
ing in the graph tokenizer of our OpenGraph.
Superiority of topology-aware projection. To
assess the effectiveness of our topology-aware pro-
jection based on SVD, we compare it to three alter-
native projection methods (see Appendix A.3.5 for
details). The results are presented in Figure 2(c)
and 2(d). We make the following observations:

• One-hot encoding. This approach learns id-
corresponding embeddings across datasets. It
performs poorly in the zero-shot evaluation, high-
lighting the difficulty of transferring dataset-
specific parameters like node embeddings to un-
seen datasets that lack overlapping node tokens.

• Degree embeddings. This method learns degree-
specific embeddings. It performs significantly
worse than our projection scheme. This is be-
cause there is a substantial semantic gap for
the same degree number across different graphs.
Moreover, it oversimplifies topology features by
considering only the number of direct links, lim-

iting its ability to capture nuanced structural pat-
terns and adversely affecting graph projection.

• Random projection. It randomly assigns un-
learnable embedding vectors to nodes. It outper-
forms the other two variants, but its performance
is still inferior to our method due to the low rep-
resentation efficiency of its uniform distribution.

4.4 Influence of Pre-training Datasets (RQ3)
To evaluate the effectiveness of our knowledge dis-
tillation from the LLM, we compare the perfor-
mance of OpenGraph networks pre-trained with dif-
ferent datasets. We use three ablated versions of our
graph generation algorithm, namely -Norm, -Loc,
and -Topo. Additionally, we incorporate two real
datasets, Yelp2018 and Gowalla, for pre-training,
which are unrelated to the test datasets. The ML-
10M dataset, related to ML-1M and itself, is also
included. The evaluation results are summarized in
Table 2. We draw the following conclusions:
Superiority of our generated data. Our generated
dataset (Gen) achieves the best performance on all
test datasets except for ML-1M and ML-10M. No-
tably, ML-10M, which is closely related to these
two datasets, achieves the best performance in these
cases. This finding highlights the superior gener-
alization ability of our generated datasets, which
equips the OpenGraph model with the capability
of universal topological structure learning.
Impact of individual generation techniques. We
conduct ablation study by removing the dynamic
probability normalization (-Norm), locality incor-
poration (-Loc), and graph topological pattern in-
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Figure 2: Influence of graph tokenizer configurations.

Table 2: Impact of using different pre-training datasets.
Test Pre-training Dataset
Data -Norm -Loc -Topo Yelp Gowalla ML10M Gen

ogbl-ddi .0737 .0893 .0656 .0588 .0770 .0692 .0921
ML1M .0572 .1680 .0850 .0599 .0485 .2030 .1911
ML10M .0982 .1636 .1017 .1629 .0910 .2698 .2370

Cora .4985 .4864 .4342 .3715 .5943 .2780 .7504
Citeseer .3944 .3691 .5743 .2651 .4300 .2003 .7221
Pubmed .4501 .5015 .4876 .3317 .5148 .3652 .6869

jection (-Topo) modules. The removal of these
modules from the generation algorithm leads to a
significant drop in performance for the downstream
prediction. This demonstrates the importance of
these key modules for our generated graphs.
Real-world data can be misleading. Using real-
world datasets (Yelp and Gowalla) does not yield
transferable graph learning capabilities that provide
an advantage over our Gen data. This highlights
the limitation of relying solely on insufficient or
biased real-world data for cross-data pre-training.
Pre-training on related datasets is useful. Mod-
els pre-trained on the ML-10M dataset exhibit su-
perior performance when testing on ML-1M and
ML-10M, which are directly related datasets. This
indicates that dataset-wise similarity can aid in the
cross-dataset knowledge transferring.

4.5 Impact of Sampling in Transformer (RQ4)

We examine the influence of token sequence sam-
pling and anchor sampling in our scalable graph
transformer architecture. The metrics for efficiency
and performance are summarized in Table 3. Our
evaluation focuses on the GPU memory costs and
the running time during both the training and test-
ing processes. Additionally, we assess the model
performance after end-to-end training. The follow-
ing observations are made for the ablated versions.

• -S-A: It eliminates both token sequence sampling
and anchor sampling, leading to out-of-memory

Table 3: Impact of sampling strategies on the efficiency
and performance in the scalable graph transformer.

OGBL-ddi Memory Time R@20Train Test Train Test

-S-A 5420MiB 1456MiB 22.72s 13.88s 0.0966
-Anc 3360MiB 1456MiB 18.19s 13.73s 0.1107
-Seq 2456MiB 1202MiB 16.45s 12.09s 0.0930
Ours 2358MiB 1202MiB 15.45s 12.09s 0.1006

ML-10M Memory Time R@20Train Test Train Test

-S-A OOM OOM – – –
-Anc 4996MiB OOM 73.15s – –
-Seq 23140MiB 4550MiB 158.60s 84.78s 0.2772
Ours 4470MiB 4550MiB 68.79s 54.17s 0.2816

(OOM) errors when applied to the larger ML-
10M data. When evaluated on OGBL-ddi, it ex-
hibits the lowest memory and time efficiency,
while its performance is inferior to OpenGraph.

• -Anc: This version incorporates only sequence
sampling. It significantly reduces memory costs
during the training phase. Additionally, by focus-
ing on the current training context, it achieves
the best performance on OGBL-ddi.

• -Seq: This model removes token sequence sam-
pling from OpenGraph, resulting in a significant
decrease in training efficiency. However, the an-
chor sampling strategy in this version greatly re-
duces computational costs during the test phase.
Despite the computational benefits, the anchor
sampling strategy leads to a drop in performance
compared to the full-version OpenGraph.

4.6 Impact of Model Scale (RQ5)
This section examines the influence of model scale
within our OpenGraph framework. Specifically,
we modify two crucial hyperparameters that sig-
nificantly impact the scale of learnable parameters:
the number of graph transformer layers L′, and the
hidden dimensionality d. We assess the model’s
performance on the link prediction task by mea-
suring Recall@20. Additionally, we evaluate the
computational time for 100 training steps and 100
test steps. The results are illustrated in Figure 3.
We summarize the key findings as follows:
Number of graph transformer layers. It can
be observed that both training and testing time of
OpenGraph exhibit a linear increase as the num-
ber of graph transformer layers grows. However,
the expansion in model size does not consistently
lead to performance improvement. The lack of
performance enhancement can be attributed to the
overfitting effect and the increased training com-
plexity associated with deep transformer networks.
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(a) Performance and time change on the OGBL-ddi dataset.
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(b) Performance and time change on the ML-1M dataset.

Figure 3: The impact of model scale on downstream
performance and training/testing time (seconds).

Hidden dimensionality. In contrast to the number
of transformer layers, the hidden dimensionality
leads to quadratic growth in computational time.
This reflects the rapid increase in model capacity
required to accommodate more complex structural
data. Consequently, we observe significant im-
provements in model performance, surpassing the
performance curve for the graph transformer layers.
Despite the increased model capacity, the growth
in hidden dimensionality facilitates the RN → Rd

projection, reducing information loss and enhanc-
ing the quality of the graph token sequence for the
subsequent graph transformer layers.

4.7 End-to-End Training Performance (RQ6)

To assess the modeling capabilities of our Open-
Graph framework, we perform a performance com-
parison between OpenGraph and the baselines
trained on the same few-shot datasets. Due to space
limitations, we present the detailed results and anal-
ysis in Appendix A.3.6. The results demonstrate
strong graph learning capabilities of our Open-
Graph, even in the supervised learning settting.

5 Related Work

Graph Neural Networks have gained attention
for their ability to model complex relations in
graphs (Wu et al., 2020; Chen et al., 2020). GNNs
use message passing to propagate information from
neighboring nodes (Jin et al., 2021; Yuan et al.,
2020). Representative methods include Graph Con-
volutional Networks (GCNs) (Gao et al., 2018;
Zhang et al., 2021) and Graph Attention Net-
works (GATs) (Zhang et al., 2022b; Liao et al.,
2019). OpenGraph is inspired by the Graph Trans-

former (Yun et al., 2019; Hu et al., 2020), known
for capturing global dependencies in graphs.
Self-Supervised Graph Learning aims to address
the limited labeled data issue in graph tasks. These
methods leverage graph structure and patterns for
data-efficient training (Wu et al., 2021b; Lee et al.,
2022; Xia et al., 2023; Xiao et al., 2022; Yang
et al., 2024). Graph contrastive learning frame-
works, such as GraphCL (You et al., 2020) and
SGL (Wu et al., 2021a), create meaningful rep-
resentations by contrasting positive and negative
samples using stochastic data augmenters. Adap-
tive augmentation schemes like JOAO (You et al.,
2021) and GCA (Zhu et al., 2021) have been pro-
posed. DGCL (Li et al., 2021) and UMGRL (Mo
et al., 2023) address disentangling factors in con-
trastive learning. However, these solutions struggle
with generalization. OpenGraph enhances graph
model generalization across different tasks.
LLM-based Graph Analysis. Recent advance-
ments in LLMs have prompted interest in utilizing
them for enhanced graph comprehension and anal-
ysis (Ren et al., 2024). GraphLLM (Chai et al.,
2023) and GraphQA (Fatemi et al., 2023) trans-
form graphs into natural language descriptions,
enabling improved interpretation and reasoning
with LLMs. Techniques like instruction tuning in
GraphEdit (Guo et al., 2024) and GraphGPT (Tang
et al., 2024) incorporate rich textual information
from text-attributed graphs for fine-tuning LLMs.
However, in certain domains like user behavior
graphs and neuronal graphs, obtaining high-quality
textual features associated with graph nodes can be
challenging. Therefore, there is a need for a graph
model that can capture universal structural patterns
from graphs, even in the absence of textual data.

6 Conclusion

This research aims to develop an adaptable frame-
work for capturing complex topological patterns in
diverse graph structures. Our model demonstrates
exceptional generalization capabilities in zero-shot
graph learning tasks across various applications.
We utilize a scalable graph transformer architec-
ture and LLM-enhanced data augmentation for ef-
ficiency and robustness. Extensive experiments on
benchmark datasets validate our model’s perfor-
mance. Future plans include incorporating counter-
factual learning to discover noisy connections and
influential structures while learning universal and
transferable structural patterns in diverse graphs.
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7 Limitations

Our study serves as an initial exploration of graph
foundation models, focusing on distilling the gen-
eralization capabilities from LLMs without relying
on textual features. However, it is crucial to ac-
knowledge and address the limitations that require
further attention in future studies.

Firstly, it is important to note that OpenGraph
currently does not include modeling for heteroge-
neous relations and node types. This limitation may
impact its performance and generalization capabili-
ties, particularly when dealing with graph data that
exhibits strong heterogeneity, such as knowledge
graphs. Future research should prioritize the incor-
poration of heterogeneous representation learning
modules to enable a wider range of applications.

Secondly, graphs are highly versatile data struc-
tures that can be applied to a wide range of domains.
While we have evaluated the performance of Open-
Graph on 8 datasets spanning different domains,
it is crucial to further strengthen the experimental
validation by testing it on additional datasets from
even more diverse application domains. This will
provide a more comprehensive understanding of its
effectiveness and applicability.

Lastly, while OpenGraph shows promising gen-
eralization capability, its explainability remains un-
explored. This not only hinders its applicability due
to its black box nature, but also hinders us from
gaining a deeper understanding of the underlying
principles that drive its strong generalization capa-
bilities. Future research should prioritize investigat-
ing techniques and methodologies to enhance the
explainability of OpenGraph, allowing researchers
and practitioners to gain insights into the internal
workings of the model and to ensure its reliable and
transparent deployment in real-world applications.

In summary, future studies should focus on in-
corporating heterogeneous representation learning,
expanding the range of tested datasets, and enhanc-
ing the explainability of OpenGraph for broader
applicability and deeper insights.
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A Appendix

The appendix offers additional details about our
OpenGraph framework. It covers the neural model
component, the generation algorithm, as well as the
experimental settings and supplementary results.

A.1 Methodology

A.1.1 Zero-Shot Node Classification
Node classification tasks face challenges when
transferring trained classification capabilities from
one graph to another due to the heterogeneity
of node classes across datasets. To address this
challenge, our OpenGraph transforms the graph-
specific classification task into a unified link pre-
diction task. This task involves predicting links
between regular nodes and special nodes represent-
ing different classes. By leveraging the generalized
topology extraction capability and learning from
observed class-node relations, our OpenGraph en-
ables zero-shot node classification.

A.1.2 Handling Node Features
In attributed graphs, node attributes can vary across
different graphs, including textual, numerical, and
categorical features. To address the semantic differ-
ences in node features, our OpenGraph transforms
these attributes into a unified graph structure format.
This format can be easily tokenized by our unified
graph tokenizer and comprehended by our trained
graph transformer. In our approach, we sample
node pairs with the highest similarity scores as aug-
mented edges. The similarity scores si,j between a
node pair (vi, vj) are calculated as si,j = f⊤i fj . Us-
ing these similarity scores, we select the top B×K
edges for each batch, where each batch contains
B×|V| candidate edges. This strategy is applied to
all experimental datasets that have node features.

A.1.3 Details of Scalable Graph Transformer
In the efficient self-attention with anchors, we deter-
mine the number of anchors S by S = d/H < B,
to ensure that the self-attention module incurs sim-
ilar memory costs as other fully-connected compo-
nents. Here, H represents the number of attention
head. More specifically, the self-attention process
for each head can be summarized as follows:

e(3)t =
∑

va

αt,aW(v)e(2)a , e(2)a =
∑

vt

αa,tW(v)e(1)t

αt,a = softmax
((W(q)et)⊤ · (W(k)ea)√

d/H

)
(7)

Our efficient self-attention involves embeddings
e(1)∗ , e(2)∗ , e(3)∗ for anchor nodes va and vanilla
nodes vt. After each attention calculation, the
results from multiple heads are concatenated,
passed through a learnable linear layer, and con-
nected with a residual connection. The parameters
W(q),W(k),W(v) are the parameters of the atten-
tion layer. To reduce computational complexity,
we employ a two-stage self-attention process. It
transforms the 3×B-length sequence to a shorter
S-length sequence and then reverses the process.

After the self-attention module, each layer of
our scalable graph transformer includes a two-layer
fully-connected block with residual connections,
accompanied by two layer normalization modules.
To ensure numerical stability, per-layer scaling is
applied by element-wisely dividing embeddings by
a selected constant K = 10.

A.1.4 Model Optimization
To optimize our OpenGraph model, we utilize the
masked autoencoding (MAE) training paradigm
for self-supervised pre-training. Let’s denote our
OpenGraph as f , with trainable parameters Θf ,
and a graph projection function ϕ. The model is
trained on a set of graphs Gs with batch-specific
labels Ēs. The objective of the generative SSL
optimization is defined as follows:

argmin
Θf

∑

Gs

∑

Ēs∈Gs

L
(
f(Gs − Ēs, ϕ;Θf ),

Ēs
)
+ λ · ∥Θf∥2F (8)

Here, Gs − Ēs represents the input graph Gs with
the label edge set Ē removed. All training graphs
Gs are jointly trained with random alternations. To
enhance the model’s adaptability to different graph
projections ϕ, we regenerate the projection function
ϕ for each training graph Gs every 10 training steps.
λ denotes the weight for L2 regularization.

A.2 Graph Generation Algorithm
A.2.1 Prompt Template and Examples of

Generated Nodes
In this section, we present our prompt strategy for
leveraging the Language Model (LLM) to divide
general nodes into more fine-grained entities. Fig-
ure 4 illustrates our prompt template, with key pa-
rameters highlighted in red. We provide concrete
examples of prompt parameters and showcase the
generation results for both the e-commerce sce-
nario and the venue rating scenario.
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Prompt Template
List all distinct sub-categories of {entity_name} within the {prefix} category in 
the context of {scenario_desc}, ensuring a finer level of granularity. The sub-
categories should not overlap with each other. And a sub-category should be a 
smaller subset of {entity_name}. Directly present the list EXACTLY following 
the form: "sub-category a, sub-category b, sub-category c, ..." without other 
words, format symbols, new lines, serial numbers.

Prompt Example
entity_name = “women’s clothing”
scenario_desc = “e-commerce platform like Amazon”
prefix = “products, clothing”
Examples of Generated Nodes
products, Clothing, Women's clothing, Sweaters, Crewneck sweaters
products, Clothing, Men's clothing, Costumes, Scary costumes
products, Clothing, Outerwear, Vests, Sweater Vests
products, Shoes, Flats, T-strap flats, Open toe T-strap flats
products, Shoes, Ballet flats, Ankle strap ballet flats, Nude ankle strap ballet flats
products, Jewelry, Jewelry Sets, Choker, Gothic Choker
products, Electronics, office electronics, Calculators, Scientific Calculators
products, Books, Non-fiction, Self-Help, Codependency

Prompt Example
entity_name = “Restaurant”
scenario_desc = “venue rating platform like Yelp”
prefix = “business venues”
Examples of Generated Nodes
business venues, Restaurant, American, Barbecue, BBQ fusion
business venues, Restaurant, Buffet, Chinese buffet, Seafood
business venues, Cafe, Tea house, Tea room, British tea house
business venues, Cafe, Brunch spot, Buffet brunch, Vegan buffet
business venues, Bar, Karaoke Bar, Karaoke DJ nights, live band karaoke
business venues, Nightclub, Live Music Venue, Jazz Club, Latin Jazz Club
business venues, Fast Food Restaurant, Smoothie Bar, Specialty smoothie bar, 
Fresh fruit smoothie bar
business venues, Drive-Thru Restaurant, Fast food, Pizza place, Coal-fired pizza

Figure 4: Prompt template and generation examples.

A.2.2 Node Generation Algorithm
We elaborate the process of our tree-of-prompt al-
gorithm that traversing the vertex space for a spe-
cific application scenario, as in Algorithm 1.

A.2.3 Edge Generation Algorithm
We elaborate our edge generation algorithm based
on LLM-given node representations and the Gibbs
sampling algorithm in Algorithm 2. Here we illus-
trate the case for generating person-entity relations,
which is more complex compared to the entity-
entity relation generation.

A.3 Experiments
A.3.1 Experimental Datasets
Our experimental datasets include 5 link prediction
datasets and 3 node classification datasets. The
data statistics are summarized in Table 4.
Link prediction datasets. We employ five link
prediction datasets from diverse application scenar-
ios. The objective of these datasets is to predict
the most likely connections for each node based on
previous observations of node-wise interactions.

• OGBL-ddi. This dataset is used for drug-drug
interaction prediction. Each node represents a
drug. The edges represent the combined effect of
taking two drugs together, which differs signifi-
cantly from taking them individually.

Algorithm 1: Tree-of-prompt algorithm for
node generation.

Input: Name for the initial general node v0
(e.g. ’products’), text descriptions
for the application scenario S
(e.g. ’e-commerce platform like
Amazon’), maximum depth D of the
prompt tree

Output: Generated nodes V̂ .
1 Function DivideNode(v, n):
2 if n ≥ D then
3 return [v]
4 end
5 V̄ = LLM(v, S)

6 V̂ = []
7 foreach v′ ∈ V̄ do
8 V̂+ = DivideNode(v′, n+ 1)
9 end

10 return V̂
11 return DivideNode(v0, 1)

Table 4: Statistics of experimental datasets.
Dataset # Node # Edge # Feat # Class

Link

OGBL-ddi 4,267 1,334,889 0

N/A
OGBL-collab 235,868 1,285,465 128
ML-1M 9,746 720,152 0
ML-10M 80,555 7,200,040 0
Amazon-book 144,242 2,380,730 0

Node
Cora 2,708 10,556 1433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3

Gen.
Gen0 46,861 454,276 0

N/AGen1 51,061 268,007 0
Gen2 32,739 240,500 0

• OGBL-collab. It is an academic social relation
dataset. Its nodes represent scholars, and edges
denote collaborations. Each node is combined
with a 128-dimensional average word embedding
calculated from the author’s publications.

• Movielens-1M & Movielens-10M. These two
datasets are both collected from the movie rating
platform Movielens. The graphs are constructed
by connecting users with the movies they have
rated. The two datasets contain 1 million and 10
million rating records, respectively.

• Amazon-book. This dataset contains review
data from the Amazon platform. The nodes in
the dataset represent users and books, while the
edges denote the review records between them.

Node classification datasets. For the node classi-
fication task, we utilize three widely-used citation
network datasets: Cora, Citeseer, and Pubmed. In
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these datasets, each node represents an academic
paper, and an edge (vi, vj) denotes a citation re-
lation from paper node vi to vj . The Cora and
Citeseer datasets include binary bag-of-words vec-
tors as node features, while the Pubmed dataset
utilizes TF-IDF weighted word vectors as node fea-
tures. The objective of these datasets is to classify
each node into predefined paper categories based
on the citation relations and node attributes.

A.3.2 Evaluation Protocol
This section includes detailed description for our
cross-dataset zero-shot setting and the few-shot set-
tings for baselines. It also introduces the evaluation
metrics used in our experiments.
Zero-shot setting. For our OpenGraph, we utilize
a zero-shot learning setting in which OpenGraph
is not trained on any of these real-world datasets
but is tested using the training set information as
input information, including the graph structures,
node features, and node labels in the training set.
To effectively generalize to unseen node labels in
node classification with zero shot, taking inspira-
tion from previous works (Sun et al., 2022), we
treat the label classes as new nodes and connect
the vanilla nodes with training labels to the corre-
sponding class nodes. This strategy removes the
requirement for learning class-related parameters
in the zero-shot learning setting. This enhancement
is also applied to baselines methods.
Few-shot setting. Since most baselines perform
poorly in the foregoing zero-shot setting, we evalu-
ate them in the one-shot setting and five-shot set-
ting. In the node classification task, the k-shot set-
ting refers to preserving a maximum of k training
instances for each label class. For the link predic-
tion task, the k-shot training set contains at most k
links for each node. Non-pretraining approaches
such as MLP and GNNs are solely trained on the
few-shot training set. On the other hand, baselines
following the pretraining-and-tuning paradigm un-
dergo pretraining and subsequent tuning on the
few-shot set. In link prediction, they are pretrained
on the same generated datasets as our OpenGraph.
Model parameters that are not transferable across
datasets are re-learned during the tuning phase. In
node classification, these methods are pretrained
on the graph of the target dataset and fine-tuned
on the classification labels. In the test phase, all
information in the training set is employed.
Evaluation metrics. In link prediction, we follow
existing works (Wei et al., 2024) to conduct the full-

rank test for each node. To be specific, for each
node, all nodes not connected to it in the training set
are ranked by the model. The top-N nodes are taken
as positive predictions, and we calculate Recall@N
scores with N = 20, 40. In node classification, we
employ the widely-used Accuracy and Macro-F1
metrics (Chen et al., 2022b).

A.3.3 Implementation Details

We implemented our OpenGraph framework using
PyTorch. The model employs the Adam optimizer
with a learning rate of 1e− 4 or 5e− 5. The learn-
able parameters are initialized using the Xavier uni-
form initialization method. By default, the reported
performance is achieved by OpenGraph with an em-
bedding size of d = 1024 and a maximum power
order of L = 3 for adjacency smoothing. The de-
fault scalable graph transformer utilizes L′ = 3
transformer layers, H = 4 attention heads, and
S = 256 sampled anchor nodes. The training batch
size, which is also used for token sequence sam-
pling, is set as B = 1024.

The reported results are obtained by pretrain-
ing our OpenGraph network using three generated
datasets: Gen0, Gen1, and Gen2. The statistics
of these datasets are presented in Table 4. We
first generate the Gen0 dataset without injecting
the graph’s topological pattern. Subsequently, we
generate Gen1 and Gen2 based on Gen0 by in-
corporating the graph pattern. In comparison to
Gen1, the Gen2 dataset undergoes an additional
densification process, where nodes with less than
10 edges are removed. To acquire the nodes for
the Gen0 dataset, we prompt the LLM to iterate
through all products on an e-commerce platform,
with a maximum generation depth of 5. The Gibbs
sampling algorithm is initialized with nodes having
6 random edges. To ensure low overlap between
consecutive samples, we introduce a separation of
1000 sampling steps before generating each new
sample. The dynamic probability normalization
maintains the last T ′ = 5000 sampling instances.
The node locality incorporation involves using 7
locality indices and 0.95 decay rate.

The baseline methods are evaluated using their
original code, or we closely follow the original
code to implement them. Our implementations of
the baselines are carefully aligned with the reported
performance in their original evaluation settings.
We employ grid search to optimize the hyperparam-
eter settings for each baseline.
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A.3.4 Baselines
We give detailed descriptions for the baseline mod-
els in this section. 9 models from 4 different re-
search lines are utilized in our evaluation.
Graph-agnostic Approaches.
• MF. This is the matrix factorization approach

which learns node embeddings to reconstruct the
observed adjacency matrix. For the node clas-
sification task, we adapt it to learn embedding
vectors for each node to predict node labels.

• MLP. This baseline utilizes a multi-layer percep-
tron to extract deep features individually for each
node. For datasets without node attributes, this
baseline learns initial node embeddings.

Non-pretraining Graph Neural Networks.
• GCN (Kipf and Welling, 2017). This approach

utilizes iterative graph convolutional operators to
extract the high-order topological information.

• GAT (Veličković et al., 2018a). This graph atten-
tion network learns weights for node-wise con-
nections using the attention mechanism, to facili-
tate adaptive graph information propagation.

• GIN (Xu et al., 2018). This method enhances the
representation power of GNNs by employing a
distinct graph encoding method that emphasizes
the discrimination of non-isomorphic structures.

Graph Pre-training Models.
• GraphCL (Zhu et al., 2021). This baseline

method utilizes pre-training of graph models
through the application of a self-discriminative
contrastive learning task on learned node embed-
dings. It incorporates various graph augmenta-
tion techniques such as node drop, edge permuta-
tion, random walk, and feature masking.

• DGI (Veličković et al., 2018b). This method in-
troduces a self-supervised pre-training task that
aims to maximize the mutual information be-
tween the local view and the global view.

Graph Prompt Tuning Methods.
• GraphPrompt (Liu et al., 2023). This work

presents a unified framework for pre-training and
prompt tuning of graph models. It introduces a
learnable prompt layer that automatically identi-
fies crucial information in the pre-trained model
to facilitate downstream tasks.

• GPF (Fang et al., 2023). This is a universal graph
prompt tuning framework designed for various
graph pre-training strategies. It introduces two
versions of a learnable graph prompt layer.

Table 5: Performance comparison with models trained
on few-shot datasets, in terms of Recall@20 (%).

Model GCN GAT GIN OpenGraph
shot 1 5 1 5 1 5 1 5
ddi 2.79 7.05 5.80 7.11 5.30 7.35 7.93 8.60
ML1M 4.32 10.54 2.45 15.06 4.66 14.58 16.58 19.19
Amazon 0.96 2.51 0.47 2.28 0.69 2.52 2.96 3.10

A.3.5 Alternative Projection Methods (RQ2)
• One-hot encoding. This graph projection strat-

egy employs a large table of low-dimensional
embeddings for node ids, where nodes with the
same index from different datasets are directly
mapped to the same embedding vector. Specifi-
cally, we utilize 100,000 independent embedding
vectors. For datasets with more nodes, we use
the remainder of 100,000 dividing node indices.

• Degree embeddings. Using degree embeddings
for node representation is a commonly used strat-
egy for non-attributed graphs. Each degree num-
ber is assigned an independent learnable embed-
ding vector, and each node is initially represented
by its degree representation.

• Random projection. In this approach, a ran-
dom representation vector is assigned to each
node, sampled from a uniform distribution. With
a sufficiently large representation space, this
method aims to approximately distribute nodes
with equal distances from one another. As a re-
sult, this projection method does not rely on any
specific assumptions about the node distribution.
This characteristic allows it to outperform the
other two strategies, which are based on certain
assumptions and are thus more prone to overfit-
ting the pre-training dataset.

A.3.6 End-to-end Training (RQ6)
We compare our OpenGraph with other graph en-
coding methods in the supervised learning setting.
The models are trained using the 1-shot and 5-
shot training sets from OGBL-ddi, ML-1M, and
Amazon-book, and then tested on the correspond-
ing test set. Without pre-training, this experiment
aims to examine the modeling capacity for different
graph neural architectures. From the results shown
in Table 5, we draw the following conclusions:

• Superior modeling capabilities of OpenGraph.
Our OpenGraph achieves best performance on
all tested datasets, demonstrating the superior
graph learning ability for OpenGraph. We at-
tribute this superiority to the precise preservation
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of structural information by our graph tokeniza-
tion module, and the strength of our scalable
graph transformer in learning global relations.

• Robustness of OpenGraph. We notice that our
OpenGraph exhibits less performance degrada-
tion on the more sparse 1-shot datasets. This
demonstrates the inherent robustness of Open-
Graph’s model architecture. Such robustness can
be ascribed to the effectiveness of the fast topol-
ogy projection, which effectively captures key
graph structures even without sufficient training.

Algorithm 2: Edge generation algorithm.
Input: Node embedding table H given by

the LLM, node set V , maximum
locality index N , locality decay
factor α, dynamic probability
normalization range T ′, number of
sampling steps to draw a new
sample T0, number of initial
sampling steps to skip for data
quality T1, number of sampling
steps to shift current locality index
T2, maximum sampling steps Tmax.

Output: List of interactions I.
1 Draw a random interaction sample a0
2 Initialize current locality index n = 0
3 Initialize the pool for dynamic probability

P = []
4 Initialize I = [] for t = 1 to Tmax do
5 if t mod T2 == 0 then
6 n = (n+ 1) mod N
7 end
8 i = t mod |V|
9 p =

∑
vi
ati(hi/∥at∥0)⊤ · ht′

10 P+ = [p]
11 if |P| > T ′ then
12 P = P[−T ′ :]
13 end
14 µ = mean(P), σ = std(P)
15 p̄ = (p− µ)/(4σ)

16 p̂ = p̄ · α|n−ni|

17 Decide if at ⊕ vt′ is accepted
accordding to p̂

18 if t ≥ T1 and t mod T0 == 0 then
19 I+ = [at ⊕ vt′ ]
20 end
21 end
22 return I
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