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Abstract

There are many emerging quantization methods
to resolve the problem that the huge demand
on computational and storage costs hinders the
deployment of Large language models (LLMs).
However, their accuracy performance still can
not satisfy the entire academic and industry
community. In this work, we propose ATQ, an
INT8 weight-activation quantization of LLMs,
that can achieve almost lossless accuracy. We
employ a mathematically equivalent transfor-
mation and a triangle inequality to constrain
weight-activation quantization error to the sum
of a weight quantization error and an activa-
tion quantization error. For the weight part,
transformed weights are quantized along the
in-feature dimension and the quantization
error is compensated by optimizing following
in-features. For the activation part, transformed
activations are in the normal range and can be
quantized easily. We provide comparison ex-
periments to demonstrate that our ATQ method
can achieve almost lossless in accuracy on OPT
and LLaMA families in W8A8 quantization
settings. The increase of perplexity is within
1 and the accuracy degradation is within 0.5
percent even in the worst case.

1 Introduction

Large language models (LLMs) exhibit remarkable
performance across various tasks. Many different
LLMs were proposed, such as GPT(Brown et al.,
2020), OPT(Zhang et al., 2022), LLaMA(Touvron
et al., 2023a,b), BLOOM(Le Scao et al., 2023) and
so on. However, the large model size and the huge
computation cost prevents their deployment in pro-
duction. Quantization is considered as a promising
technique for model compression and inference ac-
celeration, and it can be categorized into two main
approaches: quantization-aware training(QAT) and
post-training quantization(PTQ).

QAT(Liu et al., 2023b; Dettmers et al., 2024) can
achieve comparable performance with the original

model. However, QAT is not practical due to the
huge training cost and the unavailability of training
data. Researchers prefer to use PTQ to quantize
LLMs at the cost of some accuracy degradation.
In recent few years, a great number of PTQ meth-
ods(Frantar et al., 2022a,b; Lin et al., 2023; Xiao
et al., 2023; Wei et al., 2023; Shao et al., 2023)
for LLMs spring up. They are categorized into
two classes: weight-only quantization and weight-
activation quantization.

Actually, the inference process of LLMs com-
poses of two stages: Prefilling and Decoding. Dur-
ing the prefilling stage, the huge cost is caused by
high-precision matrix-matrix multiplication, which
can be alleviated by weight-activation quantiza-
tion. During the decoding stage, it generates only
one token using general matrix-vector multiplica-
tion. The decoding stage is memory-bound, which
means the decoding latency is constrained by the
movement of weights between memories. There-
fore, weight-only quantization methods can reduce
the weight movement cost.

The number of bits in quantization of LLMs
tends to be lower and lower. For examples,
LLM.int8() (Dettmers et al., 2022) quantizes the
non-outlier columns with 8-bit, and SmoothQuant
(Xiao et al., 2023) quantizes weight and activa-
tion to INT8 datatype. GPTQ quantizes weight to
3 or 4 bits, and OmniQuant can quantize weight
down to 2 bits or quantize weight and activation
to 4 bits. QUIK (Ashkboos et al., 2023) and Atom
(Zhao et al., 2024) adopt hybrid-precision quan-
tization, where most activations and weights are
quantied into INT4 keeping only a small part of ac-
tivations and weights in high precision. LLM-FP4
(Liu et al., 2023a) quantizes both weights and acti-
vations down to FP4. DecoupleQ (Guo et al., 2024)
achieves 2-bit uniform PTQ, and OneBit (Ma et al.,
2024) introduces a 1-bit quantization framework.
Although these methods can achieve an efficient
post-training quantization solution for LLMs, their
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accuracy degradation can not satisfy the practical
applications.

In this paper, we propose ATQ, a novel weight-
activation post-training quantization pipeline. The
main contribution can be summarized as follows.

• A triangle inequality is employed to constrain
the weight-activation quantization error to the
sum of a weight quantization error and an
activation quantization error.

• A mathematically equivalent transformation is
applied to activations, so that activations are in
normal range and can be quantized easily, and
weight quantization error can be compensated.

• ATQ method can achieve almost lossless in
accuracy under the W8A8 quantization set-
ting. The perplexity increase is within 1 and
the accuracy degradation on zero-shot tasks is
within 0.5 percent.

2 Related work and motivation

In this section, we review some related works and
present our research motivation.

2.1 Weight-only quantization

As the term implies, the weight-only quantization
method only quantize LLMs’ weight. Therefore,
the size of LLMs and the time of weight move-
ments between memories can be decreased. GPTQ
(also OPTQ) is a typical weight-only quantization
method, which is build on the traditional OBQ
algorithm (Frantar et al., 2023). They quantize
one or several weight rows, and compensate the
quantization error by optimizing following weight
rows. OBQ quantizes the weight row (along the
in-feature dimension) in a greedy order, whereas
GPTQ quantizes weight rows in the uniform left-
to-right order without update of the Hessian matrix
H , which can reduce the computation cost substan-
tially. Besides, GPTQ and SparseGPT(Frantar and
Alistarh, 2023) share the same Hessian matrix H
and Cholesky decomposition, so the combination
of quantization and sparsification is feasible.

2.2 Weight-activation quantization

Activation outliers with wider distribution ranges in
LLMs make traditional quantization methods can
not be directly applied into LLMs. SmoothQuant
introduce a scaling factor to migrate part of the
quantization difficulty from activations to weight,

but the migration extent is controled by a hand-
craft hyper-parameter α. It is a tradeoff between
activation and weight. Besides activation outliers
on magnitude, Outlier Suppression+ find that the
asymmetry of activation outliers between different
channels make the activation range to be quantized
larger and introduce the channel-wise shifting pa-
rameter to suppress outliers furtherly. OmniQuant
develop two components, LWC and LET, to learn
quantization parameters on a relatively small cali-
bration dataset. However, the learning process of
OmniQuant is time-consuming.

2.3 Motivation

Despite above weight-activation quantization meth-
ods have their respective rationalities, their accu-
racy performance can not satisfy the entire aca-
demic and industry community. In other words, the
accuracy degradation after quantization is too large
to be commercial deployment. The goal of this
paper is to propose a lossless W8A8 quantization
solution for LLMs whose accuracy degradation is
unprecedentedly small.

3 ATQ Method

Traditional PTQ methods with gradient optimiza-
tion is hard to be applied into modern LLMs due
to the huge solution space. In our ATQ method,
we consider the block-wise quantization error mini-
mization problem for each linear layer. The weight-
activation quantization problem can be formulated
as follows,

min ∥XW T −Qx(X)Qw(W )T ∥ (1)

where W and X are weight and activation, Qw(·)
and Qx(·) are weight and activation quantizers re-
spectively. According to the triangle inequality, the
objection function can be written as

∥XW T −Qx(X)Qw(W )T ∥
≤∥XW T −XQw(W )T ∥

+ ∥(X −Qx(X))Qw(W )T ∥.
(2)

The first term on the right side of Eq.(2),
∥XW −XQw(W )∥, is a weight-only quantiza-
tion problem and can be resolved by GPTQ. The
second term represents an activation quantization
problem for given quantized weights. This error
is very large due to activation outliers observed
in SmoothQuant and Outlier Suppression+. To re-
duce the activation quantization error, We perform
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a mathematically equivalent transformation on the
linear layer, which can be written as

Y = XW T +B

= [(X − δ)⊘ s] · [s⊙W T ] + [B + δW T ]

= X̃W̃ T + B̃
(3)

where Y represents the output of a linear layer,
δ ∈ R1×Cin and s ∈ R1×Cin are channel-wise
shifting and scaling parameters. X̃ , W̃ and B̃
are transformed and equivalent activation, weight
and bias. ‘⊘’ and ‘⊙’ means division and multi-
plication along the in_feature dimension. The
transformation of activations can be implemented
by merging (X − δ)⊘ s into the layernorm before
the linear layer to be quantized.

Now the objective function can be rewritten as

∥X̃W̃ T − X̃Qw(W̃ )T + X̃Qw(W̃ )T

−Qx(X̃)Qw(W̃ )T ∥
≤∥X̃W̃ T − X̃Qw(W̃ )T ∥

+ ∥(X̃ −Qx(X̃))Qw(W̃ )T ∥.

(4)

The first term on the right side is still a weight-
only quantization problem and can be resolved by
the GPTQ method. The only difference is that the
activation used for calculating the Hessian Matrix
H̃ is the transformed X̃ rather than the original X .
In the second term, for the given weight Qw(W̃ ),
if we transformed activation outliers to be in the
normal range of [−1, 1], the quantization error of
transformed activations X̃ should be small enough.

The problem becomes how to find appropriate
shifting and scaling factors, δ and s, to elimate
activation outliers. In LLMs, activation outliers are
asymmetric and have large magnitude on certain
channels. We first find the center of activations per-
channel on a small calibration dataset, which is the
shifting factor δ, and move it to 0. Mathematically,
we have

δj =
max(X:,j) + min(X:,j)

2
. (5)

Now, the range of outliers in the jth channel is
(max(X:,j)−min(X:,j))/2. To minimize activa-
tion quantization error, we scale all activations into
the range of [−1, 1] unless they are already in this
range, which means

sj = max(1.0,
max(X:,j)−min(X:,j)

2
). (6)

Note that, we do not incorporate weight into
shifting and scaling factors, which means we do
not need to consider the tradeoff between activation
and weight. All of quantization difficulties are mi-
grated from activation to weight, and weight quan-
tization errors can be compensated by optimizing
following weight in-features, which is exactly our
essential difference from other weight-activation
quantization methods.

4 Experiments

In the experiments, we compare our ATQ method
with FP16 baselines, GPTQ (Frantar et al., 2022a),
SmoothQuant (Xiao et al., 2023), Outlier Suppres-
sion+ (Wei et al., 2023) and OmniQuant (Shao
et al., 2023).

4.1 Settings
Remember that we focus on accuracy degradation
minimization rather than computational efficiency,
we keep all experiments in fake INT8 weight and
INT8 activation quantization settings. ATQ is gen-
eralized from GPTQ, so we set FP16 LLMs and
INT8 GPTQ quantized LLMs as baselines. To be
fair, all of these methods are calibrated or trained
on a small calibration dataset composed of 128 ran-
domly selected 2048 tokens from the WikiText2.
All of these methods are tested on two families of
LLMs, OPT (Zhang et al., 2022) and Llama (Tou-
vron et al., 2023a,b). Following the previous work,
we first evaluate the language generation perfor-
mance by the perplexity of quantized models on
WikiText2 (Merity et al., 2016), PTB (Marcus et al.,
1994) and C4 (Raffel et al., 2020). Then, we eval-
uate quantized models’ performance on zero-shot
tasks including PIQA (Tata and Patel, 2003), ARC
(Boratko et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), which are executed by using
the lm-eval-harness (Gao et al., 2023). Experi-
ments are completed on 40GB Nvidia A100 GPUs.

4.2 OPT W8A8 Quantization
OPT, presented by MetaAI, is composed of a Multi-
Head Attention(MHA) module with pre-layernorm
and a Feed-Forward Network(FFN) with post-
layernorm. We employ the mathematically equiva-
lent transformation and quantization on all linear
layers except for the second linear layer of FFN,
fc2, as OmniQuant. Table 1 shows the perplexity of
W8A8 quantization OPT models on the WikiText2
test dataset. Our ATQ method outperforms other
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OPT-PPL-WikiText2 ↓ #Bits 125m 1.3B 2.7B 6.7B 13B 30B 66B
Baseline W16A16 27.655 14.623 12.471 10.861 10.128 9.559 9.339
GPTQ W8A16 27.655 14.612 12.481 10.859 10.129 9.559 9.344

SmoothQuant W8A8 27.771 14.697 12.468 10.888 10.368 OOM OOM
Outlier Suppression+ W8A8 34.914 15.541 12.781 11.127 10.928 10.193 OOM

OmniQuant W8A8 27.699 14.666 12.483 10.861 10.138 OOM OOM
ATQ (ours) W8A8 27.677 14.640 12.473 10.863 10.127 9.559 9.341

Table 1: WikiText2 perplexity of weight-activation quantization results on OPT models

LLaMA-PPL-WikiText2 ↓ #Bits 1-7B 1-13B 2-7B 2-13B 2-70B 3-8B 3-70B
Baseline W16A16 5.677 5.091 5.472 4.884 3.319 6.135 2.856
GPTQ W8A16 5.679 5.091 5.474 4.884 3.320 6.140 2.856

SmoothQuant W8A8 5.712 5.125 5.510 4.927 OOM 6.252 OOM
OmniQuant W8A8 5.692 5.099 5.490 4.897 OOM - -

ATQ W8A8 5.678 5.091 5.475 4.889 3.321 6.145 2.891

Table 2: WikiText2 perplexity of weight-activation quantization results on LLaMA models

methods in most cases of OPT. In the OPT-6.7B
case, ATQ is worse than OmniQuant, but the PPL
increases by only 0.005. Additional perplexity on
the PTB validation dataset and the C4 validation
dataset and zero-shot experiments in appendix can
also demontrate this conclusion, see Tables A1,
A2 and A3. OmniQuant wins our ATQ method in
some zero-shot tasks, but the computation time of
OmniQuant is far longer than ours.

4.3 LLaMA W8A8 Quantization

LLaMA models are new open languange models
with superior performance. Each decoderlayer of
LLaMA consists of a Multi-Head Attention mod-
ule and a MLP Module. Following OmniQuant,
we apply the activation transformation and quan-
tization into all linear layers except for the gate
projection and the down projection in the MLP. Ta-
ble 2 presents the perplexity of W8A8 quantization
LLaMA-1/2/3 models on the WikiText2 test dataset.
We can also see that our ATQ method outperforms
SmoothQuant and OmniQuant. Corresponding per-
plexity results on the PTB validation dataset and
the C4 validation dataset and zero-shot accuracy
results are presented in Appendix Tables. A4, A5
and A6, which can also demonstrate the conclusion.
Note that, OmniQuant is not supported LLaMA-3.

4.4 Ablation study

We provide some comparison experiments on OPT-
13B and Llama-3-8B to show the effectiveness of
diverse parts on accuracy. Firstly, we apply the
activation transformation and quantize transformed

PPL-WikiText2 ↓ OPT-13B Llama-3-8B
Baseline 10.128 6.135
GPTQ 10.129 6.140

ATQ (w/o EC) 10.134 6.182
ATQ (w/o AT) 11.843 6.180

ATQ 10.127 6.145

Table 3: WikiText2 perplexity of ablation experiments

activations and weights without error compensation
(ATQ w/o EC). Secondly, we quantize original acti-
vations directly without activation and weights with
error compensation (ATQ w/o AT). Experiment re-
sults are compared with GPTQ and ATQ in Table 3.
We can see that activation transformation and quan-
tization error compensation are contributive to the
reduction of accuracy degradation and employing
them together can achieve better accuracy.

5 Conclusion and future work

We propose an advanced and accurate post-training
quantization scheme called ATQ. In the scenario
of W8A8 quantization, ATQ exceeds other exist-
ing weight-activation quantization methods on ac-
curacy degradation in most cases. Considering
the limitation discussed in the next section, we
plan to incorporate sparsification into this scheme
for higher compression ratio, and implement the
CUDA kernel and operator for computational effi-
ciency and memory saving.
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Limitations

In this section, we briefly discuss some limitations.

More models
We only evaluate the performance of ATQ on OPT
and Llama families. The accuracy performance
of ATQ will be evaluated on more models like
BLOOM, Falcon, in the short future.

Real quantization
We focus on the minimization of accuracy degra-
dation of W8A8 quantization of LLMs, so we use
fake quantization in this paper. However, its corre-
sponding CUDA kernel and operator for real quan-
tization should be implemented before deployment.

Higher compression ratio
We only consider 8-bit weight-activation quantiza-
tion in this paper. It is interesting and challenging
to explore lossless compression methods with a
higher compression ratio, such as lower-bit weight-
activation quantization and combination of 8-bit
weight-activation quantization and sparsification.
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A Example Appendix

In this section, we provide a comprehensive pre-
sentation of all experiment results across various
methods, models and datasets to complement the
main content.

· PTB perplexity of weight-activation quantiza-
tion results on OPT models

· C4 perplexity of weight-activation quantiza-
tion results on OPT models

· Accuracy of 6 zero-shot tasks of weight-
activation quantization results on OPT models

· PTB perplexity of weight-activation quantiza-
tion results on LLaMA models

· C4 perplexity of weight-activation quantiza-
tion results on LLaMA models

· Accuracy of 6 zero-shot tasks of weight-
activation quantization results on LLaMA
models
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OPT-PPL-PTB ↓ #Bits 125m 1.3B 2.7B 6.7B 13B 30B 66B
Baseline W16A16 32.550 16.964 15.113 13.086 12.341 11.842 11.358
GPTQ W8A16 32.558 16.975 15.128 13.091 12.339 11.842 11.352

SmoothQuant W8A8 32.530 17.252 15.149 13.152 12.591 OOM OOM
Outlier Suppression+ W8A8 38.733 17.822 15.418 13.854 12.751 12.040 OOM

OmniQuant W8A8 32.650 17.029 15.122 13.094 12.348 OOM OOM
ATQ W8A8 32.571 16.992 15.121 13.089 12.342 11.848 11.359

Table A1: PTB perplexity of weight-activation quantization results on OPT models

OPT-PPL-C4 ↓ #Bits 125m 1.3B 2.7B 6.7B 13B 30B 66B
Baseline W16A16 24.605 14.721 13.165 11.743 11.200 10.694 10.284
GPTQ W8A16 24.622 14.727 13.167 11.744 11.200 10.694 10.285

SmoothQuant W8A8 24.641 14.862 13.204 11.803 11.243 OOM OOM
Outlier Suppression+ W8A8 54.048 30.377 25.993 22.779 22.133 20.330 OOM

OmniQuant W8A8 24.633 14.754 13.173 11.747 11.203 OOM OOM
ATQ W8A8 24.613 14.739 13.169 11.746 11.201 10.695 10.285

Table A2: C4 perplexity of weight-activation quantization results on OPT models

OPT-Acc ↑ Method #Bits PIQA ARC-e ARC-c HellaSwag BoolQ Winogrande

125M

Baseline W16A16 62.89 43.56 19.03 29.20 55.47 50.43
GPTQ W8A16 63.06 43.43 19.28 29.15 56.36 50.28
OS+ W8A8 63.55 42.89 19.28 28.87 53.55 51.93

OmniQuant W8A8 63.28 43.69 19.54 29.16 55.93 49.88
ATQ W8A8 63.11 43.35 19.20 29.18 55.14 50.67

1.3B

Baseline W16A16 71.60 56.90 23.38 41.49 57.74 59.91
GPTQ W8A16 71.65 57.20 23.29 41.56 57.95 59.67
OS+ W8A8 71.38 56.52 24.40 41.27 56.45 57.85

OmniQuant W8A8 71.55 57.24 23.46 41.54 57.92 59.35
ATQ W8A8 71.44 57.28 23.46 41.56 58.04 59.19

2.7B

Baseline W16A16 73.78 60.77 26.79 45.86 60.37 60.77
GPTQ W8A16 73.72 60.94 26.88 45.89 60.61 61.17
OS+ W8A8 74.37 60.90 27.05 46.04 58.90 61.80

OmniQuant W8A8 73.72 61.03 26.71 45.82 60.55 60.62
ATQ W8A8 73.99 60.86 26.96 45.83 60.55 60.69

6.7B

Baseline W16A16 76.28 65.57 30.46 50.51 66.06 65.19
GPTQ W8A16 76.28 65.61 30.55 50.47 66.09 64.88
OS+ W8A8 76.66 65.11 30.72 50.57 65.05 65.19

OmniQuant W8A8 76.22 65.78 30.63 50.47 66.24 65.04
ATQ W8A8 76.39 65.70 30.72 50.47 66.02 65.19

13B

Baseline W16A16 75.84 67.13 32.94 52.43 65.93 65.04
GPTQ W8A16 75.95 67.00 33.19 52.45 65.81 64.96
OS+ W8A8 76.06 67.38 33.28 52.21 65.90 65.51

OmniQuant W8A8 75.79 67.30 33.19 52.40 65.72 64.64
ATQ W8A8 75.95 67.00 32.94 52.44 65.75 65.35

Table A3: Accuracy of 6 zero-shot tasks of weight-activation quantization results on OPT models

LLaMA-PPL-PTB ↓ #Bits 1-7B 1-13B 2-7B 2-13B 2-70B 3-8B 3-70B
Baseline W16A16 27.340 19.225 22.511 28.873 15.647 10.592 8.165
GPTQ W8A16 27.273 19.238 22.583 28.872 15.648 10.600 8.168

SmoothQuant W8A8 30.478 22.486 21.152 29.748 OOM 10.735 OOM
OmniQuant W8A8 27.434 19.293 20.565 28.568 OOM - -

ATQ W8A8 27.420 19.223 22.595 28.858 15.634 10.612 8.211

Table A4: PTB perplexity of weight-activation quantization results on LLaMA models
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LLaMA-PPL-C4 ↓ #Bits 1-7B 1-13B 2-7B 2-13B 2-70B 3-8B 3-70B
Baseline W16A16 7.079 6.611 6.973 6.468 5.521 9.446 7.166
GPTQ W8A16 7.080 6.612 6.973 6.468 5.522 9.453 7.170

SmoothQuant W8A8 7.122 6.642 7.022 6.508 OOM 9.650 OOM
OmniQuant W8A8 7.098 6.626 6.993 6.486 OOM - -

ATQ W8A8 7.081 6.612 6.975 6.470 5.522 9.465 7.243

Table A5: C4 perplexity of weight-activation quantization results on LLaMA models

LLaMA-Acc ↑ Method #Bits PIQA ARC-e ARC-c HellaSwag BoolQ Winogrande

1-7B
Baseline W16A16 78.67 75.29 41.89 56.96 75.08 70.01

OmniQuant W8A8 78.35 67.05 38.31 56.41 72.87 66.61
ATQ W8A8 78.62 75.59 41.89 56.96 74.80 70.01

1-13B
Baseline W16A16 79.16 77.36 46.42 59.91 77.89 72.69

OmniQuant W8A8 78.84 74.37 44.11 59.05 68.13 69.61
ATQ W8A8 79.11 77.27 46.59 59.94 77.98 72.77

2-7B
Baseline W16A16 78.07 76.35 43.43 57.16 77.74 69.06

OmniQuant W8A8 78.13 69.40 40.02 56.62 71.38 66.61
ATQ W8A8 77.91 76.30 43.17 57.12 77.65 69.14

2-13B
Baseline W16A16 79.05 79.38 48.46 60.05 80.58 72.14

OmniQuant W8A8 78.84 73.15 45.73 59.64 68.72 69.46
ATQ W8A8 79.05 79.55 48.63 60.11 80.67 71.82

3-8B Baseline W16A16 79.65 80.26 50.26 60.13 81.13 73.48
ATQ W8A8 79.65 80.30 50.85 60.15 81.41 73.09

Table A6: Accuracy of 6 zero-shot tasks of weight-activation quantization results on LLaMA models
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