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Abstract

Claim verification is an essential step in the au-
tomated fact-checking pipeline which assesses
the veracity of a claim against a piece of ev-
idence. In this work, we explore the poten-
tial of few-shot claim verification, where only
very limited data is available for supervision.
We propose MAPLE (Micro Analysis of Pair-
wise Language Evolution), a pioneering ap-
proach that explores the alignment between a
claim and its evidence with a small seq2seq
model and a novel semantic measure. Its inno-
vative utilization of micro language evolution
path leverages unlabelled pairwise data to fa-
cilitate claim verification while imposing low
demand on data annotations and computing re-
sources. MAPLE demonstrates significant per-
formance improvements over SOTA baselines
SEED, PET and LLaMA 2 across three fact-
checking datasets: FEVER, Climate FEVER,
and SciFact. Data and code are available here.

1 Introduction

The proliferation of misinformation and fake news
has become a significant concern in today’s infor-
mation landscape. Fact-checking has emerged as
a crucial task to combat the spread of false in-
formation (Thorne and Vlachos, 2018; Kotonya
and Toni, 2020a; Nakov et al., 2021; Zeng et al.,
2021; Guo et al., 2022). A body of natural lan-
guage processing (NLP) research has investigated
the task of claim verification: determining the ve-
racity of a claim based on retrieved evidence. It
is often addressed in a Natural Language Infer-
ence (NLI) fashion, namely making predictions on
the claim with reference to evidence out of three
candidate labels: ‘SUPPORTS’, ‘REFUTES’, and
‘NOT_ENOUGH_INFO’. While the majority of
previous work tackles the problem with fully su-
pervised methods (Li et al., 2021; Zeng and Zubi-
aga, 2021; Zhang et al., 2021; Wadden et al., 2022;
Rana et al., 2022b,a), deploying these methods face

practicality issues. Emerging domains of misin-
formation often involve novel claims, limiting the
availability of relevant labeled data. Fact-checkers
often need to evaluate claims with time constraints,
limiting the time allowed for conducting extensive
fine-tuning of pretrained language models (PLMs).
Hence, performing claim verification in few-shot
scenarios is of particular importance in the real-
world combat of misinformation.

The current state-of-the-art (SOTA) methods for
few-shot claim verification are Semantic Embed-
ding Element-wise Difference (SEED) (Zeng and
Zubiaga, 2022) and Pattern Exploiting Training
(PET) (Schick and Schütze, 2021a,b). However,
their few-shot performance relies on the use of NLI-
trained PLMs, limiting their applicability to only
cases where NLI data and NLI-trained PLMs are
available, excluding scenarios such as low-resource
languages. Moreover, these methods excel when
the data is similar to NLI data but struggle when
dealing with dissimilar data. In contrast, we pro-
pose to embrace the potential of leveraging unla-
beled data, which is more readily available in a
fact-checking pipeline, to enhance few-shot claim
verification.

An alternative strand of research in the realm
of general few-shot classification advocates for
generative Large Language Models (LLMs) en-
dowed with billions of parameters, exemplified by
models like GPT-4 (OpenAI, 2023) and LLaMA
2 (Touvron et al., 2023). These models demon-
strate impressive few-shot performance, though
introducing a reliance on advanced computational
resources and prolonged inference times. In con-
trast, our work challenges this paradigm by demon-
strating that smaller models, such as T5-small (Raf-
fel et al., 2020), possess the inherent capability to
excel in few-shot learning scenarios. Leveraging
unlabeled data and advanced semantic measures,
our approach underscores the efficacy of compact
models in achieving effective and robust few-shot
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Figure 1: MAPLE for claim verification. (1) In-domain seq2seq training. With LoRA, a T5-small model is trained
on claim-to-evidence task for e epochs using the d unlabelled claim-evidence pairs from the data pool. At the end of
each training epoch j, model inference is performed on each instance i to generate a mutation mutation_c2e_i.
This process is repeated on evidence-to-claim setting. In total this step produces 2 ∗ d ∗ e triples that consist of a
claim c, an associated piece of evidence e and a generated mutation m. (2) SemSim transformation. Each triple is
grouped into three pairs including claim-evidence pair c− e, claim-mutation pair c−m and evidence-mutation pair
e−m. ‘Semsim’ scores are obtained for each pair by calculating the cosine similarity score based on corresponding
sentence embeddings. (3) Logistic classifier training with few-shot labelled data. A logistic classifier is trained
on labelled data where the transformed ‘SemSim’ scores are used input features to predict veracity labels.

performance without the need for extensive com-
putational resources.

We present MAPLE (Micro Analysis of Pairwise
Language Evolution), a novel approach designed
for few-shot claim verification. MAPLE innova-
tively builds upon the concept of language transi-
tion1, scrutinizing the semantic shift that occurs as
a sequence-to-sequence model learns to generate
a target sequence from a given input sequence. In
this paper, such language transition from the input
sequence to the output sequence over the training
epochs is referred to as pairwise language evolu-
tion. By intricately capturing and harnessing this
pairwise language evolution, MAPLE aims to fa-
cilitate accurate predictions even in scenarios with
minimal labeled data. Our key novel contributions
include:

1In this paper, we distinguish between claim language
and evidence language, treating them as distinct languages as
they may differ in formality, length, or even depth. In real-
world scenarios, checkworthy claims often emanate from more
informal settings, such as social media platforms. On the other
hand, evidences typically come from formal and reputable
sources such as research papers and Wikipedia, marked by
a concise, informative, and professional style. For concrete
examples, please see the data samples in Appendix A.

• We introduce MAPLE, an innovative ap-
proach that leverages unlabeled data for en-
hancing few-shot claim verification. While
building MAPLE, we also propose ‘SemSim’
as an NLG evaluation metric that focuses on
semantic similarity.

• We perform a pioneering exploration of the
language transition convergence process dur-
ing seq2seq model training.

• We conduct comprehensive experiments on
four dataset configurations, facilitating a di-
rect comparison with established SOTA meth-
ods, namely SEED, PET, and LLaMA 2.

2 Related Work

2.1 Few-Shot Learning for Claim Verification

One initial attempt in this direction was made
by Lee et al. (2021), who proposed a perplexity-
based approach using language models. However,
this approach is restricted to binary classification
and underperforms recent advancements. In con-
trast, Zeng and Zubiaga (2022) introduced SEED,
a method that calculates PLM-based pairwise se-
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mantic differences between claims and associated
evidence. By deriving representative class vectors
from these differences, SEED offers an efficient
solution for few-shot claim verification and serves
as one of our baseline models.

Another competitive training procedure for few-
shot learning is PET (Schick and Schütze, 2021a,b).
PET reformulates classification tasks into cloze
tasks using templates. By calculating the proba-
bility of candidate tokens filling the placeholder
[mask] position with an PLM, PET maps it to a
preconfigured label. PET has demonstrated its
few-shot capabilities in various NLP benchmarks,
including claim verification (Zeng and Zubiaga,
2023).2 Though SEED and PET have been pro-
posed as methods for few-shot claim verification,
the evaluation datasets they used differ from each
other. To address this gap and broaden the eval-
uation, we conduct experiments on four dataset
configurations, allowing for a direct comparison.

When addressing claim verification, both SEED
and PET heavily rely on PLMs trained on NLI,
which brings several limitations. Firstly, they face
challenges when dealing with data that significantly
differs from general NLI datasets, such as cases
where the domain is highly technical and different
from general NLI data pairs and/or the evidence
consists of large paragraphs rather than single sen-
tences. Additionally, their reliance on NLI-trained
models restricts their applicability to languages for
which NLI datasets and corresponding PLMs are
available, excluding their use in low-resource lan-
guages. Moreover, Our proposed model MAPLE
does not rely on NLI-trained models but instead uti-
lizes unlabelled claim-evidence pairs which could
be abundant and useful for domain adaptation.

In addition, recent advancements in generative
LLMs with multi-billion parameters have show-
cased impressive few-shot capabilities. However,
closed-source pioneering models, including GPT-
3.5 and GPT-4, present reproducibility challenges
with their behavior changing over time (Chen et al.,
2023). In this study, we prioritize open-source solu-
tions, with a particular focus on LLaMA 2, a recent
model that surpasses existing open-source alterna-
tives across various benchmarks (Touvron et al.,

2In Zeng and Zubiaga (2023), we proposed ActivePETs
as an active learning method, which focuses on data annota-
tion prioritisation. Despite both tackling claim verification,
ActivePETs is not a fair comparison with MAPLE, which is
a few-shot classification method focused on achieving better
performance with robustness to random sampling.

2023). The primary drawback of these approaches
lies in their requirement for advanced computa-
tional infrastructure, a substantial computational
budget, and extended inference times. MAPLE
tackles these constraints by utilizing parameter-
efficient models, aiming to improve both resource
and runtime efficiency.

2.2 Natural Language Generation (NLG)
Metrics

NLG evaluation metrics play a crucial role in eval-
uating the quality of generated texts. Classic met-
rics such as BLEU (Bilingual Evaluation Under-
study) (Papineni et al., 2002), ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin,
2004), and METEOR (Metric for Evaluation of
Translation with Explicit ORdering) (Banerjee and
Lavie, 2005) remain as the most widely used met-
rics. They address the evaluation as a matching
task, quantifying n-gram overlap with recall, preci-
sion and F-score and providing lexical-level evalu-
ations. Recent advancements include SacreBLEU
(Post, 2018), which enhances reproducibility, to-
kenization support, and ease of statistical signif-
icance reporting. In contrast, BLEURT (Bilin-
gual Evaluation Understudy with Representations
from Transformers) (Sellam et al., 2020) advances
semantic-level evaluations and treats evaluation as
a regression task using PLMs. Another metric,
BARTScore (Yuan et al., 2021), approaches evalua-
tion as a text generation task for LLMs, calculating
the BARTScore as the weighted log probability of
one text given another text.

Given our primary interest in the semantic shift
during pairwise language evolution, we propose
‘SemSim’ as an alternative metric to evaluate NLG
performance.

2.3 Understanding Language Evolution
Language evolution has been the subject of several
theories, including biological evolution, learning,
and cultural evolution (Lekvam et al., 2014). Stud-
ies conducted in laboratory settings have explored
the intricate nature of various phenomena, offering
valuable insights into the emergence of language
(Scott-Phillips and Kirby, 2010).

Researchers have focused on modeling evolution
within language families to identify patterns in pho-
netic features across observed languages (Nouri
and Yangarber, 2016). Computational research has
also introduced tools such as language evolution
simulators, examining word-level evolution within
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language families (Ciobanu and Dinu, 2018), and
realistic geographic environments to simulate lan-
guage and linguistic feature development over time
(Kapur and Rogers, 2020). These studies tackle var-
ious related issues for historical linguistics, areal
linguistics, and linguistic typology.

While language evolution research often adopts
a macro and historical perspective, this paper en-
gages in micro-level analysis, i.e. asking “what
path does it take for a piece of text to migrate into
another piece”. Interestingly, the convergence pro-
cess during seq2seq training simulates such a path
of evolving or transitioning language. In our work,
we investigate language transition across seq2seq
training epochs and further utilize it to conduct
pairwise classification.

3 Methodology

Traditionally, generative models are often used in
classification tasks by generating corresponding
labels given input sentences (Pradeep et al., 2021).
However, such an approach does not fully exploit
the potential of generative models on tasks such
as claim verification. In this section, we present
the MAPLE method and its application to few-shot
claim verification.

The intuition of MAPLE is that sentence pairs
of various relationships bring diverse learning chal-
lenges to the seq2seq generation task. As the data
difficulty is reflected in the seq2seq training pro-
cess, such learning difficulty associated with each
sample could be further transformed into various
signs to indicate the relationship within a sentence
pair. We explore such potential to be leveraged
for effective claim verification, where the goal is
to determine the veracity of a claim based on its
relationship with the provided evidence. MAPLE
consists of three steps, as illustrated in Figure 1.

(1) In-domain seq2seq training. In order to
leverage in-domain unlabeled data, i.e. claim-
evidence pairs without veracity labels, we per-
form seq2seq training in two directions: claim-
to-evidence and evidence-to-claim. For claim-to-
evidence task, a T5-small (Raffel et al., 2020)
model is fine-tuned for e epochs using all of the un-
labeled claim-evidence pairs from the data pool
with a size of d. At the end of each training
epoch j, model inference is performed on each
instance i to generate a mutation mutation_c2e_i.
Similarly, another T5-small model is fine-tuned
on evidence-to-claim task to generate mutations

mutation_e2c_i for each training epoch j. For
computational efficiency, the training is conducted
with Low-Rank Adaptation (LoRA) (Hu et al.,
2021), a parameter-efficient training method. In
total, this step produces 2 ∗ d ∗ e triples that consist
of a claim c, an associated piece of evidence e and
a generated mutation m.

(2) SemSim transformation. The SemSim trans-
formation aims to transform the generated triples
into numeric scores while recording the transi-
tion of mutation m during the training process in
both claim-to-evidence task and evidence-to-claim
task. Each triple is grouped into three pairs in-
cluding claim-evidence pair c− e, claim-mutation
pair c − m and evidence-mutation pair e − m.
We measure the pairwise similarity with ‘Sem-
Sim’ score: first obtains sentence embeddings with
model ‘sentence-transformers/all-mpnet-base-v2’
(Reimers and Gurevych, 2019), a sentence trans-
former model that is trained on over one billion
sentences with contrastive training objective; then
calculates cosine similarity scores on sentence em-
beddings for each pair. Each triple is transformed
into an array of 3 ‘SemSim’ scores. All triples
of a claim-evidence instance are concatenated as
features of the instance.

(3) Logistic classifier training with few-shot la-
beled data. Using n-shot labeled data from the
labeled data pool of size 3n,3 i.e. claim-evidence
pairs with veracity labels, a logistic classifier is
trained. The transformed SemSim scores are used
as input features to make predictions on veracity
labels.4

4 Experiments

In this section, experiments comparing MAPLE
with previous SOTA methods are presented.

4.1 Datasets

We carry out experiments on four dataset config-
urations using three datasets: FEVER, climate
FEVER, and SciFact. The FEVER dataset is the

3For example, 1-shot experiments are conducted on a data
pool that includes 3 labeled samples in total, i.e., one instance
per class per claim verification task.

4Please note that MAPLE differs from data augmentation
methods. Data argumentation generates pseudo-data and uses
them as additional samples for model training; MAPLE does
not treat mutations as additional training samples, but relies
on them to obtain input features for logistic classifier train-
ing. From a tabular view, typical data augmentation methods
generate additional rows but MAPLE operates on columns.

1180



first large-scale fact-checking dataset and has had a
significant impact in the field. SciFact and climate
FEVER datasets are known to be challenging, tech-
nical, and free of synthetic data. Corresponding
data samples and label distributions can be found
in Appendix A.

FEVER FEVER (Thorne et al., 2018) is a large-
scale dataset for automated fact-checking. It
contains claims that are manually modified from
Wikipedia sentences along with their correspond-
ing Wikipedia evidences. Despite criticisms of its
synthetic nature by researchers in the fact-checking
domain, it has been widely used also outside of
fact-checking. Various NLP benchmarks, such as
KILT (Petroni et al., 2021), include the claim veri-
fication task of FEVER to test models’ reasoning
capabilities. As is common in the general NLP
community, we follow the practice of using oracle
evidence, skipping the evidence retrieval step. We
only use the test set of the original FEVER dataset,
as it contains higher-quality data and the quantity
is sufficient for few-shot experiments. We reserve
150 instances for each class to form a test set and
leave the rest in the train set.

cFEVER Climate FEVER (Diggelmann et al.,
2021) is a challenging, large-scale dataset that con-
sists of claim and evidence pairs related to climate
change, along with their veracity labels. Since the
dataset does not naturally provide options for set-
ting up retrieval modules, we directly use it for the
claim verification task. Similarly, we reserve 150
instances for each class to form a test set and leave
the rest in the train set.

SciFact SciFact (Wadden et al., 2020) provides
scientific claims with their veracity labels, along
with a collection of scientific paper abstracts, some
of which contain rationales to resolve the claims.
Additionally, it provides oracle rationales that can
be linked to each claim. Unlike FEVER, research
on SciFact places strong emphasis on the evidence
retrieval module. Hence, we conduct experiments
on SciFact with two configurations: SciFact_oracle
and SciFact_retrieved. The former utilizes oracle
evidence provided by the annotations, while the
latter uses evidence retrieved by a retrieval model,
namely BM25, to retrieve the top 3 abstracts as
evidences (Wadden et al., 2022; Zeng and Zubiaga,
2023). We merge the original SciFact train set and
dev set and redistribute the data to form a test set
that contains 150 instances for each class, using the

rest as the train set.

4.2 Baselines
SEED SEED uses a sentence-transformer model
that is trained on NLI tasks.5

PET PET uses BERT-base fine-tuned on the
MNLI dataset.6 It is trained with a batch size of 16,
a learning rate of 1e−5, and training epochs of 3,
following previous practice (Schick and Schütze,
2021a,b; Zeng and Zubiaga, 2023).

LLaMA 2 LLaMA 2 experiments are conducted
on the LLaMA 2 7b chat model.7 Answers are
generated by prompting with detailed instructions8

and post-processed to match class labels 9.

4.3 MAPLE
In our experiments, MAPLE uses the T5-small
model for efficient training.10 Training is con-
ducted with LoRA from epoch 0 to epoch 20, using
0.0001 as learning rate, 16 as batch size, 512 as
max length, 0.1 as LoRA dropout, 32 as LoRA
alpha (Hu et al., 2021) and “Summarize:” as the
prompt (Ramamurthy et al., 2023).

4.4 Experimental Setup
Our experimental setup is designed to conduct com-
prehensive few-shot experiments, where the term
‘n-shot’ refers to the number of samples available
per class. As we focus on few-shot performance,
our main experiments are conducted on 1-shot, 2-
shot, 3-shot, 4-shot and 5-shot settings. To en-
sure the reliability and generalizability of our find-
ings, each n-shot experiment has been repeated

5Huggingface hub model id ‘bert-base-nli-mean-tokens’
(Zeng and Zubiaga, 2022).

6Huggingface hub model id ‘textattack/bert-base-uncased-
MNLI’. See performance using alternative model checkpoint
in Appendix B.1.

7Huggingface hub model id ‘Llama-2-7b-chat-hf’. See
performance using alternative model checkpoint in Appendix
B.1.

8After evaluating several prompts, the subsequent one
is employed due to its superior performance.: “Please per-
form the task of claim verification: you are given a claim
and a piece of evidence, your goal is to classify the pair out
of ‘SUPPORTS’, ‘REFUTES’ and ‘NOT_ENOUGH_INFO’.
Here are a few examples: claim: train_claim_i evidence:
train_evidences_i label: train_label_i What is the label for
the following pair out of ‘SUPPORTS’, ‘REFUTES’ and
‘NOT_ENOUGH_INFO’? Answer with the label only. ”

9Post-processing primarily includes stripping formatting
strings and removing “label: ”. The remaining responses
that do not belong to any of the labels are mapped into the
“NOT_ENOUGH_INFO” class, e.g. responses such as “?” and
“Please give me the answer”.

10Huggingface hub model id ‘t5-small’ (Raffel et al., 2020).
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100 times with sampling seeds ranging from 123 to
223. We present the main results in Section 5. We
also present further experiments showing the trend
going up to 50 shots in Appendix B.3.

5 Results

In this section, we present the results of our experi-
ments with a focus on few-shot settings.

Figure 2 illustrates the F1 performance within
the 5-shot setting.11 Across the four dataset config-
urations, MAPLE shows noticeable performance
advantages within the 5-shot setting, validating its
effectiveness in few-shot scenarios and robustness
across datasets. It achieves this primarily by start-
ing from a high performance point and steadily
improving within 5 shots. Although SEED under-
performs MAPLE, it showcases strong learning
capabilities, and its relatively lower performance is
primarily due to a low starting point. Surprisingly,
PET and LLaMA 2 perform poorly within the 5-
shot range, generally starting low and exhibiting
limited learning capabilities.

On the FEVER dataset, MAPLE demon-
strates significant improvements over the base-
lines. Specifically, MAPLE achieves a very high
F1 score over 0.6 at 1 shot, outperforming SEED,
PET, and LLaMA 2, which commence at approxi-
mately 0.25, 0.37, and 0.38, respectively. Within 5
shots, MAPLE exhibits a steady performance im-
provement, surpassing an F1 score of 0.7. While
SEED and PET also experience notable perfor-
mance boosts, with SEED approaching just below
0.6 and PET reaching below 0.5, LLaMA 2 en-
counters a slight performance drop, settling around
0.36.

On the cFEVER dataset, the performance of all
methods exhibits a considerable decrease compared
to FEVER, highlighting the challenging nature of
the dataset. While MAPLE maintains its leading
position overall, the performance margin is nar-
rower. It initiates above 0.3 and achieves scores
surpassing 0.4. SEED begins even lower, below
0.3, but manages to surpass 0.4, albeit slightly trail-
ing behind MAPLE. PET encounters greater chal-
lenges overall, commencing below SEED and only
slightly exceeding 0.3. LLaMA 2 excels initially
with a score of 0.38 but experiences a drop to 0.37.

On the SciFact_oracle dataset configuration, de-
spite the overall performance being better than

11Please see detailed classwise performance in Appendix
B.2

cFEVER but worse than FEVER across all meth-
ods, MAPLE maintains superiority within 5 shots.
It initiates around 0.4 and concludes around 0.45.
SEED begins around 0.3 and lags behind MAPLE,
while PET starts higher than SEED but lower than
MAPLE, failing to surpass them within 5 shots.
LLaMA 2 performs comparably to PET, starting at
0.37 and finishing at 0.40.

On the SciFact_retrieved dataset configuration,
MAPLE demonstrates a slightly better performance
compared to SciFact_oracle, while all baseline
methods exhibit a substantial decline in perfor-
mance compared to SciFact_oracle. Consequently,
MAPLE achieves a larger performance margin. It
commences above 0.4 and concludes around 0.5.
SEED starts at a very low point, below 0.3, and ap-
proaches 0.4 at 5 shots. PET initiates around 0.35
but struggles to learn effectively within 5 shots, re-
sulting in an even lower score. LLaMA 2 starts at
0.32 and 0.29 and experiences a notable drop to
0.18 and 0.17 immediately afterwards.12

In general, LLaMA 2 displays reasonable one-
shot performance but shows limited learning ca-
pabilities within 5 shots. Despite PET’s use of
gradient descent to update the parameters of a large
language model, this strategy does not yield sat-
isfactory results within the 5-shot range. On the
other hand, MAPLE and SEED showcase relatively
rapid convergence due to their limited number of
trainable parameters. MAPLE stands out with a
significantly higher level of performance compared
to all baselines overall, demonstrating its capacity
to leverage limited data for notable results and ef-
fectiveness as a few-shot claim verification model.

It’s crucial to highlight that while most experi-
ments are conducted in oracle settings, real-world
claim verification often introduces the challenge
of imperfect evidences. Therefore, achieving opti-
mal performance in the SciFact_retrieved dataset,
where evidence is noisy and lengthy, is particu-
larly significant. This accomplishment highlights
MAPLE’s robustness to noisy and challenging data
in realistic fact-checking scenarios.

6 Ablation Studies

Training algorithms With the growing inter-
est in reinforcement learning (RL) and parameter-
efficient training, this ablation study investigates

12Note that the SciFact_retrieved dataset configuration com-
prises lengthy instances that may exceed the maximum context
length for LLaMA 2. Addressing this issue would necessitate
additional techniques.
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Figure 2: F1 performance within 5 shots.

Figure 3: Comparison of MAPLE performance using different training algorithms for in-domain seq2seq training.
The label “LoRA" represents parameter-efficient training method Low-Rank Adaptation, “SFT" indicates supervised
fine-tuning and “NLPO" refers to reinforcement learning with the NLPO policy.

the effects of utilizing different training algorithms.
Specifically, we comprare LoRA, Supervised Fine-
Tuning (SFT) and Natural Language Policy Opti-
mization (NLPO), an innovative RL method that
offers enhanced stability and performance com-
pared to previous policy gradient methods (Rama-
murthy et al., 2023). As presented in Figure 4, the
overall differences in performance among the algo-
rithms are relatively marginal. SFT demonstrates
best results on the FEVER and cFEVER datasets,
while NLPO outperforms on the SciFact_oracle
and SciFact_retrieved datasets. Notably, despite
the largely reduced computational burden by utiliz-
ing LoRA,13 the observed performance drops are
modest. Therefore, MAPLE conducts in-domain
seq2seq training with LoRA.

Metrics MAPLE uses our proposed ‘SemSim’
metric to measure and analyze the pairwise lan-
guage evolution. This ablation section presents the
comparison with a number of established NLG met-
rics, including ‘BLEU’, ‘ROUGE’, ‘METEOR’,
‘SacreBLEU’, ‘BLEURT’, and ‘BARTScore’.

Figure 4 illustrates the performance variations of
MAPLE when employing different metrics. Across
all datasets, the ‘SemSim’ metric demonstrates
superior performance compared to other metrics,
showcasing a significant improvement gap. This
highlights the advantages of ‘SemSim’, establish-

13For T5-small, the trainable % with LoRA is 0.485
(294,912/60,801,536). Please see a detailed efficiency com-
parison with SFT in Appendix C.1.

ing it as the optimal choice for MAPLE. By fo-
cusing on measuring semantic similarity as a pri-
mary component, we can effectively analyze the
micro pairwise evolution of language in a seq2seq
learning process, which is captured by generated
mutations across training epochs. In contrast, met-
rics based solely on lexical overlap, or utilizing
an LLM that is not trained on substantial sentence
pair data, may be less indicative in capturing the
nuances of language evolution. The emphasis on
fine-grained semantic similarity provides highly
informative insights, particularly in assessing the
learning difficulty of instances for seq2seq gener-
ation. As ‘SemSim’ surpasses many established
NLG metrics in this task, it shows its potential for
broader applications as a general NLG evaluation
metric.

7 Analysis and Discussion

Despite recent research on generating rationales
and explanations (Atanasova et al., 2020; Kotonya
and Toni, 2020b; Schuster et al., 2021), exist-
ing approaches heavily depend on directly fine-
tuning PLMs, hindering the understanding of their
decision-making process. MAPLE stands out by
providing tangible and traceable solutions, guided
by the principle that sentence pairs with different re-
lations present distinct challenges for seq2seq gen-
eration. Figure 5 further supports this principle and
elucidates the effectiveness of MAPLE. Overall,
the ‘SemSim’ scores for ‘NOT_ENOUGH_INFO’
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Figure 4: Comparison of MAPLE performance using the proposed ‘SemSim’ metric and alternative metrics to
measure micro pairwise language evolution.

Figure 5: Example signals captured for classification, using the ‘SemSim’ score for target-mutation pairs on the test.

are significantly lower than those for ‘SUPPORTS’
and ‘REFUTES’, enabling easy differentiation be-
tween ‘NOT_ENOUGH_INFO’ and other classes
14. Furthermore, generating a piece of evidence
from a claim proves to be more challenging than
generating a claim from a piece of evidence. Gen-
erating claims primarily needs the removal of re-
dundant or unnecessary content, while generating
evidence requires the model to expand the existing
content. Furthermore, figure 5 shows that gener-
ating a claim is easier for ‘SUPPORTS’ than for
‘REFUTES’, while generating evidence is easier for
‘REFUTES’ than for ‘SUPPORTS’. This pattern
allows for a distinction between the two categories.
With its enhanced interpretability and traceability,
MAPLE aims to bolster the reliability and trustwor-
thiness of the claim verification process.

Moreover, by comparing the difficulty among
datasets based on the above information, we can
gain insights into the varying challenges posed
by different domains. For example, if a dataset
such as FEVER consistently exhibits high ‘Sem-
Sim’ scores and low standard deviation during
in-domain seq2seq training, it suggests that the
claims and evidences within that dataset are easier
to match and converge upon. On the other hand,
datasets such as cFEVER with lower ‘SemSim’
scores, higher standard deviation, and longer con-
vergence time indicate greater difficulty in aligning
claims and evidences. This comparative analysis

14The detailed classwise performance in Appendix
B.2 shows that MAPLE has the best performance on
‘NOT_ENOUGH_INFO’ class.

allows us to understand the relative complexities
of fact-checking in different settings and further
enhances the interpretability of MAPLE’s perfor-
mance across datasets.

Moreover, MAPLE’s low demand on annota-
tions and computing facilities enhances its effi-
ciency and accessibility. Both step (1) in-domain
seq2seq training and step (2) SemSim transforma-
tion only require unlabeled claim-evidence pairs
and limited annotations are only required for step
(3) logistic classifier training with few-shot labelled
data. While performing steps (1) and (2) over the
entire unlabeled pool may seem burdensome, such
practice only takes from minutes to few hours.15

Due to MAPLE’s efficiency and accessibility by
design, training and deploying can be easily ac-
complished on Google Colab with a free account
or even on a personal laptop. In real-world sce-
narios where the claim verification team has accu-
mulated a substantial collection of claim-evidence
pairs, which can be claims with annotated oracle
evidences or claims with retrieved noisy evidences,
they can initiate steps (1) and (2) and this process
can be completed while the team actively acquires
a small number of labeled samples. Subsequently,
step (3) training a logistic classifier with the newly
acquired data only takes seconds and MAPLE is
ready for deployment. By designing such an effi-
cient workflow, the application of MAPLE in real-
world scenarios can bring in a decent claim verifi-

15Please see detailed overall runtime report in Appendix
C.2.
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cation model with minimal cost in annotation and
computational resources. Overall, MAPLE holds
practical value for fact-checking in real-world con-
texts, particularly as a tool to assist fact-checkers in
combating emerging domains of misinformation.

8 Future Directions

With the development of MAPLE, several promis-
ing directions for future research emerge:

Self-supervised Extensions Currently, MAPLE
combines language transition signals with a tradi-
tional logistic classifier for classification. A further
research avenue could include its development into
a fully self-supervised system by integrating clus-
tering methods.

NLG metric Adaptability While we propose
‘SemSim’ as an NLG metric and have demonstrated
its performance advantages for MAPLE, a compre-
hensive evaluation of ‘SemSim’ for broader tasks
and domains would enhance the understanding.

Most prevalent NLG evaluation metrics currently
calculate similarity scores based on sentence em-
beddings only, including the proposed metric ‘Sem-
Sim’ in this paper, whereas MAPLE offers nuanced
insights derived from the seq2seq training dynam-
ics. Converting MAPLE, which combines ‘Sem-
Sim’ and T5 training, into a general NLG evalua-
tion metric would be a promising research direc-
tion.

Human-in-the-loop Workflow As previously
demonstrated, MAPLE shows potential for assist-
ing fact-checkers in real-world scenarios. Fully
exploring this potential primarily involves lever-
aging MAPLE as a claim verification model in
fact-checking organizations. Additionally, it can
serve as the backbone of an active learning system,
facilitating data annotation prioritization.

9 Conclusions

In this paper, we introduce MAPLE, a novel ap-
proach for few-shot claim verification. By leverag-
ing language transition signals during seq2seq train-
ing convergence, MAPLE achieves SOTA perfor-
mance in precisely predicting claim veracity labels
with reference to associated evidences in few-shot
learning scenarios. Through extensive experiments
and analysis on multiple datasets, we validate its ef-
fectiveness, robustness, interpretability, efficiency
and accesibility.

Limitations

The model demonstrates quick convergence, which
makes it more suitable for few-shot settings. To
expand the applicability of MAPLE to higher-shot
scenarios, further research and improvements are
required.
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A Datasets Appendix

Table 2 shows label distributions and Table 1
presents data samples for each dataset.

B Performance Appendix

B.1 Detailed performance comparison across
methods

Here we present a detailed numeric performance
comparison of the methods discussed, as well as al-
ternative model checkpoints for PET16 and LLaMA
217.18 Tables 3, 4, 5 and 6 report on FEVER,
cFEVER, SciFact_oracle and SciFact_retrieved
dataset configurations respectively.

B.2 MAPLE Classwise Performance within 5
shots

Table 7 presents MAPLE’s classwise performance.
In general, MAPLE is most capable of distinguish-
ing NOT_ENOUGH_INFO samples from the oth-
ers and the least capable when dealing with RE-
FUTES samples.

B.3 Performance comparison within 50 shots

Figure 6 illustrates the F1 results within the 50-
shot setting. The experiments are conducted on
SEED, PET and MAPLE, as LLaMA 2 imposes
high demand on computational budget. MAPLE
demonstrates superior performance in three out of
four dataset configurations, specifically FEVER,
cFEVER, and SciFact_retrieved. Although it is not
the top performing approach in the SciFact_oracle
setting, it holds the highest position until surpassed
by SEED at 8 shots, followed by PET at 30 shots.

16We report all six model checkpoints used in Active PETs.
17We report all three models that have chat capabilities.
18When the same prompt we deigned for 7b model is used

on 13b and 70b models, the model performance is signifi-
cantly lower and even fails to yield responses in many cases
and vise versa. Hence, the results for 13b and 70b models
in this section are generated with a prompt that is slightly
different from the one we used for 7b model. The prompt we
used here is “Please perform the task of claim verification.
Given a claim and a piece of evidence, your goal is to clas-
sify them into one of the following classes: ‘SUPPORTS’,
‘REFUTES’ and ‘NOT_ENOUGH_INFO’. Here are a few ex-
amples: Claim: ‘train_claim_i’ Evidence: ‘train_evidences_i’
‘train_labels_i’.”. The post-process remains the same.

On the FEVER dataset, MAPLE achieves signif-
icant improvements over the baselines when pro-
vided with fewer than 50 shots. MAPLE starts with
a very high performance around 0.6 and converges
around 20 shots, reaching approximately 0.8. De-
spite starting from a very low point, SEED learns
rapidly within 10 shots and converges around 20
shots with a score below 0.7. PET demonstrates
remarkable learning capabilities within 50 shots, as
its performance steadily rises to around 0.8.

On the cFEVER dataset, MAPLE remains the
best-performing method within 50 shots, although
with only a slight margin over SEED. Both MAPLE
and SEED exhibit similar performance curves, con-
verging around 20 to 30 shots with scores approach-
ing 0.5. PET shows a different pattern, steadily
learning over the range of 50 shots but ending with
a lower score compared to the other methods.

On the SciFact_oracle dataset, MAPLE starts
strongly but shows limited improvements with
more data, converging within 8 shots at approx-
imately 0.48. This may be attributed to the chal-
lenging nature of the scientific domain. SEED and
PET manage to surpass MAPLE in this case, with
SEED converging at 50 shots and achieving a score
of around 0.55. PET surpasses MAPLE after being
provided with over 20 shots and surpasses SEED
after receiving over 30 shots.

On the SciFact_retrieved dataset, unlike in the
SciFact_oracle case, MAPLE maintains a clear ad-
vantage within 50 shots. MAPLE starts above 0.4
and converges around 20 to 30 shots with a score
above 0.5. With retrieved evidence, both SEED
and PET experience a performance dip compared
to the oracle evidence scenario. SEED also con-
verges around 20 to 30 shots, but with a score
above 0.4. PET experiences a dip early on, around
10 shots, dropping to approximately 0.3, despite
starting around 0.35. Afterwards, it recovers and
reaches above 0.45 at 50 shots, although still lower
than MAPLE.

C Runtime Appendix

C.1 LoRA vs SFT Runtime comparison

We present the runtime comparison of LoRA and
SFT on performing Seq2seq training on T5-small.
While the efficiency gain varies on the given train-
ing data, table 8 shows that significant time savings
across all experimented datasets.
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FEVER

Claim Evidence Veracity

“In 2015, among Americans, more than
50% of adults had consumed alcoholic
drink at some point.”

“For instance, in 2015, among Americans, 89% of adults had consumed alcohol at some point, 70% had drunk it in
the last year, and 56% in the last month.”

‘SUPPORTS’

“Dissociative identity disorder is known
only in the United States of America.”

“DID is diagnosed more frequently in North America than in the rest of the world, and is diagnosed three to nine
times more often in females than in males.”

‘REFUTES’

“Freckles induce neuromodulation.” “Margarita Sharapova (born 15 April 1962) is a Russian novelist and short story writer whose tales often draw on
her former experience as an animal trainer in a circus.”

‘NOT_
ENOUGH_
INFO’

cFEVER

Claim Evidence Veracity

“Coral atolls grow as sea levels rise.” “Gradual sea-level rise also allows for coral polyp activity to raise the atolls with the sea level.” ‘SUPPORTS’

“There’s no trend in hurricane-related
flooding in the U.S.”

“Widespread heavy rainfall contributed to significant inland flooding from Louisiana into Arkansas.” ‘REFUTES’

“The warming is not nearly as great as
the climate change computer models
have predicted.”

“The model predicted <0.2 °C warming for upper air at 700 mb and 500 mb.” ‘NOT_
ENOUGH_
INFO’

SCIFACT_oracle

Claim Evidence Veracity

“Macropinocytosis contributes to a
cell’s supply of amino acids via the in-
tracellular uptake of protein.”

“Here, we demonstrate that protein macropinocytosis can also serve as an essential amino acid source.” ‘SUPPORTS’

“Gene expression does not vary ap-
preciably across genetically identical
cells.”

“Genetically identical cells sharing an environment can display markedly different phenotypes.” ‘REFUTES’

“Fz/PCP-dependent Pk localizes to the
anterior membrane of notochord cells
during zebrafish neuralation.”

“These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and
indicate a previously unrecognized mechanism that might underlie NTDs.”

‘NOT_
ENOUGH_
INFO’

SCIFACT_retrieved

Claim Evidence Veracity

“Neutrophil extracellular trap (NET)
antigens may contain the targeted au-
toantigens PR3 and MPO.”

“Netting neutrophils in autoimmune small-vessel vasculitis Small-vessel vasculitis (SVV) is a chronic autoinflam-
matory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers,
so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the
targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys
and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune
response against neutrophil components in individuals with SVV.”

‘SUPPORTS’

“Cytochrome c is transferred from cy-
tosol to the mitochondrial intermem-
brane space during apoptosis.”

“At the gates of death. Apoptosis that proceeds via the mitochondrial pathway involves mitochondrial outer
membrane permeabilization (MOMP), responsible for the release of cytochrome c and other proteins of the
mitochondrial intermembrane space. This essential step is controlled and mediated by proteins of the Bcl-2 family.
The proapoptotic proteins Bax and Bak are required for MOMP, while the antiapoptotic Bcl-2 proteins, including
Bcl-2, Bcl-xL, Mcl-1, and others, prevent MOMP. Different proapoptotic BH3-only proteins act to interfere with
the function of the antiapoptotic Bcl-2 members andor activate Bax and Bak. Here, we discuss an emerging view,
proposed by Certo et al. in this issue of Cancer Cell, on how these interactions result in MOMP and apoptosis.”

‘REFUTES’

“Incidence of heart failure increased by
10% in women since 1979.”

“Clinical epidemiology of heart failure. The aim of this paper is to review the clinical epidemiology of heart failure.
The last paper comprehensively addressing the epidemiology of heart failure in Heart appeared in 2000. Despite an
increase in manuscripts describing epidemiological aspects of heart failure since the 1990s, additional information
is still needed, as indicated by various editorials.”

‘NOT_
ENOUGH_
INFO’

Table 1: Data samples for each dataset.

Table 2: Unlabelled pool label distribution for each dataset.

FEVER cFEVER SciFact_oracle SciFact_retrieved
‘SUPPORTS’ 3099 1789 356 266
‘REFUTES’ 3069 652 115 61
‘NOT_ENOUGH_INFO’ 3183 4778 294 2530
Total unlabelled pairs 9351 7219 765 2857
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FEVER F1 Accuracy
n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3776 0.0438 0.4771 0.0439
Llama-2-13b-chat-hf 0.4351 0.0613 0.5034 0.0506
Llama-2-70b-chat-hf 0.2617 0.0427 0.3800 0.0258
MAPLE 0.6155 0.0645 0.6459 0.0506
PET_microsoft/deberta-base-mnli 0.3394 0.0351 0.3582 0.0293
PET_microsoft/deberta-large-mnli 0.4978 0.1011 0.5193 0.0877
PET_roberta-large-mnli 0.2158 0.0516 0.2408 0.0670
PET_textattack/bert-base-uncased-MNLI 0.3731 0.0456 0.4089 0.0278
PET_textattack/roberta-base-MNLI 0.2190 0.0409 0.3139 0.0383
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.4214 0.0480 0.4509 0.0429
SEED_bert-base-nli-mean-tokens 0.2724 0.0689 0.3748 0.0494

2 Llama-2-7b-chat-hf 0.3827 0.0301 0.4796 0.0314
Llama-2-13b-chat-hf 0.3929 0.0504 0.4719 0.0393
Llama-2-70b-chat-hf 0.2745 0.0402 0.3883 0.0256
MAPLE 0.6514 0.0460 0.6724 0.0379
PET_microsoft/deberta-base-mnli 0.3773 0.0354 0.3870 0.0374
PET_microsoft/deberta-large-mnli 0.5897 0.0917 0.6023 0.0843
PET_roberta-large-mnli 0.2308 0.0463 0.2526 0.0617
PET_textattack/bert-base-uncased-MNLI 0.4151 0.0372 0.4338 0.0261
PET_textattack/roberta-base-MNLI 0.2661 0.0408 0.3349 0.0340
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.4689 0.0490 0.4904 0.0448
SEED_bert-base-nli-mean-tokens 0.3935 0.0822 0.4455 0.0667

3 Llama-2-7b-chat-hf 0.3760 0.0321 0.4702 0.0312
Llama-2-13b-chat-hf 0.3815 0.0371 0.4606 0.0299
Llama-2-70b-chat-hf 0.2792 0.0379 0.3930 0.0246
MAPLE 0.6768 0.0448 0.6911 0.0400
PET_microsoft/deberta-base-mnli 0.3977 0.0327 0.4069 0.0315
PET_microsoft/deberta-large-mnli 0.6586 0.0768 0.6649 0.0733
PET_roberta-large-mnli 0.2551 0.0406 0.2682 0.0513
PET_textattack/bert-base-uncased-MNLI 0.4429 0.0267 0.4524 0.0213
PET_textattack/roberta-base-MNLI 0.2810 0.0361 0.3389 0.0330
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.4999 0.0401 0.5186 0.0367
SEED_bert-base-nli-mean-tokens 0.4843 0.0714 0.5118 0.0615

4 Llama-2-7b-chat-hf 0.3621 0.0473 0.4562 0.0408
Llama-2-13b-chat-hf 0.3790 0.0425 0.4598 0.0343
Llama-2-70b-chat-hf 0.2874 0.0382 0.3988 0.0248
MAPLE 0.6909 0.0399 0.7019 0.0368
PET_microsoft/deberta-base-mnli 0.4142 0.0292 0.4203 0.0293
PET_microsoft/deberta-large-mnli 0.6893 0.0628 0.6943 0.0603
PET_roberta-large-mnli 0.2786 0.0405 0.2993 0.0517
PET_textattack/bert-base-uncased-MNLI 0.4623 0.0211 0.4667 0.0186
PET_textattack/roberta-base-MNLI 0.3000 0.0353 0.3445 0.0326
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.5191 0.0364 0.5318 0.0326
SEED_bert-base-nli-mean-tokens 0.5331 0.0619 0.5495 0.0568

5 Llama-2-7b-chat-hf 0.3613 0.0468 0.4472 0.0367
Llama-2-13b-chat-hf 0.3781 0.0320 0.4592 0.0275
Llama-2-70b-chat-hf 0.2997 0.0371 0.4074 0.0247
MAPLE 0.6964 0.0403 0.7058 0.0368
PET_microsoft/deberta-base-mnli 0.4266 0.0270 0.4320 0.0274
PET_microsoft/deberta-large-mnli 0.7191 0.0584 0.7237 0.0564
PET_roberta-large-mnli 0.2941 0.0396 0.3188 0.0443
PET_textattack/bert-base-uncased-MNLI 0.4699 0.0173 0.4731 0.0153
PET_textattack/roberta-base-MNLI 0.3064 0.0293 0.3456 0.0293
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.5267 0.0358 0.5410 0.0318
SEED_bert-base-nli-mean-tokens 0.5714 0.0556 0.5821 0.0538

Table 3: Detailed performance on FEVER. The reported results are mean and standard deviation for F1 and accuracy
scores on 100 runs.
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cFEVER F1 Accuracy
n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3798 0.0346 0.4184 0.0226
Llama-2-13b-chat-hf 0.4769 0.0380 0.4831 0.0345
Llama-2-70b-chat-hf 0.2793 0.0439 0.3620 0.0263
MAPLE 0.3276 0.0717 0.3622 0.0696
PET_microsoft/deberta-base-mnli 0.2401 0.0209 0.3072 0.0221
PET_microsoft/deberta-large-mnli 0.3519 0.0672 0.3795 0.0657
PET_roberta-large-mnli 0.2828 0.0594 0.3078 0.0555
PET_textattack/bert-base-uncased-MNLI 0.2721 0.0198 0.3151 0.0159
PET_textattack/roberta-base-MNLI 0.1850 0.0103 0.3175 0.0166
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3519 0.0382 0.3782 0.0302
SEED_bert-base-nli-mean-tokens 0.2834 0.0621 0.3640 0.0464

2 Llama-2-7b-chat-hf 0.3541 0.0228 0.4067 0.0180
Llama-2-13b-chat-hf 0.3745 0.0602 0.4007 0.0390
Llama-2-70b-chat-hf 0.2481 0.0363 0.3389 0.0209
MAPLE 0.3700 0.0788 0.3899 0.0748
PET_microsoft/deberta-base-mnli 0.2574 0.0175 0.3069 0.0215
PET_microsoft/deberta-large-mnli 0.3958 0.0633 0.4148 0.0581
PET_roberta-large-mnli 0.3147 0.0615 0.3329 0.0597
PET_textattack/bert-base-uncased-MNLI 0.2898 0.0172 0.3129 0.0162
PET_textattack/roberta-base-MNLI 0.1962 0.0159 0.3199 0.0200
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3621 0.0364 0.3846 0.0268
SEED_bert-base-nli-mean-tokens 0.3574 0.0621 0.4020 0.0538

3 Llama-2-7b-chat-hf 0.3638 0.0287 0.4041 0.0188
Llama-2-13b-chat-hf 0.3866 0.0534 0.4091 0.0359
Llama-2-70b-chat-hf 0.2515 0.0333 0.3448 0.0153
MAPLE 0.3993 0.0678 0.4112 0.0643
PET_microsoft/deberta-base-mnli 0.2665 0.0179 0.3059 0.0190
PET_microsoft/deberta-large-mnli 0.4081 0.0601 0.4215 0.0603
PET_roberta-large-mnli 0.3278 0.0565 0.3448 0.0549
PET_textattack/bert-base-uncased-MNLI 0.2965 0.0141 0.3107 0.0151
PET_textattack/roberta-base-MNLI 0.2046 0.0195 0.3196 0.0230
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3675 0.0374 0.3943 0.0242
SEED_bert-base-nli-mean-tokens 0.3857 0.0550 0.4180 0.0559

4 Llama-2-7b-chat-hf 0.3662 0.0243 0.4001 0.0157
Llama-2-13b-chat-hf 0.4158 0.0466 0.4284 0.0388
Llama-2-70b-chat-hf 0.2631 0.0337 0.3514 0.0169
MAPLE 0.4089 0.0677 0.4181 0.0648
PET_microsoft/deberta-base-mnli 0.2750 0.0202 0.3105 0.0198
PET_microsoft/deberta-large-mnli 0.4324 0.0424 0.4456 0.0420
PET_roberta-large-mnli 0.3504 0.0533 0.3652 0.0487
PET_textattack/bert-base-uncased-MNLI 0.3033 0.0143 0.3141 0.0139
PET_textattack/roberta-base-MNLI 0.2109 0.0196 0.3221 0.0209
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3710 0.0338 0.3972 0.0218
SEED_bert-base-nli-mean-tokens 0.4069 0.0477 0.4344 0.0467

5 Llama-2-7b-chat-hf 0.3709 0.0271 0.3932 0.0191
Llama-2-13b-chat-hf 0.4473 0.0417 0.4540 0.0367
Llama-2-70b-chat-hf 0.2752 0.0375 0.3575 0.0182
MAPLE 0.4208 0.0548 0.4299 0.0520
PET_microsoft/deberta-base-mnli 0.2838 0.0198 0.3148 0.0215
PET_microsoft/deberta-large-mnli 0.4488 0.0443 0.4606 0.0431
PET_roberta-large-mnli 0.3587 0.0497 0.3751 0.0424
PET_textattack/bert-base-uncased-MNLI 0.3049 0.0132 0.3129 0.0127
PET_textattack/roberta-base-MNLI 0.2121 0.0189 0.3200 0.0208
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3719 0.0311 0.4001 0.0200
SEED_bert-base-nli-mean-tokens 0.4164 0.0380 0.4409 0.0371

Table 4: Detailed performance on cFEVER. The reported results are mean and standard deviation for F1 and
accuracy scores on 100 runs.
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SciFact_oracle F1 Accuracy
n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3746 0.0306 0.4549 0.0295
Llama-2-13b-chat-hf 0.3722 0.0481 0.4359 0.0375
Llama-2-70b-chat-hf 0.2502 0.0417 0.3706 0.0233
MAPLE 0.3938 0.0658 0.4333 0.0604
PET_microsoft/deberta-base-mnli 0.2459 0.0244 0.3112 0.0121
PET_microsoft/deberta-large-mnli 0.4467 0.0833 0.4699 0.0735
PET_roberta-large-mnli 0.2514 0.0537 0.2747 0.0569
PET_textattack/bert-base-uncased-MNLI 0.3696 0.0435 0.4059 0.0314
PET_textattack/roberta-base-MNLI 0.2352 0.0273 0.3338 0.0301
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3078 0.0255 0.3312 0.0257
SEED_bert-base-nli-mean-tokens 0.2996 0.0634 0.3757 0.0489

2 Llama-2-7b-chat-hf 0.3812 0.0233 0.4678 0.0237
Llama-2-13b-chat-hf 0.3489 0.0382 0.4180 0.0313
Llama-2-70b-chat-hf 0.2614 0.0329 0.3698 0.0176
MAPLE 0.4263 0.0571 0.4493 0.0575
PET_microsoft/deberta-base-mnli 0.2686 0.0170 0.3152 0.0120
PET_microsoft/deberta-large-mnli 0.5099 0.0772 0.5265 0.0673
PET_roberta-large-mnli 0.2824 0.0503 0.3014 0.0569
PET_textattack/bert-base-uncased-MNLI 0.3973 0.0337 0.4218 0.0266
PET_textattack/roberta-base-MNLI 0.2534 0.0280 0.3378 0.0304
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3068 0.0279 0.3401 0.0196
SEED_bert-base-nli-mean-tokens 0.3552 0.0648 0.3937 0.0600

3 Llama-2-7b-chat-hf 0.3998 0.0377 0.4662 0.0281
Llama-2-13b-chat-hf 0.3475 0.0395 0.4112 0.0315
Llama-2-70b-chat-hf 0.2739 0.0377 0.3753 0.0227
MAPLE 0.4487 0.0402 0.4655 0.0384
PET_microsoft/deberta-base-mnli 0.2841 0.0163 0.3237 0.0120
PET_microsoft/deberta-large-mnli 0.5508 0.0722 0.5639 0.0637
PET_roberta-large-mnli 0.2936 0.0448 0.3159 0.0516
PET_textattack/bert-base-uncased-MNLI 0.4153 0.0253 0.4312 0.0197
PET_textattack/roberta-base-MNLI 0.2633 0.0256 0.3372 0.0276
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3047 0.0258 0.3427 0.0181
SEED_bert-base-nli-mean-tokens 0.4007 0.0593 0.4290 0.0593

4 Llama-2-7b-chat-hf 0.4002 0.0420 0.4542 0.0312
Llama-2-13b-chat-hf 0.3558 0.0365 0.4165 0.0306
Llama-2-70b-chat-hf 0.2939 0.0454 0.3888 0.0277
MAPLE 0.4520 0.0426 0.4661 0.0405
PET_microsoft/deberta-base-mnli 0.2932 0.0180 0.3265 0.0132
PET_microsoft/deberta-large-mnli 0.5698 0.0738 0.5781 0.0677
PET_roberta-large-mnli 0.2988 0.0540 0.3173 0.0585
PET_textattack/bert-base-uncased-MNLI 0.4197 0.0220 0.4361 0.0157
PET_textattack/roberta-base-MNLI 0.2743 0.0263 0.3416 0.0287
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3054 0.0269 0.3461 0.0187
SEED_bert-base-nli-mean-tokens 0.4289 0.0519 0.4499 0.0503

5 Llama-2-7b-chat-hf 0.3998 0.0463 0.4487 0.0328
Llama-2-13b-chat-hf 0.3611 0.0348 0.4231 0.0308
Llama-2-70b-chat-hf 0.2840 0.0709 0.3873 0.0370
MAPLE 0.4554 0.0356 0.4675 0.0356
PET_microsoft/deberta-base-mnli 0.3005 0.0172 0.3312 0.0139
PET_microsoft/deberta-large-mnli 0.5964 0.0706 0.6045 0.0641
PET_roberta-large-mnli 0.3087 0.0507 0.3281 0.0558
PET_textattack/bert-base-uncased-MNLI 0.4252 0.0233 0.4413 0.0147
PET_textattack/roberta-base-MNLI 0.2780 0.0222 0.3420 0.0249
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3072 0.0274 0.3496 0.0166
SEED_bert-base-nli-mean-tokens 0.4463 0.0478 0.4645 0.0465

Table 5: Detailed performance on SciFact_oracle. The reported results are mean and standard deviation for F1 and
accuracy scores on 100 runs.
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SciFact_retrieved F1 Accuracy
n-shot method mean std mean std

1 Llama-2-7b-chat-hf 0.3207 0.0299 0.3943 0.0243
Llama-2-13b-chat-hf 0.3757 0.0380 0.4265 0.0231
Llama-2-70b-chat-hf 0.3454 0.0598 0.4035 0.0338
MAPLE 0.4108 0.0878 0.4412 0.0831
PET_microsoft/deberta-base-mnli 0.2927 0.0341 0.3134 0.0302
PET_microsoft/deberta-large-mnli 0.3332 0.0525 0.3609 0.0450
PET_roberta-large-mnli 0.2448 0.0308 0.2830 0.0298
PET_textattack/bert-base-uncased-MNLI 0.3431 0.0263 0.3661 0.0180
PET_textattack/roberta-base-MNLI 0.2598 0.0317 0.3491 0.0238
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3162 0.0352 0.3477 0.0215
SEED_bert-base-nli-mean-tokens 0.2708 0.0470 0.3479 0.0288

2 Llama-2-7b-chat-hf 0.2914 0.0528 0.3586 0.0350
Llama-2-13b-chat-hf 0.3278 0.0524 0.3925 0.0266
Llama-2-70b-chat-hf 0.1682 0.0105 0.3338 0.0038
MAPLE 0.4484 0.0699 0.4654 0.0675
PET_microsoft/deberta-base-mnli 0.2988 0.0315 0.3147 0.0281
PET_microsoft/deberta-large-mnli 0.3601 0.0524 0.3834 0.0434
PET_roberta-large-mnli 0.2576 0.0300 0.2891 0.0281
PET_textattack/bert-base-uncased-MNLI 0.3514 0.0201 0.3633 0.0179
PET_textattack/roberta-base-MNLI 0.2944 0.0289 0.3549 0.0267
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3156 0.0333 0.3571 0.0199
SEED_bert-base-nli-mean-tokens 0.3233 0.0463 0.3623 0.0439

3 Llama-2-7b-chat-hf 0.1775 0.0363 0.3329 0.0056
Llama-2-13b-chat-hf 0.1788 0.0371 0.3359 0.0104
Llama-2-70b-chat-hf 0.1667 0.0000 0.3333 0.0000
MAPLE 0.4768 0.0511 0.4909 0.0464
PET_microsoft/deberta-base-mnli 0.2963 0.0308 0.3085 0.0249
PET_microsoft/deberta-large-mnli 0.3599 0.0518 0.3880 0.0419
PET_roberta-large-mnli 0.2557 0.0266 0.2853 0.0243
PET_textattack/bert-base-uncased-MNLI 0.3490 0.0212 0.3604 0.0179
PET_textattack/roberta-base-MNLI 0.3135 0.0251 0.3559 0.0250
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3102 0.0281 0.3580 0.0171
SEED_bert-base-nli-mean-tokens 0.3530 0.0382 0.3795 0.0367

4 Llama-2-7b-chat-hf 0.1667 0.0000 0.3333 0.0000
Llama-2-13b-chat-hf 0.1667 0.0000 0.3333 0.0000
Llama-2-70b-chat-hf 0.1667 0.0000 0.3333 0.0000
MAPLE 0.4777 0.0449 0.4884 0.0429
PET_microsoft/deberta-base-mnli 0.3038 0.0278 0.3129 0.0252
PET_microsoft/deberta-large-mnli 0.3827 0.0494 0.4026 0.0453
PET_roberta-large-mnli 0.2616 0.0236 0.2862 0.0224
PET_textattack/bert-base-uncased-MNLI 0.3467 0.0240 0.3611 0.0195
PET_textattack/roberta-base-MNLI 0.3289 0.0284 0.3611 0.0245
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3083 0.0253 0.3582 0.0173
SEED_bert-base-nli-mean-tokens 0.3581 0.0383 0.3820 0.0369

5 Llama-2-7b-chat-hf 0.1667 0.0000 0.3333 0.0000
Llama-2-13b-chat-hf 0.1667 0.0000 0.3333 0.0000
Llama-2-70b-chat-hf 0.1667 0.0000 0.3333 0.0000
MAPLE 0.4846 0.0351 0.4941 0.0331
PET_microsoft/deberta-base-mnli 0.3054 0.0261 0.3163 0.0240
PET_microsoft/deberta-large-mnli 0.3825 0.0504 0.4043 0.0435
PET_roberta-large-mnli 0.2575 0.0274 0.2915 0.0225
PET_textattack/bert-base-uncased-MNLI 0.3467 0.0242 0.3624 0.0197
PET_textattack/roberta-base-MNLI 0.3348 0.0252 0.3600 0.0226
PET_yoshitomo-matsubara/bert-large-uncased-mnli 0.3066 0.0289 0.3638 0.0165
SEED_bert-base-nli-mean-tokens 0.3726 0.0361 0.3903 0.0367

Table 6: Detailed performance on SciFact_retrieved. The reported results are mean and standard deviation for F1
and accuracy scores on 100 runs.
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FEVER

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)
mean std mean std mean std

1 0.4737 0.1665 0.9177 0.1010 0.4550 0.1557
2 0.5144 0.1167 0.9442 0.0270 0.4955 0.1330
3 0.5593 0.1077 0.9531 0.0193 0.5181 0.0972
4 0.5762 0.0938 0.9550 0.0186 0.5416 0.0807
5 0.5821 0.0891 0.9584 0.0157 0.5487 0.0805

cFEVER

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)
mean std mean std mean std

1 0.3333 0.1540 0.3325 0.1679 0.3169 0.1363
2 0.3750 0.1367 0.3810 0.1415 0.3541 0.1191
3 0.4218 0.1159 0.4099 0.1263 0.3663 0.0926
4 0.4162 0.1119 0.4299 0.1154 0.3805 0.0885
5 0.4251 0.1044 0.4538 0.1005 0.3836 0.0773

SciFact_oracle

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)
mean std mean std mean std

1 0.3326 0.1764 0.5141 0.1518 0.3346 0.1568
2 0.3295 0.1326 0.5702 0.1192 0.3794 0.0961
3 0.3780 0.1168 0.5931 0.0741 0.3750 0.0766
4 0.3849 0.1090 0.5882 0.0879 0.3830 0.0737
5 0.3975 0.0992 0.5943 0.0656 0.3744 0.0746

SciFact_retrieved

n-shot F1(SUPPORTS) F1(NOT_ENOUGH_INFO) F1(REFUTES)
mean std mean std mean std

1 0.3369 0.1542 0.5438 0.1751 0.3519 0.1525
2 0.3612 0.1199 0.5910 0.1524 0.3930 0.1117
3 0.4030 0.0983 0.6407 0.1045 0.3868 0.0949
4 0.4063 0.0822 0.6409 0.0857 0.3859 0.0922
5 0.3994 0.0867 0.6555 0.0632 0.3989 0.0713

Table 7: MAPLE Classwise F1 results. The reported results are mean and standard deviation classwise F1 scores for
each class on 100 runs.

FEVER cFEVER SciFact_oracle SciFact_retrieved
LoRA runtime (from claim to evidence) 00:50:24 00:39:14 00:05:33 00:16:29
SFT runtime (from claim to evidence) 01:50:52 01:15:14 00:13:23 00:48:21
LoRA runtime (from evidence to claim) 00:50:23 00:39:12 00:05:18 00:16:28
SFT runtime (from evidence to claim) 01:37:58 01:14:39 00:11:41 00:35:12

Table 8: LoRA vs SFT Runtime comparison. The time format is hours:minutes:seconds.
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Figure 6: F1 performance within 50 shots.

C.2 Overall Runtime
We present the runtime of MAPLE across four
dataset configurations in Table 9. The experi-
ments were conducted on a High-Performance
Compute cluster provided by the university, fea-
turing 8 compute cores, 11G RAM per core, and a
single NVIDIA A100 GPU. Seq2seq LoRA train-
ing and SemSim transformation were applied to the
entire dataset. The LR runtime denotes the execu-
tion time for all few-shot experiments outlined in
Section 4. It’s important to note that the runtime is
strongly correlated with the size of the unlabelled
pool, as well as the length of claims and evidences.
Consequently, it takes a few hours to run for large-
scale datasets like FEVER and cFEVER, as well
as dataset configurations comprising lengthy in-
stances such as SciFact_retrieved, but considerably
less time for SciFact_oracle. For improved effi-
ciency, future work may explore applying the Sem-
Sim transformation solely to the sampled few-shot
training instances per experiment.
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FEVER cFEVER SciFact_oracle SciFact_retrieved
Seq2Seq runtime (from claim to evidence) 00:50:24 00:39:14 00:05:33 00:16:29
SemSim runtime (from claim to evidence) 00:50:16 00:37:34 00:06:22 00:26:06
Seq2Seq runtime (from evidence to claim) 00:50:23 00:39:12 00:05:18 00:16:28
SemSim runtime (from evidence to claim) 00:49:02 00:37:34 00:05:45 00:23:06
LR runtime 00:00:28 00:00:33 00:00:31 00:00:33
Total runtime 03:20:33 02:34:07 00:23:29 01:22:42

Table 9: MAPLE runtime on four dataset configurations. The time format is hours:minutes:seconds.
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