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Abstract

Foundational large language models (LLMs)
can be instruction-tuned to perform open-
domain question answering, facilitating appli-
cations like chat assistants. While such efforts
are often carried out in a single language, we
empirically analyze cost-efficient strategies for
multilingual scenarios. Our study employs the
Alpaca dataset and machine translations of it to
form multilingual data, which is then used to
tune LLMs through either low-rank adaptation
or full-parameter training. Under a controlled
computation budget, comparisons show that
multilingual tuning is on par or better than tun-
ing a model for each language. Furthermore,
multilingual tuning with downsampled data can
be as powerful and more robust. Our findings
serve as a guide for expanding language sup-
port through instruction tuning.

1 Introduction

Language capacity has attracted much attention
in pre-trained language models. Some pioneer-
ing works focused on a single language (Peters
et al., 2018; Devlin et al., 2019), while later
works aim to cover multiple languages (Conneau
et al., 2020; Liu et al., 2020). In the recent
blossom of open-source LLMs, English-centric
ones include GPT-2, LLaMA, and Pythia (Radford
et al., 2019; Touvron et al., 2023; Biderman et al.,
2023), and multilingual ones are represented by
BLOOM (Scao et al., 2022). Multilingual models
seem attractive when considering operational costs,
cross-lingual transfer, and low-resource languages
(Artetxe and Schwenk, 2019; Wu and Dredze,
2020), yet English-centric models can possess good
multilingual transferability (Ye et al., 2023).
Instruction tuning makes LLMs follow and re-
spond to inputs (Sanh et al., 2022; Wei et al., 2022).
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With multilingual instruction data becoming fea-
sible and available, this paper compares monolin-
gual and multilingual instruction tuning applied to
English-centric and multilingual LLMs to search
for the optimal strategy to support multiple lan-
guages. Unlike prior works on multilingual multi-
NLP-task tuning (Mishra et al., 2022; Muennighoff
et al., 2023), we focus on open-ended question an-
swering under language generation.

Our data setting combines two low-cost prac-
tices: self-instruct, which distils data from a pow-
erful LLM (Wang et al., 2023; Taori et al., 2023)
and the idea of leveraging machine translation to
create multilingual datasets (Muennighoff et al.,
2023). We fine-tune several decoder LLMs with
either full-parameter fine-tuning (FFT) or low-rank
adaptation (LoRA, Hu et al., 2022) with different
language combinations. Our experiments feature a
fixed computation budget to offer practical insights.
It is shown that multilingual tuning is preferred to
monolingual tuning for each language under LoRA,
but the results are mixed under FFT. English-tuned
LLMs are not well-versed in responding in other
languages, whereas a downsampled multilingual
tuning scheme proposed by us is more robust. Fi-
nally, we examine our model performance on un-
seen languages and various LL.Ms of roughly the
same size.

2 Methodology

2.1 Instruction data

We use the Alpaca dataset as a seed to create a mul-
tilingual instruction-response dataset. We used the
cleaned version with 52K instances! and machine-
translated it into eight languages: Bulgarian, Czech,
Chinese, German, Finnish, French, Russian, and
Spanish, using open-source translation systems.>

1https://github.com/gururise/alpacadatacleaned
2https://github.com/browsermt/
bergamot-translator

1347

Findings of the Association for Computational Linguistics: EACL 2024, pages 1347-1356
March 17-22, 2024 (©2024 Association for Computational Linguistics


https://github.com/hplt-project/monolingual-multilingual-instruction-tuning
https://github.com/hplt-project/monolingual-multilingual-instruction-tuning
https://github.com/gururise/alpacadatacleaned
https://github.com/browsermt/bergamot-translator
https://github.com/browsermt/bergamot-translator

2.2 Budget-controlled instruction tuning

For monolingual tuning, we tune LLMs for each
language separately, whereas for multilingual tun-
ing, we merge and shuffle the data in all languages.
This allows for resource-controlled comparisons be-
tween monolingual and multilingual tuning, where
a fixed (and equal for each language) computation
budget is allocated to support all languages of in-
terest. Experimental resource usage is described as
follows:

1) Let Cajpaca denote the cost of monolingual
Alpaca fine-tuning for a single language, then
it costs Nx Cajpaca to tune individual models
to support N languages.

2) Multilingual instruction tuning will cost
Nx Cajpaca 100, as it trains on data available in
all N languages in one go.

We can fairly compare LLMs trained via 1) and
2) for any language. In addition, we propose to
benchmark two budget-saving options which cost
the same Cyjpacq a8 @ monolingual Alpaca:

3) As asimple baseline, we use an English-tuned
model to respond to all languages.

4) Downsampled multilingual: we randomly
sample from the multilingual data in 2) to
have the size of a monolingual dataset.

Our study covers two training paradigms: low-
rank adaptation and full-parameter fine-tuning.
Both fine-tune an LLLM with the causal language
modelling objective on the instruction-response
data, with hyperparameters listed in Appendix A.1.
Five LLMs are involved: Baichuan-2, BLOOM,
LLaMA, OpenLLLaMA, and Pythia, aiming to test
with different language coverage in the base LLMs.
Pythia, LLaMA, and OpenLLaMA are predomi-
nantly English, while Baichuan-2 and BLOOM are
more versatile. A detailed description of the LLMs
is in Appendix A.2.

2.3 Evaluation setup

Test data  Our instruction-tuned LLMs are bench-
marked on languages both seen and unseen during
fine-tuning. We employ native speakers to manu-
ally translate 50 prompts sampled from OpenAs-
sistant (Kopf et al., 2023) into eight languages: six
seen during training and two unseen. The seen cate-
gory includes English, French, Spanish, Bulgarian,
Russian, and Chinese. Among the six, English
is the highest-resourced, followed by French and
Spanish which share the same script as English.
Bulgarian and Russian are European languages but

use a writing system distinct from English. Finally,
Chinese is a high-resource distant language in a dif-
ferent script. For unseen tests, we pick Bengali and
Norwegian. Bengali is distant from the above lan-
guages and uses a different script, whereas Norwe-
gian is under-resourced but overlaps with English
writing script to some extent.

LLM-as-a-judge To avoid expensive evaluation
costs, we adopt LLM-as-a-judge (Zheng et al.,
2023) to assign a score (1 to 3) to each instruction-
response pair, and the final model score is the
sum of its scores across all test instances. We use
GPT-3.5 (gpt-3.5-turbo-0613) as the judge; it is
queried with an instruction-response pair each time
without model information or request history. We
make modifications to Zheng et al. (2023)’s prompt
to ask the LLLM to consider that an answer should
be in the same language as the question, which is
often the expectation with Al assistants.> The exact
wording is as Appendix B.1 Figure 6.

Language (in)consistency Our manual inspec-
tion suggests that GPT-3.5 does not always obey
the language requirement imposed. An example in
Appendix B.2 Table 2 shows a response in another
language but scored highly. Hence, we run lan-
guage identification and force-set a score to 0 if the
response language is different from the query. We
use the fastText framework (Joulin et al., 2017)
with Burchell et al. (2023)’s checkpoint. The final
response score can be framed as a product of GPT’s
quality score and a binary language identification
outcome: score = eval_score X lang_id. The
aggregated test score thus ranges from 0 to 150.

Human-LLM agreement We pick 600 outputs
from 12 models to cover multilingual and mono-
lingual systems and invite human evaluators to
score each sample with an instruction similar to
the LLM-as-a-judge prompt as in Appendix B.3.
Four languages—English, Spanish, Bulgarian, and
Chinese—are human-evaluated, and we obtain very
high system-level Pearson correlation coefficients
of 0.9225, 0.9683, 0.9205, and 0.8685, respectively
between GPT-3.5 and human. Details are in Table 3
in the appendix. This indicates the reliability of us-
ing LLM-as-a-judge to draw meaningful findings.

3There could be exceptions like text translation and code
generation (Shaham et al., 2024).
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Figure 1: LoRA with BLOOM at different sizes. Caption:
language; y-axis: score; x-axis: model size (B).

3 Performance and Discussions

3.1 Model sizes

Results from LoRA fine-tuning of BLOOM at dif-
ferent sizes are shown in Figure 1. At smaller sizes,
multilingual (—&—) and monolingual (—-) instruc-
tion tuning attain similar performance, and at larger
sizes, multilingual models are generally better ex-
cept for English. We observe similar trends for
Pythia, placed in Appendix C.1 Figure 8 due to
space constraints. Moving on to full-parameter
fine-tuning of BLOOM in Figure 2, we discover
that at relatively small (<1.7B) or large sizes (7B),
monolingual models are generally better than mul-
tilingual models for individual languages. These
observations suggest that multilingualism works
well with LoRA, but separate monolingual tuning
might be better with FFT. Overall, the LLMs’ per-
formance is correlated with sizes regardless of the
tuning technique as anticipated.

3.2 Budget-efficient tuning

To aid our exploration of resource-constrained in-
struction tuning, in the aforementioned Figures 1,
2,and 8 (in appendix C.1), we add the plots of two
budget data conditions: using English-tuned mod-

150 150

100 |~

50 —

0.56 1.1 1.7 3 7.1 0.56

English
150 150

100 |- 100
-
=

1.11.7 3 7.1
Spanish

o L [ ! | 0 b g o
0.56 1.11.7 3 7.1 056 1.11.7 3 7.1
French Bulgarian
150 150

100 — = 100

50 [ 50
:/4?\@—@/@
0 ! o Ll L1 !
0.56 1.11.7 3 7.1 0.56 1.11.7 3 7.1
Russian Chinese

Figure 2: FFT with BLOOM at different sizes. Caption:
language; y-axis: score; x-axis: model size (B). Same legend
as Figure 1.

els to respond to instructions in other languages
(—e—), as well as instruction tuning with downsam-
pled multilingual data (—2-).

When using a single English model for all lan-
guages, its efficacy depends on the intended lan-
guage/script’s closeness to English: Spanish and
French can maintain reasonable scores, but Bul-
garian, Russian, and Chinese record very low per-
formance. The only exception is BLOOM FFT in
Figure 2, where the model is not too behind when
operating in Chinese. Interestingly, BLOOM with
LoRA sees a performance spike at 1.1B for non-
English. At this specific size, it displayed multilin-
gual transferability from pre-training and learned
to follow multilingual instructions despite being
fine-tuned merely in English.

In contrast, while consuming the same compu-
tational resources, downsampled multilingual tun-
ing is significantly more robust across all test lan-
guages. These models sometimes achieve on-par
performance with monolingual tuning in individ-
ual languages. This means that to support several
languages with limited resources, the best practice
is to train on small multilingual data even created
with machine translation instead of full English
data. Nonetheless, if the budget permits, training
with the full multilingual data is still slightly better.
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Figure 3: LoRA and FFT with BLOOM at different sizes
and tested on unseen languages. Caption: training method
and language; y-axis: score; x-axis: model size (B).

3.3 Unseen languages

Further in Figure 3, we look at BLOOM models
which underwent LoRA or FFT but were subse-
quently instructed in unseen languages at test time.
English-tuned LL.Ms behave distinctly with LoRA
and FFT. With the former, they are nowhere near
multilingual tuned models, but with the latter, we
see close or even better results. It might imply that
FFT can even lift performance for languages not
present in the instruction data. However, FFT re-
sults on Norwegian could be an outlier given its
comparably low scores. Considering multilingual
instruction tuning, we notice a pattern opposed to
that on languages seen during training—learning
on the downsampled data is superior to ingesting
the full mixed data. We conclude that it is impor-
tant to not overfit to instruction languages if unseen
languages are expected in downstream tasks.

3.4 Language robustness

We review each model and data recipe’s scores
before and after adding language identification,
to isolate an LLM’s language robustness from its
“inherent quality” (regardless of the response lan-
guage). We compute the differences in GPT eval-
uation scores before and after applying language
identification. A (big) difference suggests that a
model produces reasonable answers in an undesired
language. In Figure 4, we report the average of the
score differences across all six test languages seen
during tuning. English-only models are the least
robust—their score differences are way above other
techniques. With LoRA, full multilingual tuning
records the smallest performance drop; with FFT,
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Figure 4: Evaluation score change before and after language
identification, averaged over six seen test languages, at dif-
ferent LLM sizes. Caption: training method and base model;
y-axis: score difference (log scale); x-axis: model size (B).

monolingual tuning is preferred. The insights from
language robustness are corroborated by our early
findings in Section 3.1: superior results are ob-
tained when using multilingual tuning with LoRA
and monolingual tuning with full-parameter tuning.
Nonetheless, monolingual and multilingual tuning
are not too far apart; specifically for BLOOM with
LoRA, language robustness does not improve as
the model gets larger.

3.5 Model families

Finally, we experiment with base LLMs from dif-
ferent families of around 7 billion parameters. In
Figure 5, we plot the evaluation scores for mul-
tilingual, downsampled multilingual, and mono-
lingual LoRA tuning for six languages. Generally,
LLaMA and OpenLLaMA have better performance
than BLOOM and Pythia potentially because they
have pre-training data that is an order of magnitude
larger. Also Bulgarian, Russian, and Chinese see
lower scores than English, again presumably due to
the language distribution in the pre-training data.

Delving into the comparison between monolin-
gual and multilingual instruction tuning, we find
that out of 30 cases across six languages and five
LLMs, monolingual tuning is ahead in just two
cases: LLaMA tested in Russian and Chinese.
The cost-efficient downsampled multilingual tun-
ing leads in four cases: two in French and two in
Russian. In other situations, multilingual training
is on par if not better. The outcome of tuning sev-
eral similar-sized LLMs confirms that multilingual
tuning is favourable using LoRA.
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Figure 5: LoRA fine-tuning on different 7B LLMs. Caption: language generated; y-axis: score; x-axis: model family.

4 Related Work

Many large language models appeared recently: the
closed-source GPT model family (Radford et al.,
2019; Brown et al., 2020; Ouyang et al., 2022);
open-source English-centric models like LLaMA
(Touvron et al., 2023), OpenLLaMA (Geng and
Liu, 2023), and Pythia (Biderman et al., 2023);
open-source multilingual models like mT5 (Xue
etal., 2021) and BLOOM (Scao et al., 2022). These
models have exhibited different degrees of lan-
guage versatility.

LLM pre-training data is usually skewed towards
English. One way to improve an LLM’s coverage
of non-English languages is through continued pre-
training (Cui et al., 2023, inter alia). Another rich
body of literature looks into multilingualism in in-
struction tuning, which is used to adjust base mod-
els to respond to input (Mishra et al., 2022; Sanh
et al., 2022; Wei et al., 2022; Longpre et al., 2023).
It trains an LLM by providing downstream tasks’
input and output in a specific format. Early research
created a multilingual instruction dataset using ma-
chine translation and showed that multilingual tun-
ing gained higher performance than English-only
fine-tuning (Muennighoft et al., 2023). They also
found that low-cost translated instructions are su-
perior to human-written non-English prompts on
multiple language understanding tasks.

Lately, multiple contemporaneous papers delv-

ing into multilingual instruction tuning have been
made public on arXiv—some appeared before our
work and some after. This reflects the importance
and interest in widening LLLMs’ language support.
Li et al. (2023a) created an instruction dataset with
instructions translated from English but responses
generated by an LLM. When tuned with LoRA,
their monolingual models outperform multilingual
ones on language understanding tasks. Wei et al.
(2023) created a multilingual counterpart of Alpaca
using self-instruct. It has also been showcased that
translation instructions improve cross-lingual capa-
bilities (Li et al., 2023b; Zhang et al., 2023; Ranaldi
et al., 2023) and research explored more cross-
lingual task data and multilingual tuning (Zhu et al.,
2023). Moreover, researchers have unveiled that
fine-tuning on a modest number of languages—
approximately three—seems to effectively instigate
cross-lingual transfer in downstream tasks (Kew
et al., 2023; Shaham et al., 2024).

5 Conclusion

This paper presents a study of instruction tuning of
large language models in different language con-
texts. Our study in a resource-controlled setting
suggests that multilingual tuning offers more ben-
efits compared to monolingual tuning. We find
that multilingual tuning on a downsampled dataset
achieves better robustness on unseen languages.
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Limitations

The LLMs we studied have primarily 7B and at
most 13B parameters and the multilingual training
only spanned nine languages. Scaling to larger
models and more languages would be interesting.
The best checkpoint for our instruction fine-tuning
is selected based on validation cross-entropy, but
there is no guarantee that this leads to the best
performance on the downstream task.

To manage the budget for human translation and
evaluation, we consider eight languages (six seen
and two unseen languages during instruction tun-
ing) to translate and sample 50 instances for evalu-
ation. The training data for non-English languages
are obtained via machine translation, which intro-
duces errors, affects response fluency, and might
alter the nature of some tasks such as grammatical
error correction and code generation.

Ethics Statement

The dataset we translated and generated does not
contain private or sensitive information. Similar to
other research on large language models, there is
no definitive way for us to prevent the instruction-
tuned models from generating inappropriate con-
tent. However, we see minimal such risks associ-
ated with our project, as neither our models nor gen-
erated contents are intended for public consump-
tion. Human evaluators did not report inappropriate
content generated by the models.
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A Experimental Setup Details
A.1 Hyperparameters

Table 1 shows the hyperparameter configurations
of LoRA and full-parameter fine-tuning. LoRA is
a parameter-efficient training method where, for
a big matrix, only low-rank matrices are trained
and patched to it. In our case, we apply it to the
attention matrices (key, query, value) and use rank
8, dropout 0.05, and scaling factor 16 throughout.
We use a batch size of 128, set a fixed training
budget of 5 epochs with a learning rate of 3e™,
and select the best checkpoint based on validation
cross-entropy. For full-parameter fine-tuning, we
follow the configurations of Alpaca by training for
3 epochs with a learning rate of 2e, a warm-up
ratio of 0.03, and a batch size of 256.

Since we use a range of models of different sizes,
we estimate computation time based on 7-billion
parameter models which are the second largest we
fine-tuned. LoRA tuning takes 15-20 hours on 4
GeForce RTX 3090 GPUs, using CPU memory of-
floading and distributed training. Full-parameter
fine-tuning is performed on 4 AMD MI250x GPUs
(treated as 8 GPUs with 64G memory each at
runtime) with model parallelism, and it requires
around 24 hours to finish. Given the high compu-
tational cost of model fine-tuning, we conducted
all fine-tuning experiments once. We use a range
of different GPUs, but through gradient accumu-
lation, we maintain the same global batch size for
each tuning technique: 128 for LoRA and 256 for
full-parameter fine-tuning.

A.2 Description of LL.Ms

Due to the space constraint, we place a detailed
description of LLMs used in our research here. All
the models used in this study are publicly available
and free to use for academic purposes.
Baichuan-2 (Yang et al., 2023) is a multilin-
gual LLM trained on 2.6 trillion tokens. While the
data composition is not transparent in its technical
report, the LLM weights are open-source and it
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Method Hyperparameter Value
LoRA modules query, key, value
rank 8
scaling factor 16
LoRA dropout 0.05
learning rate 3¢
global batch size 128
epochs 5
learning rate 2e?
FFT global batch size 256
epochs 3

Table 1: Hyperparameter configurations of LoRA and full-
parameter fine-tuning

performs strongly on tasks in English and Chinese.
We use its 7B checkpoint.

BLOOM (Scao et al., 2022) is trained on the
ROOTS dataset (Laurencon et al., 2022) contain-
ing 350 billion tokens in 46 natural languages span-
ning 9 language families and 12 programming lan-
guages. The LLM has English, Chinese, French,
and Spanish as the major components. We use the
checkpoints from 560M to 7.1B for experiments.

LLaMA (Touvron et al., 2023) has been trained
on data mainly in English with some in European
languages in Latin and Cyrillic scripts. It could
also support other languages with byte-BPE tok-
enization. We use its 7B model which has seen 1
trillion tokens.

OpenLLaMA (Geng and Liu, 2023) is an open-
source reproduction of LLaMA, trained on the Red-
Pajama dataset (Together Computer, 2023), which
is close to LLaMA’s data composition. Similarly,
we use the 7B version.

Pythia (Biderman et al., 2023) is trained on the
Pile (Gao et al., 2020) which has nearly 300 billion
tokens and is intended to be English-dominant. We
experiment with the full range from 70M to 12B.

B Evaluation Details

B.1 Prompt template for LLM-as-a-judge

Our LLM-as-a-judge prompt template is as Fig-
ure 6, similar to Zheng et al. (2023)’s with an addi-
tional requirement on the response language.

B.2 An example of language inconsistency

Table 2 lists an example where the response is “cor-
rect” in content but does not match the language
of the query. In this case, the judge, GPT-3.5 does
not penalize this language inconsistency despite
being asked to do so in the evaluation prompt. This
makes extra language identification essential.

Please act as an impartial judge and evaluate
the quality of the response provided by an AI
assistant to the wuser instruction displayed
below. Your evaluation should consider factors
such as helpfulness, relevance, accuracy, depth,
creativity, and level of detail. It is also
required that the response is in the same language
as the instruction. Begin your evaluation with a
short explanation. Be as objective as possible.
After providing your explanation, please rate
the response on a scale of 1 to 3 by strictly
following this format:“[[ratingl]”, for example:
“Rating: [[2]1]”.

[User instruction]
${instruction}

[AI assistant’s response]
${response}

Figure 6: Prompt template for requesting a response evaluation
from GPT-3.5, where ${instruction} and ${response} are
replaced with questions and model responses.

Instruction: 1}{F | {REEF Tt RIIELIG?
(English: Hello! Can you help me plan my wedding?)

Response: Sure, [ would be happy to help you plan your
wedding. Can you tell me a little bit more about your
wedding plans and what you are looking for in a wedding
planner?

GPT-3.5 explanation: The Al assistant’s response shows
a good understanding of the user’s request and offers as-
sistance. It asks the user for more information about their
wedding plans, which shows that it is trying to gather rel-
evant details to provide appropriate help. The response
is polite and friendly, which contributes to a positive user
experience.

GPT-3.5 score: 3

Table 2: An example of instruction-response language incon-
sistency, where the question is in Chinese but the response is
in English, which GPT-3.5 fails to account for in its evalua-
tion.

B.3 Human evaluation and human-LLM
agreement

We invited human evaluators who are fluent or
native in the language of the instructions and re-
sponses to score in total outputs from 12 models
fine-tuned with LoRA. We attach the instruction
given to human evaluators in Figure 7. The sys-
tems’ responses for the same instruction are shuf-
fled but grouped together to provide a context of
the overall quality. The human evaluators are asked
to assign each response a score. We list the model
details, as well as their aggregated GPT and human
evaluation scores in Table 3.
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Size English Spanish Bulgarian Chinese
LLM (B)
GPT-3.5 human GPT-3.5 human GPT-3.5 human GPT-3.5 human
BLOOM 1.1 95.5 93.0 102.0 98.0 58.5 54.5 89.5 97.5
BLOOM 3 115.5 105.0 110.0 103.5 83.0 59.0 104.0 102.0
Multi- BLOOM 7.1 113.0 119.5 122.0 116.5 90.5 67.0 119.5 117.5
lingual LLaMA 7 138.0 131.5 140.5 123.0 119.5 112.0 95.0 89.0
OpenLLaMA 7 133.0 130.0 122.0 112.5 110.0 89.0 80.0 67.5
Pythia 6.9 120.5 117.0 119.0 107.5 99.5 75.0 98.5 87.5
BLOOM 1.1 89.0 81.0 92.5 86.0 53.0 49.0 82.0 75.5
BLOOM 3 112.5 103.5 106.0 99.5 71.0 64.0 111.5 96.0
Mono- BLOOM 7.1 122.0 111.5 116.5 111.5 79.5 73.5 105.0 106.0
lingual LLaMA 7 133.5 121.0 127.0 115.0 120.5 117.5 118.5 96.5
OpenLLaMA 7 122.0 124.0 113.5 108.0 105.5 87.0 79.5 66.5
Pythia 6.9 115.0 116.0 100.5 97.5 87.0 72.5 80.0 72.0
Pearson correlation coefficient 0.9225 0.9683 0.9205 0.8685

Table 3: Human evaluation scores and their system-level correlation with GPT-3.5 scores. Models are fine-tuned with LoRA.

Please evaluate the quality of the responses
provided by AI assistants to the questions in your
respective tab. Most questions are open-ended,
meaning there is no strictly correct or best
answer. Please make a judgment based on your
perspective of quality. You could consider
factors such as helpfulness, relevance, accuracy,
depth, creativity, and level of detail. It
is also required that the response is in the
same language as the question unless otherwise
specified by the instruction itself. Please rate
the response on a scale of @ to 3. If you feel
indecisive, you can use an increment of 0.5. You
can give a score of @ for “incorrect language, not
readable, content cannot be understood”; give a
score of 1 for “a relatively bad response”; give
a score of 2 for “a medium response”; give a

score of 3 for “a relatively good response”.

Figure 7: Instructions for human evaluators.

C Result Details

C.1 Experiments on Pythia with LoRA

Apart from LoRA fine-tuning on BLOOM models,
we conduct the same investigation on Pythia mod-
els at different sizes. We observe that multilingual
tuning does not lose to monolingual tuning in any
language, similar to what we find about BLOOM
in Section 3.1. The plots for the six languages are
included as Figure 8.

150 150
pel
100 |- 2 100 [
50 - 50 |-
0 [ N B | 0 [ A |
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Figure 8: LoRA fine-tuning on Pythia. Caption: language
generated; y-axis: score; x-axis: model size (B) on a logarith-
mic scale.
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