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Abstract

Factual consistency detection has gotten signif-
icant attention for the task of abstractive sum-
marization. Many existing works rely on syn-
thetic training data, which may not accurately
reflect or match the inconsistencies produced
by summarization models. In this paper, we
first systematically analyze the shortcomings
of the current methods in synthesizing incon-
sistent summaries. Current synthesis methods
may fail to produce inconsistencies of corefer-
ence errors and discourse errors, per our quan-
titative and qualitative study. Then, employ-
ing the parameter-efficient finetuning (PEFT)
technique, we discover that a competitive fac-
tual consistency detector can be achieved us-
ing thousands of real model-generated sum-
maries with human annotations. Our study
demonstrates the importance of real machine-
generated texts with human annotation in Nat-
ural Language Generatioon (NLG) evaluation
as our model outperforms the SOTA on the
CoGenSumm, FactCC, Frank, and SummEval
datasets.

1 Introduction

With the advancements in neural conditioned gen-
eration, abstractive summarization systems, which
are dominantly based on neural networks, have
achieved phenomenal performances. However,
summaries generated so often contain content that
is factually inconsistent with the source docu-
ments (Kryscinski et al., 2020; Maynez et al., 2020)
and thus undermines the reliability and usability of
the summaries. Thus detecting factual inconsisten-
cies is an important task associated with summa-
rization.

However, detecting inconsistencies in machine-
generated summaries is not trivial. Due to the
high labor cost of examining model-generated
summaries, no existing datasets contain enough

∗No affiliation, currently working at Apple Inc.

samples with human-annotated consistency labels
for supervised learning in the conventional sense.
As a workaround, data synthesis has been em-
ployed to increase the amount of training data in
FactCC (Kryscinski et al., 2020), DocNLI (Yin
et al., 2021), and MFMA (Lee et al., 2022b). They
generate inconsistent summaries by negative sam-
pling with pre-defined rules. Apart from training
with synthetic inconsistent summaries, some other
approaches (Kryscinski et al., 2020; Laban et al.,
2022) leverage human-crafted claims in the Nat-
ural Language Inference (NLI) (Bowman et al.,
2015) datasets. They measure factual consistency
using the entailment relation between the source
document and the summary. A recent work, Sum-
maC (Laban et al., 2022), proposes to aggregate
sentence-level pairwise entailment scores into a
final consistency score.

We believe that the clue to improve inconsistency
detection lies in the inconsistent samples that the
state of the art (SOTA) fails to detect. By analyzing
such samples in the famous SummaC benchmark,
we find that certain types of factual inconsisten-
cies are hard to be synthesized and thus are un-
covered in the training of SOTA. Specifically, they
are the coreference errors and discourse link errors
defined by the Frank dataset (Pagnoni et al., 2021).
A coreference error happens when a pronoun in
the summary has a wrong referent than that in the
document. A discourse error happens when the
summary mistakenly mixes multiple statements in
the document. These errors can occur in the sum-
mary when the source information is either in a
single sentence or across multiple sentences.

The intractability to synthesize the said inconsis-
tent training samples motivates us to take a differ-
ent route to build an inconsistency detector via effi-
cient use of limited human annotations on machine-
generated summaries. Thanks to the Parameter-
Efficient Fine-Tuning (PEFT) methods, we manage
to finetune only 0.14% of the 0.9B parameters of
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the DeBERTa-v2-xlarge-mnli model using thou-
sands of samples in the validation set of SummaC.
Our model outperforms the SOTA on the CoGen-
Summ, FactCC, Frank, and SummEval datasets.
Error rates in nearly all types of inconsistencies are
improved by our approach.

Our code is available at https://github.com/
NKWBTB/FactFT. We organize the paper as follows:

• First, we review the current synthetic methods
on how they generate inconsistent summaries
and their potential limitations.

• Then, we present a comprehensive case
study on the inconsistent summaries missed
by SOTA, revealing the gap between the
summarizer-generated inconsistencies and
synthesized inconsistencies.

• Finally, we present a document-level factu-
ality classifier through parameter-efficiently
finetuning a 0.9B model using only a few thou-
sand human-annotated samples that outper-
forms all baselines, including ChatGPT, on
four datasets.

2 How Good Are We at Synthesizing
Inconsistencies?

The SOTA inconsistency detectors trained with
synthetic inconsistent summaries still have a huge
room for improvement. For example, the balanced
accuracy of MFMA (Lee et al., 2022a) tops at
84.5% on six major inconsistency datasets. To
propose an improvement, we argue that it is impor-
tant to analyze the nature of factually inconsistent
samples undetected by the SOTA detectors.

In this section, we first theoretically analyze the
gap between the inconsistencies synthesized by
SOTA for training and the real inconsistencies in
summaries generated by neural generative models.
Then we empirically study the gap using a case
study on the SummaC benchmark with two SOTA
approaches.

2.1 Existing Approaches to Synthesizing
Inconsistent Summaries

We begin our study by reviewing how inconsisten-
cies are introduced into synthetic data before such
data is used to train SOTA inconsistency detectors
and their potential limitations.

In summarization, the input and output texts are
called the document and the summary, respectively.
A reference summary, usually written by a human,

is the expected, gold output or target in the ML
sense. Many of the SOTA synthesize inconsistent
summaries by manipulating the documents and/or
the reference summaries.

FactCC (Kryscinski et al., 2020) synthesizes in-
consistent summaries by sampling sentences from
the document and applying the following trans-
formations onto them: entity and number swap-
ping, pronoun swapping, sentence negation, back
translation, and token duplication and deletion.
Potential limitations: Such token-level transforma-
tions may be too limited to cover the great variety
of inconsistencies. In addition, such transforms
operate on individual sentences, while an inconsis-
tency often involves multiple sentences.

MFMA (Lee et al., 2022b) operates by mask-
ing tokens on both the document and the refer-
ence summary. First, a BART (Lewis et al., 2020)
model is trained to reconstruct a masked reference
summary from the corresponding document with
noun phrases and entities randomly masked. Then,
using this BART model, negative summaries are
generated from an unseen, masked reference sum-
mary, with or without the corresponding document
masked. The idea is that with the salient informa-
tion masked, the trained model can only guess, if
not make up, to fill masks in the masked summary
and thus result in a strongly inconsistent summary.
Potential limitations: Only noun phrases and enti-
ties are masked out whereas inconsistencies may
also occur in other parts of a text, e.g. a whole
clause.

SummaC (Laban et al., 2022) does not synthe-
size data itself but employs models trained on NLI
(Natural Language Inference) datasets, which con-
tain human-written hypotheses that are entailing,
neutral, or contradictory to individual claims. NLI
is similar to inconsistency detection in the sense
that an inconsistent summary is not entailed by the
document. Potential limitations: Human-crafted
hypotheses for training NLI models may exhibit
different characteristics than those of the machine-
generated summaries. In addition, SummaC works
at the granularity of individual sentences whereas
inconsistencies are often cross-sentence.

2.2 The Inconsistencies Undetected by the
SOTA: A case study

The analysis above indicates a potential gap be-
tween inconsistencies synthesized using SOTA
and the actual inconsistencies exhibited by neu-
ral network-based summarizers. Here we quantita-
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tively and qualitatively verify the gap on real data.
Using the test sets of the SummaC benchmark, a
widely used benchmark bearing the same name of
an aforementioned method, we examine the false
positive (inconsistent by predicted otherwise) sam-
ples predicted by two best-performing approaches
on the SummaC benchmark: MFMA (Lee et al.,
2022b) and SummaC-Conv (Laban et al., 2022),
the latter of which is superior than SummaC-ZS,
the other version of SummaC. FactCC (Kryscinski
et al., 2020) is not covered here because it is out-
performed by MFMA and SummaC-Conv on the
SummaC benchmark.

The SummaC benchmark comprises six
summary factual consistency datasets: CoGen-
Summ (Falke et al., 2019), FactCC (Kryscinski
et al., 2020), Frank (Pagnoni et al., 2021), Poly-
tope (Huang et al., 2020), SummEval (Fabbri et al.,
2021) and XSumFaith (Maynez et al., 2020). These
six datasets contain a) summaries generated using
various summarizers and b) human annotation to
whether each summary is consistent to its corre-
sponding document. Documents in CoGenSumm,
FactCC, SummEval, and Polytope come from
the famous CNN/Dailymail dataset whereas docu-
ments in XSumFaith come from the XSum dataset.
Frank has documents from both CNN/Dailymail
and XSum, denoted as Frank-CNNDM and Frank-
XSum respectively thereafter.

Taxonomy of Factual Inconsistencies. We are
very interested in the performance of SOTA ap-
proaches on different types of factual inconsisten-
cies. Among of the six datasets of the SummaC
benchmark, three of them provide subcategories
for factual inconsistencies:

• XSumFaith has 2 subcategories: Extrinsic
and Intrinsic.

• Polytope has 5 subcategories: Addition,
Omission, Inaccuracy Intrinsic, Inaccuracy
Extrinsic and Positive-Negative Aspect.

• Frank has 8 subcategories: Predicate Er-
ror (RelE), Entity Error (EntE), Circumstance
Error (CircE), Coreference Error (CorefE),
Discourse Link Error (LinkE), Out of Arti-
cle Error (OutE), Grammatical Error (GramE)
and Other Error (OtherE).

The divided taxonomies used by different
datasets make a unified analysis difficult. Here,
we borrow the taxonomy from Frank’s eight sub-
categories because Frank has the finest granularity.

This also limits the discussion in this section to
Frank, excluding the rest five datasets. We will use
data from all six datasets later in the experiments
(Section 4).

Quantitative Study. We first examine the error
rate of MFMA and SummaC-Conv on Frank’s test
set for each subcategory of inconsistencies. The
error rate is calculated as:

Error Rate =
FP

N

where FP and N are the number of false positive
samples and the number of total samples, respec-
tively, in the subcategory.

The error rates of MFMA and SummaC-Conv
are given in Table 4 along with other experimental
results to be discussed later. Coreference errors
(CorefE) and discourse link errors (LinkE) are the
two most difficult subcategories of inconsistencies
for SOTA approaches where they perform even
worse than random guess which has a 50% accu-
racy. MFMA has error rates of 67.9% and 66.7%
on CorefE and LinkE, respectively. SummaC-Conv
has error rates of 67.9% and 57.1% on CorefE and
LinkE, respectively. Both approaches have <32%
error rates on other factual inconsistency subcate-
gories excluding the Other Error subcategory.

Qualitative Study. Next, we qualitatively ex-
amine four samples (Table 1) falsely detected as
positive (consistent) by both MFMA and SummaC-
Conv to show that existing synthesizing methods
are really difficult in mimicking inconsistencies
produced by modern summarizers. We focus on
the two most difficult subcategories, coreference
errors and discourse link errors.

A coreference error occurs when a pronoun
refers to the wrong object. The first two examples
in Table 1 presents coreference errors. It would be
difficult for simple heuristics like pronoun swap-
ping in FactCC or pronoun masking in MFMA to
mimic such a kind of inconsistency errors. In ei-
ther of the two examples, the same pronoun (“he”
in Example 1 or “him” in Example 2 in Table 1)
will be interpreted differently in the document and
in the summary due to the information of the true
referent is missing in the summary.

A discourse error occurs when two statements
are mixed. It can happen when summarizing ei-
ther a single sentence (Example 3, Table 1) or a
plurality of sentences (Example 4, Table 1). In Ex-
ample 3, the inconsistent summary fuses “goldfish”
with information about “koi carp” which is men-
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ID Document sentence(s) Inconsistent summary Explanation

1 Mr Katter said the Government believes
Mr Gordon would quit after he was re-
cently accused of domestic violence.

Mr Katter said he would
quit after he was accused
of domestic violence.

Coreference error: “he” in the summary
will be misinterpreted as “Mr Katter” while
it actually should refer to “Mr. Gordon”.

2 Barcelona club president Josep Maria
Bartomeu has insisted that the La Liga
leaders have no plans to replace Luis
Enrique and they’re ‘very happy’ with
him.

Barcelona club president
Josep Maria Bartomeu
says the La Liga leaders
are very happy with him.

Coreference error: “him” in the summary
will be misinterpeated as “Josep Maria Bar-
tomeu” while it actually should refer to
“Luis Enrique”.

3 Goldfish are being caught weighing up to
2kg and koi carp up to 8kg and one metre
in length.

Goldfish are being caught
weighing up to 8kg and
one metre in length.

Discourse error: the summary attaches the
statement for "koi carp" mistakenly to
"Goldfish".

4 Paul Merson had another dig at Andros
Townsend after his appearance for Tot-
tenham against Burnley ...Townsend hit
back at Merson on Twitter after scoring
for England against Italy.

Paul Merson had another
dig at andros townsend af-
ter scoring for England
against Italy.

Discourse error: the summary concate-
nates an event later in the document to a
previous statement.

Table 1: Examples failed to be detected by SOTA factuality classifiers. Related contents are in the same color.

tioned in the second half of the source sentence.
In Example 4, the summary mistakenly mixes two
statements about two persons from two sentences
of the document. However, introducing discourse
errors by fusing statements has not been touched by
current synthesis methods, and we speculate that it
would be difficult to do in current methods which
manipulate individual tokens. In addition, existing
NLI datasets usually contain only single-sentence
statements and thus are incapable of mimicking
multi-sentence discourse errors.

It’s also worthy noting that for all the examples
in Table 1, the summary is or almost is the concate-
nation of sub-strings from the document. This is
probably because, according to the training data,
certain summarization models have learned to copy
phrases from the document and stitch them into a
summary. Because it is difficult to predict the be-
havior of neural network-based summarizers, it is
difficult to come up with heuristics to mimic factual
inconsistencies they may exhibit.

The intractability of synthesizing inconsis-
tency summaries. According to the discussion
above, there is a gap between the inconsistencies
created by current data synthesis methods and the
actual inconsistencies exhibited by neural network-
based summarizers. We could iteratively add data
synthesis heuristics, including those using gen-
erative LLMs, after examining falsely classified
samples. However, due to the potential diversity
of factual inconsistency, this “accident-and-patch”
strategy requiring recurring manual effort may not
be scalable. On top of that, some types of errors,
such as discourse errors, are hard to be defined.

Therefore, in this paper, we take another avenue by
directly finetuning on existing but limited human
annotations.

3 FactFT: Inconsistency Detection Using
Machine-Generated Summaries with
Human Annotations

Given a source document D = [d0, d1, . . .] and
a machine-generated summary S = [s0, s1, . . .],
where di or si is a sentence, a factual consistency
detector is a binary classifier predicting whether the
summary is factually consistent with the document,
i.e., f(D,S) ∈ {0, 1} where 0 and 1 represent
inconsistent (negative) and consistent (positive).
Realizing the difficulty to cover the diverse errors
synthetically (Section 2), we directly train a factual
consistency classifier using an NLI model as the
foundation and the currently available but limited
machine-generated summaries with human anno-
tations as the training data. The recent advances
in parameter-efficient finetuning (PEFT) has made
this approach feasible.

3.1 Preprocessing
Instead of feeding the whole document D into
the classifier f , we select the document sentences
that are most relevant to the summary and feed
such sentences to the classifier, i.e., our model pre-
dicts f(D′, S) where D′ ⊆ D instead of f(D, s).
Adapting from an approach used by Balachandran
et al., 2022, for each summary sentence si, only the
document sentence dj that is most relevant to it and
its two preceding and two succeeding sentences in
the document, namely dj−2, dj−1, dj+1 and dj+2
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Validation Split Test Split
Dataset # of samples % Positive # of Samples % Positive

Before filtering After filtering

CoGenSumm 1281 1281 49.7 400 78.0
FactCC 931 886 86.6 503 87.7
Frank 671 444 45.0 1575 33.6

-CNNDM 375 360 54.2 875 56.3
-XSum 296 84 6.0 700 5.1

SummEval 850 0 N/A 850 90.6
Polytope 634 201 5.9 634 6.5
XSumFaith 1250 45 6.7 1250 10.4

Table 2: Statistics of the training and test data. Validation split is used for training.

which provide the context, are included into D′.
By filtering out less irrelevant information from
the document, the NLI model can benefit from a
relatively similar input length of the text pair. In
addition, this saves the limited input length set by
the Transformer models.

3.2 Parameter Efficient Fine-Tuning

The major concern when fine-tuning with a lim-
ited amount of data is that the model can be prone
to overfitting. One reason is that the number of
trainable parameters is relatively large compared
with the number of samples. This is a major rea-
son that previous SOTA uses synthetic data for
training. Emerged recently, parameter Efficient
Fine-Tuning (PEFT) methods address this issue by
freezing most parameters of a large language model
and only fine-tuning a small number of additional
parameters. Such an approach has been shown to
perform better (Pu et al., 2023) than full finetun-
ing in low-data and out-of-domain scenarios. We
employ one of the most famous PEFT methods,
LoRA (Hu et al., 2021), in this paper. LoRA ap-
pends two smaller matrices to the original model
through low-rank decomposition, while the origi-
nal weight matrix is frozen for further adjustment.
With LoRA, our inconsistent classifier finetuned
on only 0.14% parameters of an NLI model can
achieve SOTA performance using only a few thou-
sand samples.

4 Experiments

4.1 Training and Testing Data

We use the validation sets of the SummaC bench-
mark (Laban et al., 2022) as the training data.
Among the six datasets in SummaC benchmark,
CoGenSumm, FactCC, and Frank come with orig-
inal validation splits. For the rest three datasets,
SummaC splits the validation set by the parity of

sample index.
Because the six datasets are all sampled

from the CNN/DailyMail (See et al., 2017) or
XSum (Narayan et al., 2018) dataset, to ensure no
data leakage, we filter out the samples in any valida-
tion set that share a document with any test set. The
statistics of the validation and test sets are shown
in Table 2. Note that the Polytope and XSumFaith
datasets are extremely negatively skewed.

We perform a stratified k-fold validation with
non-overlapping groups where samples from the
same document always belong to one group to pre-
vent data leakage. The best model for each fold
is found using the test split in the cross validation.
Finally, we report the average performance from
the k folds on each of the six test sets of SummaC.

4.2 Settings
Given the SOTA results achieved by SummaC,
we select a similar NLI model for finetuning.
The DeBERTa-v2-xlarge-mnli (He et al., 2021)
model hosted on HuggingFace is used as the base
model. We use HuggingFace’s peft (Mangrulkar
et al., 2022) library to apply LoRA. For LoRA set-
tings, following the experience of Hu et al., 2021,
we add the low rank update matrices only to the
query and value module in every self-attention
layer with rank rq = rv = 8, and LoRA scaling
factor α = 8. The dropout probability of the LoRA
layers is 0.1. Under these settings, 1.3M parame-
ters which are 0.14% of the total 0.9B parameters
of DeBERTa-v2-xlarge-mnli are trainable. The
training process has a learning rate of 5e-5, using
the paged 8-bit AdamW optimizer with a linear
scheduler. Fold number k = 5, the number of train-
ing epochs is set to 10, and the model is validated
for every 400 steps for identifying the best perform-
ing model. The training process can be done on
a single consumer-level NVIDIA RTX 3090 GPU
with tf32 precision and a batch size of 5.
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Model Type Methods Test Sets in SummaC Benchmark
CoGenSum FactCC Frank SummEval Polytope XSumFaith Overall

Other NER Overlap 53.0 55.0 60.9 56.8 52.0 63.3 56.8

Parsing DAE 63.4 75.9 61.7 70.3 62.8 50.8 64.2

QAG FEQA 61.0 53.6 69.9 53.8 57.8 56.0 58.7
QuestEval 62.6 66.6 82.1 72.5 70.3 62.1 69.4

LLM ChatGPT-ZS 63.3 74.7 80.9 76.5 56.9 64.7 69.5
ChatGPT-ZS-COT 74.3 79.5 82.6 83.3 61.4 63.1 74.0

NLI

MNLI-doc 57.6 61.3 63.6 66.6 61.0 57.5 61.3
SummaC-ZS 70.4 83.8 79.0 78.7 62.0 58.4 72.1
SummaC-Conv 64.7 89.5 81.6 81.7 62.7 66.4 74.4
SENTLI 79.3 89.5 82.1 77.2 52.4 59.3 73.3

-RerankSoft 79.6 86.1 80.4 78.5 52.8 62.7 73.4
-RerankHard 80.5 83.3 78.4 79.9 55.1 64.2 73.6

Classifier
FactCC-CLS 63.1 75.9 59.4 60.1 61.0 57.6 62.9
MFMA 64.6 84.5 81.3 75.5 58.0 53.6 69.6
FactFT 82.3±1.5∗∗ 91.0±1.5∗∗ 87.1±1.8∗∗ 85.7±0.5∗∗ 51.0±1.8 57.7±2.1 75.8∗∗

Table 3: Balanced Accuracy (%) on the SummaC benchmark. Best on each dataset in bold. The notation ∗∗ indicates
99% confidence in our approach FactFT over SummaC and MFMA, the two strongest baselines. Significance tests
for SENTNLI & ChatGPT are excluded due to code/data/model reproducibility. Our FactFT results present as the
k-fold mean ± the standard deviation.

4.3 Baselines
We post the baseline metrics evaluated by SummaC
in the Table 3: NER Overlap (Laban et al., 2021),
MNLI-doc (Zhuang et al., 2021), FactCC (Kryscin-
ski et al., 2020), DAE (Goyal and Durrett, 2020),
FEQA (Wang et al., 2020), QuestEval (Scialom
et al., 2021) and SummaC (Laban et al., 2022).
In addition, SENTLI(Schuster et al., 2022) is in-
cluded as another strong NLI baseline. We also
rerun MFMA (Lee et al., 2022b) on the SummaC
benchmark because it is currently the best perform-
ing metric using rule-generated negative samples
known to us. ChatGPT (Luo et al., 2023) (gpt-
3.5-turbo-0301) as a fact inconsistency evaluator is
also treated as a baseline and its performances are
included in Table 3.

4.4 Results and Discussion
4.4.1 Balanced Accuracy
Balanced Accuracy is used to measure the perfor-
mance on the benchmark due to the varying class
imbalance of the 6 test sets. It is calculated as
follows:

BAcc =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

where TP , FP , TN , and FN are the numbers of
samples that are true positive, false positive, true
negative, and the false negative respectively.

The full Balanced Accuracy results can be seen
in Table 3. The overall performance is calcu-

lated as the macro average of all test sets. Our
approach has the best overall performance and is
best-performing on four out of the six datasets. In
particular, it outperforms ChatGPT with chain of
thought (COT) prompts by 8.00, 4.50, 2.36 per-
centage points on the CoGenSumm, Frank, and
SummEval datasets, correspondingly. Our model
exhibits a relatively low performance on the ex-
tremely negatively skewed XSumFaith and Poly-
tope datasets. We attribute this to the extreme im-
balance in the two datasets.

4.4.2 FPR and FNR
Figure 1 shows a more detail analysis on the
False Positive Rates (FPRs) and False Negative
Rates (FNRs) of our approach and MFMA and
SummaC-Conv, two best-performing baselines on
the SummaC benchmark. Measuring the ratio of in-
consistent summaries missed, the FPR is calculated
as:

FPR =
FP

FP + TN
.

Measuring the ratio of false alarms, the FNR is
calculated as:

FNR =
FN

FN + TP
.

Our approach FactFT has the lowest FPR on all
datasets except for FactCC (where it is the sec-
ond best), indicating that finetuning on human-
annotated data indeed expands the model’s ability
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CorefE LinkE GramE EntE CircE RelE OutE OtherE

SummaC-Conv 67.9 57.1 31.6 23.4 15.5 18.1 2.4 75.0
MFMA 67.9 66.7 30.6 20.6 20.0 21.9 9.6 87.5
FactFT 51.9 47.6 23.5 7.8 10.9 6.7 2.7 62.5

Table 4: Per-category error rate (%) of three approaches on Frank’s test set.

(a) False Positive Rate

(b) False Negative Rate

Figure 1: False Positive Rates and False Negative Rates
on six datasets. The lower the better.

to detect more inconsistency errors. In the mean-
time, our approach has the second lowest FNR on
four out of the six datasets, behind MFMA.

The relatively high FNR of our approach on the
XSumFaith dataset is potentially due to a substan-
tially lower proportion of training data from XSum
than CNN/DailyMail. The low positive rate in
the XSum data makes the classifier further lean-
ing towards negative prediction. The high FNR on
the Polytope dataset may be due to the annotation
protocol used by Polytope that are quite different
from protocols used in other CNN/DailyMail based
datasets. As a result, our model fails to recognize

the few consistent samples in Polytope.

4.4.3 Categorical Error Rate
In Table 4, we further examine the error rate of
our approach on each inconsistency subcategory
labeled in the Frank test set. Compared to MFMA
and SummaC-Conv, FactFT has achieved lower
error rate on almost every factual error type ex-
cept out-of-article errors (OutE). This supports the
importance of machine-generated summaries with
human annotations that they contain more incon-
sistency patterns than data synthesized by SOTA
on nearly any category of inconsistencies. On the
two major inconsistency types that are difficult to
detect, CorefE and LinkE, FactFT lowers the error
rate by 16.0 and 9.5 percentage points respectively
with respect to the best of MFMA and SummaC-
Conv.

4.4.4 Ablation Study: Cross-Dataset
In the previous experiments, the validation sets of
all datasets in the SummaC benchmark are used as
the training data. Here we study the cross-dataset
robustness of our approach in a leave-one-group-
out cross validation: in each fold, training a model
using validation sets of five datasets in the SummaC
benchmark and testing the model on the test set of
the remaining dataset. We denote results obtained
so as FactFT-Cross.

In Table 5 (the row w/ cross dataset training),
we compared the balanced accuracy between the
original FactFT and FactFT under the cross-dataset
setting (referred to as FactFT-Cross). FactFT-Cross
has a minor performance drop on CoGenSumm,
but it still outperforms all baselines. The perfor-
mance drop on FactCC, Frank, and SummEval is
very marginal. Interestingly, FactFT-Cross gains
performance on Polytope and XSumFaith, probably
because of in-domain validation. For XSumFaith,
k-fold cross validation can dilute the samples from
BBC/XSum due to CNN/DM is the major source
for most of the datasets, while leave-one-group-out
retains all samples for validation. For Polytope, the
in-domain validation is beneficial because of its
unique annotation protocol mentioned earlier. The
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CoGenSum FactCC Frank SummEval Polytope XSumFaith Overall

FactFT 82.3 91.0 87.1 85.7 51.0 57.7 75.8

Ablation Settings
w/ cross dataset training 77.4 89.1 86.8 85.6 57.9 63.1 76.7
w/o irrelevance filtering 81.4 86.7 85.1 84.6 53.6 59.6 75.2
using FactCC synthetic data only 78.0 89.3 78.2 74.2 60.9 66.0 74.4

Table 5: Balanced accuracy(%) for three ablation settings.

performance improvement on Polytope and XSum-
Faith also results in a slight overall performance
improvement.

4.4.5 Ablation Study: Irrelevance Filtering
In the preprocessing stage, we first retrieve the doc-
ument sentences highly similar to the summary and
then only feed those sentences with some context
sentences to the NLI model. To understand the
effect of the preprocessing step, we re-evaluated
FactFT without filtering out irrelevant sentences.
According to Table 5 (the row w/o irrelevance fil-
tering), skipping irrelevance filtering will cause a
slight performance drop on 4 out of the 6 test sets.
We believe that irrelevance filtering helps the model
avoid exceeding token limits when evaluating with
a longer context.

4.4.6 Ablation Study: Real vs. Synthetic Data
Due to the various foundation models used in
baselines in Table 3, it is difficult to perform a
fair comparison between different metrics. Thus,
in this ablation setting, using the same founda-
tion model, we explore the effect of training with
real machine-generated summaries versus synthetic
data. In Table 5 (the row using FactCC syn-
thetic data only), we show the performance of
DeBERTa-v2-xlarge-mnli finetuned with LoRA
using FactCC’s synthetic data. Despite trained with
much more data than FactFT (millions vs. thou-
sands), it was outperformed by FactFT, whose train-
ing data is real machine-generated summaries, on 4
out of 6 data sets. This shows the important of real
data and echos the intractability of synthesizing
factual inconsistencies.

5 Related Work

Categories of Factual Inconsistencies. According
to Maynez et al. (Maynez et al., 2020), factual
inconsistencies made by summarization systems
can be categorized into two types: intrinsic errors
and extrinsic errors. Intrinsic errors refer to content
that is hallucinated using the material from the

source document, while extrinsic errors occur when
the summarizer model generates content that is
irrelevant to the source material. It has also been
discovered (Maynez et al., 2020; Kryscinski et al.,
2020) that abstractive summarizers often use forged
entities.

Relevant Evidence Discovery. The widely used
summarization metric ROUGE (Lin, 2004) has
been reported (Fabbri et al., 2021) to have low
correlation with consistency annotations but high
correlation in terms of relevance. As a result, some
post-editing methods (Lee et al., 2022a; Balachan-
dran et al., 2022) have adopted ROUGE to extract
the most relevant sentences in the document re-
lated to a summary, aiming to correct inconsis-
tent summaries. In our work, we adopt this idea
of relevance checking to bridge the gap between
the unmatched input granularity (sentence-level to
document-level) of the NLI model and save input
length.

Measuring the Factuality. Significant efforts
have been made recently to automatically evalu-
ate the factual consistency of abstractive summa-
rization. Based on the category proposed in (Koh
et al., 2022), current methods can be divided into
two groups: QA-based and entailment classifica-
tion methods. QA-based methods evaluate fac-
tual consistency using QA frameworks. These ap-
proaches (Wang et al., 2020; Scialom et al., 2021;
Durmus et al., 2020) first generate questions based
on given summaries and answer questions condi-
tioning on source documents and summaries. A
summary is considered consistent if the answers
based on source text and summaries match. These
methods are reference-free and more correlated to
human judgments, but they suffer from complex
computations and error propagation. Entailment
classification approaches (Kryscinski et al., 2020;
Yin et al., 2021; Lee et al., 2022b; Utama et al.,
2022; Soleimani et al., 2023) mainly construct syn-
thetic datasets by corrupting sentences from the
source document or reference summary to create
negative samples and then train classifiers by con-
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trastive learning. Among them, Falsesum (Utama
et al., 2022) and NonFactS (Soleimani et al., 2023)
are similar methods to MFMA (Lee et al., 2022b),
as they all use masked language model to gener-
ate inconsistencies intentionally. SummaC (Laban
et al., 2022) breaks the summary into small pieces
and perform the evaluation on sentence or phrase
level using NLI models. Other than classifying
based on plain text, FactGraph (Ribeiro et al., 2022)
builds a consistency classifier upon the semantic
graph structural representation of the texts, and
FineGrainFact (Chan et al., 2023) enhances text
input with semantic role labeling. In this work, we
focus on the drawbacks of the entailment based
methods with plain text as input and propose to
improve such methods.

6 Conclusion

To identify directions to improve the detection ac-
curacy of summary factual consistency, we begin
this study by examining the inconsistency synthesis
methods used in SOTA summarization consistency
detectors, both theoretically and empirically. We
find that coreference errors and discourse errors are
the two most difficult types of factual errors missed
by SOTA consistency detectors trained with syn-
thetic data because existing methods to synthesize
inconsistencies may fail to produce them.

Realizing the diversity of inconsistencies and the
challenges to mimic them by manually designed
synthesis heuristics, we propose to use limited but
actual machine-generated summaries with human
annotation to parameter-efficiently finetune an NLI
model of 0.9B parameters. The finetuned classifier
outperforms SOTA on four datasets. This finding
highlights the importance of using real machine-
generated texts for building metrics for NLG. We
hope our effort can encourage the community to
build more and better summarization consistency
datasets with unified taxonomy.
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Limitations

In Section 3.1, our model uses ROUGE to discover
the most relevant sentences in the document with
a given summary. When the abstraction level be-
comes very high, or the summary is very short, the

ROUGE metric may fail to retrieve the related evi-
dences. One can use the whole document as input,
but the long document may hit the token length
limit set by the transformer model. Instead, we can
use a sentence similarity model with a relatively
slower processing speed.

With limited human annotations, we have suc-
cessfully mitigated the false positive rate of the
classifier. However, there are still some hard ex-
amples. Our model can direct benefit from more
human annotations. Meanwhile, inconsistency an-
notation is laborious and skill-demanding. We hope
to explore more on improving the annotation proto-
col and reducing the cost for such NLG evaluation
tasks.

Another limitation worth mentioning is the do-
main transferability. Our model performs bet-
ter on CNN/DailyMail-based datasets than on
XSum-based datasets. The large proportion of the
CNN/DailyMail samples in the training data made
the classifier weak on classifying XSum test sets.
We seek better parameter efficient methods to en-
able better cross domain testing performance.

References

Vidhisha Balachandran, Hannaneh Hajishirzi, William
Cohen, and Yulia Tsvetkov. 2022. Correcting diverse
factual errors in abstractive summarization via post-
editing and language model infilling. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 9818–9830, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Hou Pong Chan, Qi Zeng, and Heng Ji. 2023. Inter-
pretable automatic fine-grained inconsistency detec-
tion in text summarization. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 6433–6444, Toronto, Canada. Association for
Computational Linguistics.

Esin Durmus, He He, and Mona Diab. 2020. FEQA: A
question answering evaluation framework for faith-
fulness assessment in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5055–
5070, Online. Association for Computational Lin-
guistics.

1034

https://aclanthology.org/2022.emnlp-main.667
https://aclanthology.org/2022.emnlp-main.667
https://aclanthology.org/2022.emnlp-main.667
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/2023.findings-acl.402
https://doi.org/10.18653/v1/2023.findings-acl.402
https://doi.org/10.18653/v1/2023.findings-acl.402
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454
https://doi.org/10.18653/v1/2020.acl-main.454


Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
Utama, Ido Dagan, and Iryna Gurevych. 2019. Rank-
ing generated summaries by correctness: An interest-
ing but challenging application for natural language
inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2214–2220, Florence, Italy. Association for
Computational Linguistics.

Tanya Goyal and Greg Durrett. 2020. Evaluating factu-
ality in generation with dependency-level entailment.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3592–3603, Online.
Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Dandan Huang, Leyang Cui, Sen Yang, Guangsheng
Bao, Kun Wang, Jun Xie, and Yue Zhang. 2020.
What have we achieved on text summarization? In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 446–469, Online. Association for Computa-
tional Linguistics.

Huan Yee Koh, Jiaxin Ju, Ming Liu, and Shirui Pan.
2022. An empirical survey on long document sum-
marization: Datasets, models, and metrics. ACM
Comput. Surv., 55(8).

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346, Online. Association for Computa-
tional Linguistics.

Philippe Laban, Tobias Schnabel, Paul Bennett, and
Marti A. Hearst. 2021. Keep it simple: Unsupervised
simplification of multi-paragraph text. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6365–6378, Online.
Association for Computational Linguistics.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
Marti A. Hearst. 2022. SummaC: Re-visiting NLI-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Hwanhee Lee, Cheoneum Park, Seunghyun Yoon,
Trung Bui, Franck Dernoncourt, Juae Kim, and Ky-
omin Jung. 2022a. Factual error correction for ab-
stractive summaries using entity retrieval. In Pro-
ceedings of the 2nd Workshop on Natural Language
Generation, Evaluation, and Metrics (GEM), pages
439–444, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Hwanhee Lee, Kang Min Yoo, Joonsuk Park, Hwaran
Lee, and Kyomin Jung. 2022b. Masked summa-
rization to generate factually inconsistent summaries
for improved factual consistency checking. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 1019–1030, Seattle, United
States. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Zheheng Luo, Qianqian Xie, and Sophia Ananiadou.
2023. Chatgpt as a factual inconsistency evaluator
for text summarization.

Sourab Mangrulkar, S Gugger, L Debut, Y Belkada,
and S Paul. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia
Tsvetkov. 2021. Understanding factuality in abstrac-
tive summarization with FRANK: A benchmark for
factuality metrics. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 4812–4829, Online. As-
sociation for Computational Linguistics.

1035

https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/P19-1213
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2020.findings-emnlp.322
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2020.emnlp-main.33
https://doi.org/10.1145/3545176
https://doi.org/10.1145/3545176
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2021.acl-long.498
https://doi.org/10.18653/v1/2021.acl-long.498
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://aclanthology.org/2022.gem-1.41
https://aclanthology.org/2022.gem-1.41
https://doi.org/10.18653/v1/2022.findings-naacl.76
https://doi.org/10.18653/v1/2022.findings-naacl.76
https://doi.org/10.18653/v1/2022.findings-naacl.76
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383


George Pu, Anirudh Jain, Jihan Yin, and Russell Ka-
plan. 2023. Empirical analysis of the strengths and
weaknesses of peft techniques for llms.

Leonardo F. R. Ribeiro, Mengwen Liu, Iryna Gurevych,
Markus Dreyer, and Mohit Bansal. 2022. FactGraph:
Evaluating factuality in summarization with semantic
graph representations. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3238–3253, Seattle,
United States. Association for Computational Lin-
guistics.

Tal Schuster, Sihao Chen, Senaka Buthpitiya, Alex
Fabrikant, and Donald Metzler. 2022. Stretching
sentence-pair NLI models to reason over long doc-
uments and clusters. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
394–412, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, Jacopo Staiano, Alex Wang,
and Patrick Gallinari. 2021. QuestEval: Summariza-
tion asks for fact-based evaluation. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6594–6604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Amir Soleimani, Christof Monz, and Marcel Worring.
2023. NonFactS: NonFactual summary generation
for factuality evaluation in document summarization.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 6405–6419, Toronto,
Canada. Association for Computational Linguistics.

Prasetya Utama, Joshua Bambrick, Nafise Moosavi,
and Iryna Gurevych. 2022. Falsesum: Generating
document-level NLI examples for recognizing fac-
tual inconsistency in summarization. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2763–2776,
Seattle, United States. Association for Computational
Linguistics.

Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.
Asking and answering questions to evaluate the fac-
tual consistency of summaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5008–5020, Online. Asso-
ciation for Computational Linguistics.

Wenpeng Yin, Dragomir Radev, and Caiming Xiong.
2021. DocNLI: A large-scale dataset for document-
level natural language inference. In Findings of

the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4913–4922, Online. Association
for Computational Linguistics.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227, Huhhot, China. Chinese Informa-
tion Processing Society of China.

A ROC-AUC Results

In addition to the Balanced Accuracy, we also in-
clude the ROC-AUC results in Table 6. SENTNLI
and ChatGPT are excluded due to code/data/model
reproducibility.

1036

http://arxiv.org/abs/2304.14999
http://arxiv.org/abs/2304.14999
https://doi.org/10.18653/v1/2022.naacl-main.236
https://doi.org/10.18653/v1/2022.naacl-main.236
https://doi.org/10.18653/v1/2022.naacl-main.236
https://doi.org/10.18653/v1/2022.findings-emnlp.28
https://doi.org/10.18653/v1/2022.findings-emnlp.28
https://doi.org/10.18653/v1/2022.findings-emnlp.28
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2023.findings-acl.400
https://doi.org/10.18653/v1/2023.findings-acl.400
https://doi.org/10.18653/v1/2022.naacl-main.199
https://doi.org/10.18653/v1/2022.naacl-main.199
https://doi.org/10.18653/v1/2022.naacl-main.199
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2021.findings-acl.435
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108


Model Type Methods Test Sets in SummaC Benchmark
CoGenSum FactCC Frank SummEval Polytope XSumFaith Overall

Others NER Overlap 53.0 53.1 60.9 56.8 51.6 61.7 56.2

Parsing DAE 67.8 82.7 64.3 77.4 64.1 41.3 65.2

QAG FEQA 60.8 50.7 74.8 52.2 54.6 53.4 57.8
QuestEval 64.4 71.5 87.9 79.0 72.2 66.4 73.6

NLI
MNLI-doc 59.4 62.1 67.2 70.0 62.6 59.4 63.5
SummaC-ZS 73.1 83.7 85.3 85.5 60.3 58.0 74.3
SummaC-Conv 67.6 92.2 88.4 86.0 62.4 70.2 77.8

Classifier
FactCC-CLS 65.0 79.6 62.7 61.4 63.5 59.2 65.2
MFMA 74.9 88.3 86.0 84.0 59.9 55.4 74.8
FactFT 88.9∗∗ 96.5∗∗ 92.3∗∗ 91.8∗∗ 66.8 64.7 83.5∗∗

Table 6: ROC-AUC (%) on the SummaC benchmark. The notation ∗∗ is for 99% confidence in our approach FactFT
over SummaC and MFMA.
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