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Abstract

Event detection is a crucial information extrac-
tion task in many domains, such as Wikipedia
or news. The task typically relies on trigger
detection (TD) – identifying token spans in the
text that evoke specific events. While the notion
of triggers should ideally be universal across
domains, domain transfer for TD from high-
to low-resource domains results in significant
performance drops. We address the problem
of negative transfer in TD by coupling triggers
between domains using subject-object relations
obtained from a rule-based open information
extraction (OIE) system. We demonstrate that
OIE relations injected through multi-task train-
ing can act as mediators between triggers in dif-
ferent domains, enhancing zero- and few-shot
TD domain transfer and reducing performance
drops, in particular when transferring from a
high-resource source domain (Wikipedia) to
a low(er)-resource target domain (news). Ad-
ditionally, we combine this improved transfer
with masked language modeling on the target
domain, observing further TD transfer gains.
Finally, we demonstrate that the gains are ro-
bust to the choice of the OIE system.1

1 Introduction

Event detection is an important part of the informa-
tion extraction pipeline in natural language process-
ing (NLP). Event detection systems are typically
bound to domain-specific schemes and fill prede-
fined event-specific slots evoked by an event trigger
– a span of words that evokes a particular type of
event. A typical domain-specific event detection
workflow consists of trigger detection (TD), which
locates the trigger span in the text, and trigger clas-
sification (Xiang and Wang, 2019), which assigns
one of the predefined event types to the trigger.
With triggers identified, the next step is typically

†Corresponding author: david.dukic@fer.hr
1Find code at https://github.com/dd1497/oie-td.
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Figure 1: An example of event trigger detection and
subject-relation-object extraction with an open infor-
mation extraction (OIE) system. The detected trigger
and extracted OIE relation often overlap to a significant
degree, which can be leveraged for creating more robust
trigger detection models across domains.

to detect the corresponding arguments, e.g., partici-
pants, location, and time. The detected events can
be leveraged for many downstream tasks, includ-
ing knowledge graph construction (Zhang et al.,
2021), information retrieval (Glavaš and Šnajder,
2013), text summarization (Zhang et al., 2023), and
aspect-based sentiment analysis (Tang et al., 2022).

While the notion of an event trigger is intuitive
and universal (i.e., events and their triggers exist
in all text domains), NLP research has struggled
to provide a clear-cut operational definition of an
event, giving rise to diverse annotation schemes,
e.g., (Doddington et al., 2004; Pustejovsky et al.,
2005; Shaw et al., 2009; Cybulska and Vossen,
2014; Song et al., 2015). The differences be-
tween annotation schemes, alongside the usual dis-
tribution shifts between text domains, make do-
main transfer of TD very challenging. Empirical
evidence has demonstrated massive performance
drops in zero- and low few-shot TD transfer from
a high-resource source to a low(er)-resource target
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domain – a phenomenon commonly referred to as
negative transfer (Wang et al., 2019; Ngo Trung
et al., 2021; Meftah et al., 2021). The absence of
an effective domain transfer method for TD implies
a costly (large-scale) manual annotation of event
trigger spans for each domain of interest.

One way to facilitate domain transfer of TD
may be by means of a proxy task that (i) exhibits
a smaller distributional shift across domains and
could thus (ii) mediate representational alignment
between triggers of different domains. In principle,
all tasks that extract structures that relate to event
semantics, such as syntactic or predicate-argument
structures, make good candidates for such a me-
diator (McClosky et al., 2011; Liu et al., 2016).
Recent work by Deng et al. (2022) showed that
trigger and argument detection could be aligned
with the subject-relation-object triples as mediators
(in Chinese), with subjects and objects mapped to
arguments and relations to triggers. In other words,
both events and subject-relation-object triples rep-
resent predicate-argument structures, pointing to
tasks that extract the latter as potentially good me-
diators for domain transfer of TD.

Open Information Extraction (OIE) systems
(Banko et al., 2007) automatically extract subject-
relation-object triples in a domain-independent
manner because they discover relations not pre-
defined by any schema (Fader et al., 2011; Wang
et al., 2018; Sun et al., 2018; Gashteovski et al.,
2019). Although most recent OIE systems are neu-
ral models trained in a supervised manner (Kol-
luru et al., 2020; Kotnis et al., 2022), traditional
OIE systems such as Stanford OIE (Angeli et al.,
2015) and MinIE (Gashteovski et al., 2017) are
rule-based and typically do not require domain-
specific pre-processing of the input text (Lauscher
et al., 2019). Moreover, recent fact-based evalua-
tion (Gashteovski et al., 2022) renders them more
accurate than neural OIE models. Figure 1 illus-
trates the overlap between the trigger broke de-
tected by the trigger detection model and an OIE
relation broke into, extracted by MinIE. This over-
lap is the main motivation for our work.

In this paper, we address the challenge of neg-
ative transfer in TD by leveraging OIE relations
to align representations of event triggers across
domains. While annotating event triggers in the tar-
get domain is costly, automatic extraction of open
relations with a rule-based OIE system is cheap,
even at a large scale. With this in mind, we investi-
gate remedies for negative domain transfer of TD

based on the automatic extraction of OIE subject-
object relations. More precisely, we couple the
domain-specific trigger annotations with the rela-
tion extractions obtained with a domain-agnostic
rule-based OIE system through different (i) multi-
task architectures and (ii) zero- and few-shot trans-
fer regimes. The intuition is that, by coupling trig-
ger annotations with OIE relations, we effectively
couple event triggers between domains with OIE
relations as mediators. Although OIE relations do
not always align perfectly with event triggers, we
find that they can facilitate and stabilize the domain
transfer of TD. We demonstrate that (i) multi-task
fine-tuning of a pretrained language model (PLM)
for OIE relation extraction and TD and (ii) transfer
training regimes adopted from the body of work on
language transfer (Lauscher et al., 2020; Schmidt
et al., 2022) reduce the trigger distribution shift
between domains and consequently improve TD
performance in the low-resource target domain.
Contributions. (1) We mitigate negative domain
transfer of trigger detection by coupling event trig-
gers with subject-object relations extracted by rule-
based OIE; we couple the two in different multi-
task model designs and investigate the effects in
both zero- and few-shot transfer. (2) We show that
target-domain masked language modeling (MLM),
in the vein of Gururangan et al. (2020), as an ad-
ditional auxiliary objective next to open relation
extraction, further improves TD transfer. (3) We
validate that the gains from the OIE-based proxy
are robust and not dependent on the specific OIE
system. We believe our work is an important step
towards universally more effective event extraction.

2 Background and Related Work

Domain Transfer. Domain transfer has been in-
vestigated for numerous structured prediction tasks
such as query translation (Yao et al., 2020), term
extraction (Hazem et al., 2022), named entity recog-
nition (Jia and Zhang, 2020) and disambiguation
(Blair and Bar, 2022), and event argument extrac-
tion (Sainz et al., 2022). Existing work on domain
transfer for event extraction predominantly resorted
to semantic role labeling (SRL) as the vehicle for
facilitating the transfer. Lyu et al. (2021) ran SRL
to detect predicates as potential event triggers for
the domain transfer of event extraction via question
answering and textual entailment models. Peng
et al. (2016) investigated the use of SRL predicates
and arguments to facilitate domain transfer for both
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event detection and event co-reference resolution.
While SRL is structurally fit to be a proxy task
for even extraction, it is also a task that requires
domain-specific annotations. More recently, do-
main adaptation for models based on PLMs has
been driven by general self-supervised language
modeling on (unlabeled) domain-specific corpora
(Gururangan et al., 2020; Hung et al., 2022).

Domain Adaptation for Event Detection.
Nguyen and Grishman (2015) were the first to
employ a convolutional neural network (CNN)
for event detection domain adaptation by learn-
ing more universal trigger representations through
a CNN architecture and various features such as
word, position, and entity type embeddings. Naik
and Rose (2020) tackled TD transfer between liter-
ature and news domains using adversarial domain
adaptation to produce representations predictive for
triggers but not predictive of the example’s domain,
thus forcing the model to learn domain-agnostic
trigger representations. Ngo Trung et al. (2021)
leveraged domain-specific adapters for event detec-
tion domain transfer. More recently, Trung et al.
(2022) developed an unsupervised domain adapta-
tion method applicable to text classification tasks,
including event detection and sentiment classifi-
cation, which utilizes meta- and self-paced learn-
ing approaches. Other strands of research deal
with improving few-shot event detection but are
mostly limited to in-domain transfer between dif-
ferent event types (Lai et al., 2020; Li et al., 2020).
Examples include improving the zero- and few-shot
in-domain event detection performance with cloze-
based prompt meta-learning (Yue et al., 2023) and
ontology embeddings (Deng et al., 2021).

OIE for NLP tasks. OIE systems are intended
to facilitate various downstream tasks, including
text summarization (Fan et al., 2019; Ribeiro et al.,
2022), question answering (Yan et al., 2018; Nagu-
mothu et al., 2022), incomplete sentence recon-
struction (Montella et al., 2020), and event extrac-
tion (Chen et al., 2023). Many event-related tasks,
such as event schema induction (Balasubramanian
et al., 2013) and cross-domain event coreference
(Pratapa et al., 2021), benefit from leveraging OIE
triples. However, OIE has not yet been employed
to improve TD. A step in that direction is the work
by Deng et al. (2022), where authors created a
dataset named Title2Event consisting of Chinese
titles designed for open event extraction based on
OIE triples, subscribing to the idea that events
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Figure 2: Implicit model during training. The input sen-
tence is fed twice: once with trigger IOB2 tags through
PLM encoders and once with OIE relation IOB2 tags by
indexing the corresponding label embedding matrix. At
the implicit output, PLM’s last hidden state embeddings
are concatenated with OIE relation label embeddings
per token and passed through the TD softmax classifier.

are well-aligned with the subject-relation-object
schema, which we also adopt in this work.

3 OIE for Event Trigger Detection

Following prior work (Naik and Rose, 2020;
Ngo Trung et al., 2021), we frame TD as a se-
quence labeling task where each token is classified
as either part of some event trigger span or out-
side of it. This task formulation is intuitive, given
that event triggers are consecutive token sequences,
and multiple triggers may appear in the same input
sentence. We use the widely adopted IOB2 (in-
side, outside, begin) tagging scheme (Ratnaparkhi,
1998). Analogously, we model relation extraction
(RE) – for which we use OIE relation extractions
as ground-truth labels – also as a sequence label-
ing task with its own set of IOB2 tags. We tackle
domain transfer for TD with two different model
architectures (based on a PLM) that couple OIE
relations with TD annotations, which we refer to
as (i) implicit and (ii) explicit OIE-TD multi-task
models. We next describe both variants in detail.

Implicit Multi-Task. In the implicit model, we
train and use embeddings for token labels of OIE

1199



relations: one randomly initialized vector for each
of the three IOB2 tags. The model concatenates
the embedding xOIE ∈ Rd of the OIE relation
label of each token embedding to the contextual-
ized token embedding of the token xPLM ∈ Rh

(the output of the last PLM layer), where d is the
dimension of the trainable OIE relation label em-
beddings (hyperparameter of the model), and h is
the PLM’s hidden size. The final token represen-
tation, x = [xPLM;xOIE], is fed to the standard
softmax classifier, which predicts the IOB2 event
trigger label for the token, softmax (WT

clx+ bcl),
with Wcl ∈ R(d+h)×3 and bcl ∈ R3 as trainable
parameters of the classifier. As is common in multi-
class classification, we tune all parameters by min-
imizing the (multi-class) cross-entropy loss. The
implicit model is illustrated in Figure 2. We train
the model on TD in the source domain, optimizing
(1) all of the PLM’s parameters, (2) classifier’s pa-
rameters Wcl and bcl, and (3) embedding matrix
XOIE ∈ R3×d containing the trainable embeddings
of the OIE labels. At inference time in the target
domain, we run the OIE system on test sentences to
obtain the OIE relation labels for tokens and then
perform inference using the implicit PLM for TD
and embeddings of OIE labels obtained in training.

We hypothesize that the implicit model is incen-
tivized to establish – within the OIE label embed-
dings trained via event TD – contextualized associa-
tions between the two tasks. Intuitively, this should
improve the recall of TD in the target domain as
long as the OIE – which is rule-based and thus
more domain agnostic – is resilient to distribution
shifts between domains. Similar event detection ap-
proaches based on training label embeddings exist
(Nguyen and Grishman, 2015; Liu et al., 2017; Ji
et al., 2019). However, they typically concatenate
the label and token embeddings at the encoder’s
input and rely on encoders shallower than common
Transformer-based PLMs.

Explicit Multi-Task. The explicit model works
with two standard softmax classifiers and a shared
PLM encoder. The representation of each token
xPLM ∈ Rh, from PLM’s last layer, is forwarded to
the (i) TD softmax classifier softmax (WT

tdxPLM+
btd), which predicts the IOB2 event trigger la-
bel for the token and (ii) RE softmax classi-
fier softmax (WT

rexPLM + bre), which predicts
the IOB2 relation label for the token, with
Wtd,Wre ∈ Rh×3 and btd,bre ∈ R3 as train-
able parameters of two classifiers. Based on the

Dataset Train Valid Test

#Sent #Tr #Re #Sent #Tr #Re #Sent #Tr #Re

MAVEN 25944 24063 15590 6487 6038 3940 8042 7469 4805
ACE 2005 14672 3256 7403 873 340 446 711 292 412
EDNYT 1842 1500 1164 95 74 65 198 155 115
EVEXTRA 8534 7056 5461 1103 902 700 2482 2077 1590

Table 1: Statistics for the four datasets and their splits:
the number of sentences (#Sent), the number of sen-
tences with triggers (#Tr), and the number of relations
after post-processing of MinIE triple extractions (#Re).

predictions, the (multi-class) cross-entropy loss is
calculated for each classifier separately on a mini-
batch basis. The average of calculated TD and
RE losses is used to update PLM’s and classifiers’
parameters during training. This is where the in-
teraction of knowledge from both tasks occurs. At
inference time, we do not use OIE relation labels
in any way. The intuition is that if the notion of
triggers is universal across domains and the OIE
relations are indeed domain-independent, it should
be sufficient only to leverage the in-domain trigger-
relation connection during training. Considering
that the TD and RE tasks have the same number of
corresponding labels, we tried to share the softmax
classifier between TD and RE, but that led to worse
overall performance.

4 Experimental Setup

Our experiments investigate the transfer from a
high-resource source domain to a low-resource tar-
get domain, which is the common transfer direction.
For facilitating few-shot domain transfer of TD,
we employ joint and sequential transfer training
regimes in combination with multi-task models.

4.1 Datasets and Preprocessing

As a dataset from a high-resource source domain,
we use MAVEN, a dataset of Wikipedia articles
with sentence-level trigger annotations. In the low-
resource target domain, we use datasets from the
news domain – ACE 2005, EDNYT, and the EVEX-
TRA – which also have sentence-level trigger anno-
tations. Table 1 summarizes the dataset statistics.

MAVEN. The MAssive eVENt detection dataset
(Wang et al., 2020) from the English Wikipedia
domain is the largest freely available dataset suit-
able for TD. It covers more than 150 events. The
size and coverage of event types make MAVEN
an ideal source dataset for the domain transfer of
TD. MAVEN comes with tokenized sentences and
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a predefined train, validation, and test split. How-
ever, since no gold test set labels were published,
we use the official validation set as a test set (only
to measure the source model performance on it)
and randomly sample 20% of sentences from the
training data as a new validation set.

ACE 2005. The Automatic Content Extraction
dataset (Doddington et al., 2004) is a widely used
event detection dataset consisting predominantly
of articles from various news sources in multiple
languages. We use only the English train, valida-
tion, and test split, obtained with the standard ACE
preprocessing tool,2 which we also use to obtain
sentences and tokens. Although ACE is a sizable
dataset, as noted by Wang et al. (2020), many ACE
sentences do not contain any triggers (cf. Table 1).

EDNYT. The event detection dataset of Maison-
nave et al. (2022) was compiled from the New York
Times articles on financial crises, which makes
the dataset more topically focused than the other
datasets. The dataset was not tokenized, but it came
with a train-test split, with the test set comprising
10% of the data. We obtain a validation set by ran-
domly sampling 5% of the train data. We use spaCy
(Honnibal et al., 2020) to tokenize the sentences.
We discarded 3% of sentences with trigger spans
that could not be aligned with spaCy tokenization.

EVEXTRA. The EVEXTRA dataset (Glavaš
and Šnajder, 2015) is an English newspaper cor-
pus annotated with event triggers. It comes tok-
enized but with no predefined split. We randomly
assign sentences to train, validation, and test sets
in a 70/10/20 ratio, respectively, ensuring that sen-
tences from the same article end up in the same set.
Less than 1% of sentences were dropped because
aligning the trigger annotations with tokens was
impossible.

Relation Extraction. We use the rule-based OIE
system MinIE (Gashteovski et al., 2017) to ex-
tract subject-relation-object triples from sentences.
MinIE has proven useful for many downstream
tasks by the BenchIE benchmark and evaluation
framework (Gashteovski et al., 2022). However,
it extracts all possible triples from the input text
and introduces minor extraction errors, so we use
a set of heuristics to post-process the results and
improve the alignment of extracted relations and
labeled triggers. To verify the alignment, we con-

2https://bit.ly/ace2005-preprocessing

duct a χ2 test of dependence on train sets of both
source and target datasets, considering whether the
same token is labeled as a relation and as a trigger.
The dependence between variables was significant
for all datasets (p < .01). A detailed description is
given in Appendix A.1. First, we remove implicit3

triple extractions and discard all non-consecutive
subject, relation, or object extractions. Further, we
remove non-triples, relations with more than five
tokens, and extractions not in the subject-relation-
object order. Finally, we remove subject and object
extraction information from the sentences and drop
duplicates, leaving us only with relation extrac-
tions. Table 1 shows the final number of sentences
containing relations in the post-processed datasets.

4.2 Training Regimes

In addition to using OIE relations with multi-task
models to couple triggers with relations, we take
inspiration from recent findings in language trans-
fer (Meftah et al., 2021; Schmidt et al., 2022) and
experiment with three transfer training regimes:
joint training, joint transfer, and sequential trans-
fer. For the sake of completeness, we also consider
in-domain training, which reduces to fine-tuning
each model on few-shot target domain examples.

Joint Training. The joint training regime relies
on mixed batches, adopted from the work on lan-
guage transfer (Schmidt et al., 2022). A mixed
batch consists predominantly of source trigger ex-
amples combined with a much lower fixed share of
few-shot target trigger examples. Intuitively, hav-
ing fewer few-shot examples should contribute to
the update of model parameters with equal weight
as the abundant source examples and ultimately pre-
vent the model from overfitting on source data. We
create mixed mini-batches consisting of B=n+m
examples, where n are source examples, m are
randomly sampled few-shot target examples, and
n ≫ m. If more than m few-shot examples are
available, m are consistently sampled from the few-
shot pool. We fix B = 32 with n= 27,m= 5 in
our experiments. Fine-tuning is performed for a
fixed number of epochs based on mixed mini-batch
loss, calculated as the average of the source loss
and m-shot target loss. In our experiments, joint
training amounts to mixed batch fine-tuning from
either single- (TD) or multi-task (TD+RE) PLMs.

3OIE systems often incorporate binding tokens (like the
copula is), which do not have to be present in the text.
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Joint Transfer. Similar to joint training, the joint
transfer regime also uses mixed batches. However,
instead of fine-tuning from PLM, we first train each
PLM on source training data and then fine-tune
with mixed batches in the same manner as in joint
training. Joint transfer applied to multi-task mod-
els utilizes source OIE relations twice and target
relations once during mixed batch fine-tuning.

Sequential Transfer. Analogously to joint trans-
fer, in the sequential transfer regime, we fine-tune
for a fixed number of epochs from the PLM trained
on the source domain training data. However, un-
like in joint transfer, fine-tuning is done only with
target few-shot examples.

4.3 Training Details and Hyperparameters

We briefly describe the training details (see Ap-
pendix A.2 for more details). We use the RoBERTa-
base (Liu et al., 2019) PLM for token classification,
implemented in Hugging Face (Wolf et al., 2020).
We evaluate TD by micro F1 score on IOB2 tag pre-
dictions using strict matching, where the predicted
output span must exactly match the expected output
span. The models are trained with cross-entropy
loss and Adam optimizer (Kingma and Ba, 2014)
with the learning rate of 0.00001 for 10 epochs.

When training on the source domain, we use
the source validation set to select the best model
based on the TD micro F1 score. Specifically, we
choose the model from the epoch that yields the
highest TD validation performance.4 Fine-tuning
in joint/sequential transfer regimes starts from the
best model selected on the source validation set. In
joint transfer with the implicit model, we perform
mixed batch fine-tuning by averaging the source
TD and target few-shot TD losses. Similarly, we
average the source TD and RE losses with the tar-
get few-shot TD and RE losses in the joint transfer
with the explicit model. Throughout experiments,
we use a batch size of B =32. Also, we employ
gradient clipping of model parameters to a max-
imum of 1.0 before each mini-batch update. We
do transfer experiments with 0, 5, 10, 50, 100, 250,
and 500 shots. For MLM and in-domain training,
we update the models’ parameters in an alternate
fashion inside each epoch: first, based on target

4We also experimented with selecting the model based on
the MLM perplexity on the target validation set, but that led to
worse performance than optimizing for TD F1 on the source
validation set. The two options present a trade-off between
learning TD adequately or adjusting to the target domain at
the expense of TD performance.

training data MLM loss, and then based on target
few-shot loss. The MLM sequential transfer is
similar as without MLM. The difference is in the
starting model, which is obtained by first training
in the same described alternate fashion but with
updates based on MLM loss on target training data
and TD loss on source training data.

5 Results and Discussion

Table 2 shows the main results of our experiments,
with MinIE as a relation extractor for the multi-task
models. Vanilla is the sequence labeling PLM fine-
tuned only for event TD, i.e., PLM with softmax
token classifier on top trained on labeled event trig-
ger spans. This model is trained in the same fashion
as our proposed implicit and explicit variants, but
without incorporating in any way the OIE relation
information. For all experiments in this section, we
average results over three seeds and report micro
F1 TD scores on the held-out target test sets. For
few-shot experiments, we additionally perform av-
eraging on five different randomly sampled subsets
from the target data training set. Moreover, we take
precautions to ensure that samples from each draw
are consistent across experiments and exclusively
contain examples with triggers.

5.1 Main Results

Zero-shot domain transfer of TD from MAVEN
as the source to news datasets as targets exhibits
noticeable negative transfer. The drops are mas-
sive compared to the performance of the models
trained on all ACE 2005, EDNYT, or EVEXTRA
training data. Even in this worst-case zero-shot
setup, multi-task implicit and explicit models bring
gains compared to vanilla ones. Some interesting
trends emerge when the number of shots increases.
On average, relations help achieve higher target do-
main TD performance for a low-to-moderate num-
ber of shots. However, when the number of shots
reaches 500 (or even 250 in some cases) target
examples, the effects of relations become negligi-
ble, except for the EVEXTRA dataset, where the
gains from relations are consistent regardless of
the number of shots or training regime. When con-
sidering all training regimes, the implicit model
outperforms the explicit model. Contrary to the
findings from language transfer (Schmidt et al.,
2022), joint transfer training regimes were almost
consistently worse compared to sequential trans-
fer and in-domain training. These findings are of
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Training Regime ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

Vanilla Implicit Explicit Vanilla Implicit Explicit Vanilla Implicit Explicit

0-Shot 0.234 0.237 0.240 0.392 0.399 0.408 0.650 0.650 0.653

jo
in

t
tr

ai
ni

ng

5-Shot 0.246 0.250 0.256 0.451 0.455 0.457 0.643 0.643 0.654
10-Shot 0.251 0.253 0.262 0.482 0.484 0.484 0.645 0.645 0.658
50-Shot 0.265 0.268 0.283 0.566 0.575 0.567 0.679 0.681 0.687
100-Shot 0.286 0.286 0.310 0.597 0.602 0.596 0.715 0.721 0.725
250-Shot 0.332 0.330 0.357 0.628 0.629 0.629 0.766 0.767 0.765
500-shot 0.382 0.378 0.398 0.649 0.649 0.646 0.793 0.798 0.792

jo
in

t
tr

an
sf

er

5-Shot 0.248 0.248 0.254 0.433 0.436 0.440 0.631 0.633 0.636
10-Shot 0.251 0.250 0.256 0.448 0.451 0.450 0.632 0.634 0.638
50-Shot 0.262 0.265 0.267 0.524 0.536 0.507 0.650 0.656 0.648
100-Shot 0.283 0.283 0.284 0.569 0.573 0.551 0.676 0.684 0.667
250-Shot 0.328 0.328 0.318 0.608 0.611 0.592 0.727 0.735 0.705
500-Shot 0.388 0.381 0.369 0.637 0.641 0.621 0.770 0.777 0.744

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.294 0.294 0.276 0.458 0.466 0.448 0.659 0.661 0.653
10-Shot 0.372 0.374 0.330 0.512 0.521 0.490 0.688 0.693 0.680
50-Shot 0.511 0.506 0.463 0.581 0.592 0.568 0.750 0.764 0.741
100-Shot 0.538 0.548 0.501 0.605 0.616 0.584 0.786 0.795 0.773
250-Shot 0.587 0.577 0.556 0.631 0.644 0.607 0.824 0.835 0.813
500-Shot 0.610 0.609 0.586 0.653 0.652 0.640 0.852 0.857 0.836

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50-Shot 0.464 0.466 0.417 0.607 0.601 0.597 0.768 0.774 0.757
100-Shot 0.510 0.529 0.511 0.626 0.632 0.611 0.807 0.812 0.801
250-shot 0.570 0.569 0.550 0.649 0.654 0.642 0.845 0.847 0.835
500-Shot 0.598 0.600 0.584 0.660 0.658 0.666 0.858 0.862 0.854

Table 2: TD domain transfer micro F1 scores when transferring from MAVEN as a source to ACE 2005, EDNYT,
and EVEXTRA as targets (zero-shot, three few-shot transfer training regimes, and in-domain, with six varying
numbers of shots). The numbers in parentheses next to the target dataset are the in-domain performance test set
scores when using all target training data. Joint/in-domain training – target fine-tuning from PLM. Joint/sequential
transfer – target fine-tuning from PLM trained for TD on MAVEN source training data. The best results by dataset
and model per training regime are in bold. Implicit and explicit models leverage MinIE relation labels, unlike the
vanilla model. All reported results are averages of three runs. We report standard deviations in Appendix A.3.

practical interest since joint is worse performance-
wise and takes far more resources and time to train.
With 500 shots, sequential transfer and in-domain
training come close to the full in-domain training
performance for each news dataset. For a low num-
ber of shots (5 and 10), doing in-domain training
is useless, and in this case, sequential transfer is a
better option. However, a higher number of shots
in combination with in-domain training can lead to
a better performance than sequential transfer.

5.2 Adding Auxiliary MLM Objective

Building on recent findings from work on PLM do-
main adaptation (Gururangan et al., 2020), we in-
vestigate whether MLM can further boost TD trans-
fer from Wikipedia to the news domain. Since joint
regimes were consistently worse in main results,
we examine the MLM effect only for in-domain
training and sequential transfer. We achieve this by
adding token-level MLM as an auxiliary training

objective through an extra MLM head in all model
variants. The head’s parameters are updated during
training and not used during inference. Figure 3
gives the results. Sequential transfer proved to be
more efficient than in-domain training. On average,
MLM with relations embodied into implicit model
in sequential transfer regime outperforms the best
results without MLM. An exception is the EVEX-
TRA dataset, where using OIE relations in conjunc-
tion with MLM and sequential transfer does not
lead to performance improvements compared to
using only MLM.

5.3 The Choice of the OIE System

Finally, to examine if our results are specific to the
OIE system, we replace MinIE with Stanford OIE.
We post-process the relations in the same manner
as for MinIE (cf. Section 4). The experiments are
conducted without MLM and for sequential trans-
fer and in-domain training regimes. Table 3 shows
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(a) ACE 2005 (0.706) (b) EDNYT (0.702) (c) EVEXTRA (0.893)

Figure 3: TD domain transfer micro F1 scores when transferring from MAVEN as a source to ACE 2005, EDNYT,
and EVEXTRA as targets (zero-shot, in-domain training, and sequential transfer, with six varying numbers of
shots). The numbers in parentheses next to the target dataset are the in-domain performance test set scores when
using all target training data. The upper three plots show in-domain training results – target fine-tuning starting
from PLM. The lower three plots show sequential transfer results – target fine-tuning starting from PLM trained for
TD on MAVEN source training data. Dash-dotted lines correspond to models with an auxiliary MLM objective
on target domain training data. The x-axis shows the number of shots on an ordinal scale. Implicit and explicit
models leverage MinIE relation labels, unlike the vanilla model. All reported results are averages of three runs. The
corresponding results in tabular form with standard deviations are in Appendix A.3.

the results. The difference between using MinIE
and Stanford OIE is negligible for implicit model
but exists for explicit model. Since explicit outper-
formed implicit in only five out of 156 cases from
Table 3, we conclude that the gains from leveraging
OIE relations in multi-task models are not due to
the higher quality of MinIE extractions and persist
for Stanford OIE. One can achieve similar, if not
almost identical, gains using either extractor.

6 Conclusion

We showed that OIE relations can be utilized to
improve the domain transfer of trigger detection
(TD) in zero- and few-shot setups. The best im-
provements were achieved with implicit multi-task
model and sequential transfer training regime. We
also demonstrated that more substantial gains can
be reached when combining OIE relations with
MLM as an auxiliary task. This is especially evi-
dent for the models pre-trained with TD task on the
source domain and with MLM training objective on
the target domain in the implicit multi-task model.
Replacing MinIE with Stanford OIE revealed that
gains on the target domain for the TD task persist
when using the other OIE extractor.

Future work may further explore the potential
of OIE for improving domain transfer of TD on
diverse datasets and domains, such as the cyber-
security (Man Duc Trong et al., 2020), literature
(Sims et al., 2019), and biomedical (Kim et al.,
2009) domains. Applying the coupling concept to
other NLP tasks, such as event argument detection
or named entity recognition, where OIE extractions
might enhance the in- and out-of-domain perfor-
mance, is another exciting future work direction.

7 Limitations

Our experiments were limited by the available com-
puting resources. For reliability, in our experiments,
we report performance scores averaged over three
runs (differing in random seeds). Similarly, we
sampled the few-shot examples five times. Av-
eraging over larger samples would make the re-
sults even more reliable. Furthermore, the results
of few-shot experiments can sometimes turn out
to be misleading due to the high variance of the
sample of examples. Fixing the learning rate and
some other hyperparameters across experiments
may have resulted in suboptimal adaptation to the
trigger detection task in both source and target
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Training Regime

ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

MinIE Stanford OIE MinIE Stanford OIE MinIE Stanford OIE

Implicit Explicit Implicit Explicit Implicit Explicit Implicit Explicit Implicit Explicit Implicit Explicit

0-Shot 0.237 0.240 0.237 0.242 0.399 0.408 0.401 0.406 0.650 0.653 0.650 0.657

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.294 0.276 0.296 0.283 0.466 0.448 0.468 0.464 0.661 0.653 0.661 0.658
10-Shot 0.374 0.330 0.375 0.350 0.521 0.490 0.520 0.512 0.693 0.680 0.693 0.688
50-Shot 0.506 0.463 0.506 0.476 0.592 0.568 0.591 0.570 0.764 0.741 0.763 0.747
100-Shot 0.548 0.501 0.548 0.525 0.616 0.584 0.615 0.587 0.795 0.773 0.796 0.775
250-Shot 0.577 0.556 0.577 0.568 0.644 0.607 0.647 0.602 0.835 0.813 0.834 0.818
500-Shot 0.609 0.586 0.602 0.584 0.652 0.640 0.653 0.627 0.857 0.836 0.856 0.845

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50-Shot 0.466 0.417 0.467 0.446 0.601 0.597 0.601 0.605 0.774 0.757 0.775 0.765
100-Shot 0.529 0.511 0.529 0.515 0.632 0.611 0.633 0.615 0.812 0.801 0.814 0.805
250-Shot 0.569 0.550 0.569 0.557 0.654 0.642 0.652 0.638 0.847 0.835 0.846 0.840
500-Shot 0.600 0.584 0.598 0.585 0.658 0.666 0.657 0.662 0.862 0.854 0.861 0.852

Table 3: TD domain transfer micro F1 scores when transferring from MAVEN as a source to ACE 2005, EDNYT,
and EVEXTRA as targets w.r.t. MinIE and Stanford OIE systems (zero-shot, sequential transfer, and in-domain
training, with six varying numbers of shots). The numbers in parentheses next to the target dataset are the in-domain
performance test set scores when using all target training data. Sequential transfer – target fine-tuning from PLM
trained for TD on MAVEN source training data. In-domain training – target fine-tuning from PLM. The best results
by dataset, implicit or explicit relation-leveraging models, per training regime and OIE system, are in bold. All
reported results are averages of three runs.

domains. Moreover, all experiments were done
only with RoBERTa-base; using a different suit-
able PLM might yield further insights. Finally, our
experiments were limited to datasets in the English
language; further insights may be gained by ex-
tending to cross-lingual trigger detection domain
transfer, more transfer directions, and datasets.

8 Ethical Considerations

Developing models for automated event detection
comes with inherent risks, including the potential
for misuse and unintended consequences. The abil-
ity to autonomously extract events from sensitive
data raises possible ethical concerns, especially in
the context of enhanced domain transfer. Combin-
ing open information systems with trigger detection
models for improved domain transfer reduces the
effort of event extraction from sensitive data in a
novel domain when only a handful of annotated
examples from that domain can be obtained.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Amir Hazem, Merieme Bouhandi, Florian Boudin, and
Beatrice Daille. 2022. Cross-lingual and cross-
domain transfer learning for automatic term extrac-
tion from low resource data. In Proceedings of the
Thirteenth Language Resources and Evaluation Con-
ference, pages 648–662, Marseille, France. European
Language Resources Association.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength natural language processing in Python.

Chia-Chien Hung, Anne Lauscher, Simone Ponzetto,
and Goran Glavaš. 2022. DS-TOD: Efficient domain
specialization for task-oriented dialog. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 891–904, Dublin, Ireland. Association
for Computational Linguistics.

Yuze Ji, Youfang Lin, Jianwei Gao, and Huaiyu Wan.
2019. Exploiting the entity type sequence to benefit
event detection. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 613–623, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Chen Jia and Yue Zhang. 2020. Multi-cell composi-
tional LSTM for NER domain adaptation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5906–
5917, Online. Association for Computational Lin-
guistics.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Pro-
ceedings of the BioNLP 2009 Workshop Companion

1206

https://aclanthology.org/2022.emnlp-main.437
https://aclanthology.org/2022.emnlp-main.437
https://doi.org/10.18653/v1/2021.acl-long.220
https://doi.org/10.18653/v1/2021.acl-long.220
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://aclanthology.org/D11-1142
https://aclanthology.org/D11-1142
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.18653/v1/D19-1428
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/2022.acl-long.307
https://doi.org/10.18653/v1/2022.acl-long.307
https://aclanthology.org/W13-5001
https://aclanthology.org/W13-5001
https://doi.org/10.1017/S1351324914000060
https://doi.org/10.1017/S1351324914000060
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2022.lrec-1.68
https://aclanthology.org/2022.lrec-1.68
https://aclanthology.org/2022.lrec-1.68
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2022.findings-acl.72
https://doi.org/10.18653/v1/2022.findings-acl.72
https://doi.org/10.18653/v1/K19-1057
https://doi.org/10.18653/v1/K19-1057
https://doi.org/10.18653/v1/2020.acl-main.524
https://doi.org/10.18653/v1/2020.acl-main.524
https://aclanthology.org/W09-1401
https://aclanthology.org/W09-1401


Volume for Shared Task, pages 1–9, Boulder, Col-
orado. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal,
Mausam, and Soumen Chakrabarti. 2020. OpenIE6:
Iterative Grid Labeling and Coordination Analysis for
Open Information Extraction. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3748–3761,
Online. Association for Computational Linguistics.

Bhushan Kotnis, Kiril Gashteovski, Daniel Rubio, Am-
mar Shaker, Vanesa Rodriguez-Tembras, Makoto
Takamoto, Mathias Niepert, and Carolin Lawrence.
2022. MILIE: Modular & iterative multilingual open
information extraction. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6939–
6950, Dublin, Ireland. Association for Computational
Linguistics.

Viet Dac Lai, Thien Huu Nguyen, and Franck Dernon-
court. 2020. Extensively matching for few-shot learn-
ing event detection. In Proceedings of the First Joint
Workshop on Narrative Understanding, Storylines,
and Events, pages 38–45, Online. Association for
Computational Linguistics.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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A Appendix

A.1 Relation Extraction Details

During the relation extraction with the OIE system,
implicit triples and long relations can appear. We
filter out both implicit triples and long relations
(longer than five tokens) as it has been shown that
these relations are noisy (Broscheit et al., 2020),
and implicit relations cannot be used for token clas-
sification since they introduce tokens that are not
present in the text. For example, if the OIE system
is presented with the sentence: “President Biden
right now stands really worried about future eco-
nomic growth.” it might extract (i) implicit triple
(“Biden”; “is”; “President”) and (ii) triple with
long relation (“President Biden”; “right now stands
really worried about”; “future economic growth”).
Our heuristics would drop both extractions, and
the implicit extraction would also be filtered out on
account of not being in the order subject-relation-
object in the input sentence. Also, we filter out
all extractions that are incomplete triples, i.e., are
missing either subject, relation, or object. If, after
that, there are still multiple relation extractions for
the same sentence, we try to merge the remaining
relations. The merging process is designed to keep
all the relations if the tokens are not shared between
them. In the case of shared tokens, we keep only
the relation extraction with the highest number of
tokens that make up the relation. Finally, subject
and object extractions are dropped, only the rela-
tions are kept, and if our heuristics filter out all the
relation extractions for the sentence, we do not dis-
card it but consider it a sentence without relations
and use it for training as an example with all “out-
side” token labels based on IOB2 tagging scheme.
We apply the OIE system, and this described post-
processing, to each split of the source and target
datasets.5

A.2 Experimental Setup Details

Training. The total GPU usage for all the exper-
iments amounts to 1280 hours on Ampere A100
GPU. We use the RoBERTa-base model with 125
million parameters. The input sequences are not
lowercased. Since RoBERTa-base works on input
split into subwords, the TD cross-entropy loss is
adjusted to take into account only the first token
of each tokenized word from the input sequence.
Our preliminary experiments found incorporating

5Relation extractor is always shared between domains.
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a learning rate scheduler is beneficial. We use a
multiplicative learning rate scheduler with a multi-
plying factor of 0.99, which multiplies the learning
rate in each epoch, lowering it throughout training.
For each mini-batch, padding is applied to match
the length of the longest example in the batch.

Hyperparameter Optimization. When training
on the source domain, the implicit model is ad-
ditionally optimized on the source validation set
(based on the TD micro F1 score) with a simple
grid search over the dimension of the trainable OIE-
label embeddings d and the learning rate for it. We
try dimensions of 10, 50, 100, and 300 and learning
rates of 0.0001, 0.00005, and 0.00001. When per-
forming target few-shot fine-tuning in joint transfer
and sequential transfer, we fix the dimension to the
one that produced the highest source validation set
TD micro F1 score. In the joint training and in-
domain training experiments, we arbitrarily fix the
embedding size of the implicit model to 300 and
10 across all the experiments, respectively.

Auxiliary MLM Objective. We use a token-
level masking probability of 15%, and the masking
procedure is inherited from Devlin et al. (2019).
Specifically, out of 15% of randomly chosen to-
kens, we mask 80% tokens, replace 10% tokens
with random tokens from the vocabulary, and leave
the remaining 10% of tokens unchanged.

A.3 Additional Results
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Training Regime ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

Vanilla Implicit Explicit Vanilla Implicit Explicit Vanilla Implicit Explicit

0-Shot 0.234 0.237 0.240 0.392 0.399 0.408 0.650 0.650 0.653

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.294 0.294 0.276 0.458 0.466 0.448 0.659 0.661 0.653
10-Shot 0.372 0.374 0.330 0.512 0.521 0.490 0.688 0.693 0.680
50-Shot 0.511 0.506 0.463 0.581 0.592 0.568 0.750 0.764 0.741
100-Shot 0.538 0.548 0.501 0.605 0.616 0.584 0.786 0.795 0.773
250-Shot 0.587 0.577 0.556 0.631 0.644 0.607 0.824 0.835 0.813
500-Shot 0.610 0.609 0.586 0.653 0.652 0.640 0.852 0.857 0.836

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50-Shot 0.464 0.466 0.417 0.607 0.601 0.597 0.768 0.774 0.757
100-Shot 0.510 0.529 0.511 0.626 0.632 0.611 0.807 0.812 0.801
250-shot 0.570 0.569 0.550 0.649 0.654 0.642 0.845 0.847 0.835
500-Shot 0.598 0.600 0.584 0.660 0.658 0.666 0.858 0.862 0.854

(a) Without MLM.

Training Regime ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

Vanilla Implicit Explicit Vanilla Implicit Explicit Vanilla Implicit Explicit

0-Shot 0.226 0.233 0.241 0.396 0.405 0.389 0.658 0.657 0.659

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.311 0.309 0.303 0.469 0.480 0.468 0.680 0.681 0.666
10-Shot 0.390 0.395 0.359 0.532 0.531 0.509 0.707 0.702 0.697
50-Shot 0.525 0.520 0.495 0.595 0.600 0.577 0.774 0.775 0.760
100-Shot 0.549 0.561 0.519 0.612 0.615 0.599 0.809 0.809 0.791
250-Shot 0.587 0.591 0.574 0.640 0.645 0.627 0.843 0.845 0.828
500-Shot 0.614 0.614 0.604 0.661 0.661 0.645 0.862 0.861 0.848

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.010 0.018 0.034 0.007 0.012 0.037 0.019 0.046 0.085
10-Shot 0.002 0.002 0.000 0.002 0.000 0.003 0.001 0.002 0.007
50-Shot 0.366 0.383 0.288 0.548 0.557 0.552 0.685 0.695 0.649
100-Shot 0.545 0.543 0.526 0.633 0.638 0.623 0.796 0.794 0.790
250-shot 0.579 0.584 0.564 0.661 0.661 0.650 0.841 0.844 0.835
500-Shot 0.612 0.607 0.596 0.670 0.674 0.671 0.861 0.861 0.852

(b) With MLM.

Table 4: TD domain transfer micro F1 scores when transferring from MAVEN as a source to ACE 2005, EDNYT,
and EVEXTRA as targets (zero-shot, sequential transfer, and in-domain training, with six varying numbers of
shots). The numbers in parentheses next to the target dataset are the in-domain performance scores when using all
target training data. In-domain training results – target fine-tuning starting from PLM. Sequential transfer results
– target fine-tuning starting from PLM trained for TD on MAVEN source training data. Table (a) shows results
without an auxiliary MLM objective, while Table (b) depicts results with an auxiliary MLM training objective on
target domain training data. Implicit and explicit models leverage MinIE relation labels, unlike the vanilla model.
All reported results are averages of three runs.
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Training Regime ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

Vanilla Implicit Explicit Vanilla Implicit Explicit Vanilla Implicit Explicit

0-Shot 0.005 0.003 0.003 0.007 0.009 0.005 0.003 0.002 0.004

jo
in

t
tr

ai
ni

ng

5-Shot 0.008 0.001 0.003 0.014 0.015 0.011 0.004 0.001 0.002
10-Shot 0.003 0.003 0.006 0.014 0.010 0.010 0.003 0.002 0.005
50-Shot 0.006 0.005 0.011 0.018 0.009 0.012 0.005 0.008 0.007
100-Shot 0.005 0.002 0.010 0.011 0.003 0.004 0.008 0.005 0.008
250-Shot 0.009 0.003 0.010 0.010 0.004 0.007 0.010 0.008 0.004
500-shot 0.013 0.010 0.006 0.009 0.001 0.006 0.008 0.002 0.005

jo
in

t
tr

an
sf

er

5-Shot 0.010 0.005 0.004 0.018 0.012 0.018 0.004 0.006 0.002
10-Shot 0.011 0.006 0.005 0.014 0.009 0.018 0.004 0.006 0.003
50-Shot 0.007 0.007 0.005 0.005 0.002 0.006 0.001 0.005 0.004
100-Shot 0.005 0.006 0.005 0.005 0.003 0.014 0.004 0.004 0.005
250-Shot 0.012 0.007 0.014 0.009 0.015 0.009 0.005 0.001 0.011
500-Shot 0.008 0.008 0.021 0.009 0.006 0.008 0.006 0.005 0.004

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.014 0.016 0.014 0.022 0.024 0.025 0.012 0.003 0.003
10-Shot 0.012 0.016 0.020 0.013 0.013 0.017 0.011 0.005 0.003

’ 50-Shot 0.011 0.006 0.003 0.004 0.010 0.006 0.011 0.010 0.003
100-Shot 0.003 0.015 0.013 0.003 0.012 0.004 0.009 0.008 0.002
250-Shot 0.007 0.006 0.012 0.004 0.012 0.013 0.009 0.005 0.005
500-Shot 0.004 0.010 0.002 0.004 0.009 0.002 0.004 0.003 0.005

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
10-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
50-Shot 0.013 0.013 0.034 0.007 0.003 0.010 0.009 0.012 0.009
100-Shot 0.009 0.006 0.012 0.001 0.008 0.010 0.004 0.004 0.007
250-shot 0.001 0.004 0.017 0.012 0.010 0.007 0.003 0.005 0.006
500-Shot 0.008 0.004 0.006 0.004 0.010 0.010 0.003 0.006 0.003

Table 5: Standard deviation of TD domain transfer micro F1 scores from Table 2. All reported results are averages
of three runs.
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Training Regime ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

Vanilla Implicit Explicit Vanilla Implicit Explicit Vanilla Implicit Explicit

0-Shot 0.005 0.003 0.003 0.007 0.009 0.005 0.003 0.002 0.004

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.014 0.016 0.014 0.022 0.024 0.025 0.012 0.003 0.003
10-Shot 0.012 0.016 0.020 0.013 0.013 0.017 0.011 0.005 0.003

’ 50-Shot 0.011 0.006 0.003 0.004 0.010 0.006 0.011 0.010 0.003
100-Shot 0.003 0.015 0.013 0.003 0.012 0.004 0.009 0.008 0.002
250-Shot 0.007 0.006 0.012 0.004 0.012 0.013 0.009 0.005 0.005
500-Shot 0.004 0.010 0.002 0.004 0.009 0.002 0.004 0.003 0.005

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
10-Shot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
50-Shot 0.013 0.013 0.034 0.007 0.003 0.010 0.009 0.012 0.009
100-Shot 0.009 0.006 0.012 0.001 0.008 0.010 0.004 0.004 0.007
250-shot 0.001 0.004 0.017 0.012 0.010 0.007 0.003 0.005 0.006
500-Shot 0.008 0.004 0.006 0.004 0.010 0.010 0.003 0.006 0.003

(a) Without MLM.

Training Regime ACE 2005 (0.706) EDNYT (0.702) EVEXTRA (0.893)

Vanilla Implicit Explicit Vanilla Implicit Explicit Vanilla Implicit Explicit

0-Shot 0.005 0.002 0.008 0.005 0.001 0.012 0.001 0.005 0.001

se
qu

en
tia

l
tr

an
sf

er

5-Shot 0.017 0.018 0.016 0.022 0.019 0.007 0.003 0.003 0.003
10-Shot 0.028 0.018 0.020 0.012 0.013 0.006 0.003 0.004 0.007
50-Shot 0.008 0.014 0.021 0.006 0.010 0.005 0.005 0.007 0.003
100-Shot 0.009 0.012 0.012 0.001 0.006 0.002 0.001 0.004 0.004
250-Shot 0.013 0.013 0.005 0.005 0.008 0.005 0.004 0.004 0.003
500-Shot 0.006 0.007 0.015 0.008 0.003 0.007 0.002 0.003 0.002

in
-d

om
ai

n
tr

ai
ni

ng

5-Shot 0.003 0.016 0.032 0.005 0.011 0.032 0.007 0.037 0.072
10-Shot 0.002 0.002 0.001 0.003 0.000 0.002 0.001 0.002 0.007
50-Shot 0.042 0.042 0.067 0.008 0.010 0.022 0.026 0.006 0.033
100-Shot 0.009 0.013 0.004 0.008 0.002 0.002 0.009 0.013 0.002
250-shot 0.008 0.002 0.004 0.001 0.004 0.002 0.004 0.002 0.003
500-Shot 0.018 0.008 0.014 0.002 0.002 0.001 0.001 0.002 0.002

(b) With MLM.

Table 6: Standard deviation of TD domain transfer micro F1 scores from Table 4. All reported results are averages
of three runs.
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