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Abstract

Pretrained language models have become
workhorses for various natural language pro-
cessing (NLP) tasks, sparking a growing de-
mand for enhanced interpretability and trans-
parency. However, prevailing explanation meth-
ods, such as attention-based and gradient-based
strategies, largely rely on linear approxima-
tions, potentially causing inaccuracies such as
accentuating irrelevant input tokens. To mit-
igate the issue, we develop PromptExplainer,
a novel method for explaining language mod-
els through prompt-based learning. Prompt-
Explainer aligns the explanation process with
the masked language modeling (MLM) task of
pretrained language models and leverages the
prompt-based learning framework for explana-
tion generation. It disentangles token represen-
tations into the explainable embedding space
using the MLM head and extracts discrimina-
tive features with a verbalizer to generate class-
dependent explanations. Extensive experiments
demonstrate that PromptExplainer significantly
outperforms state-of-the-art explanation meth-
ods1.

1 Introduction

Recently, pretrained language models (Devlin et al.,
2019; Liu et al., 2019; OpenAI, 2022; Touvron
et al., 2023) have achieved remarkable success
across a wide range of NLP tasks, such as text clas-
sification, question answering and machine trans-
lation. However, the inherent complexity of these
models, often characterized by billions of parame-
ters (Narayanan et al., 2021) and high nonlineari-
ties, makes these models notably opaque and their
predictions elusive to users (Ali et al., 2022). Ex-
plaining language models is receiving significant
attention due to the growing demand for facilitat-
ing accountability, transparency, trustworthiness,

∗Corresponding author
1Our code is available athttps://github.com/

zijian678/PromptExplainer

bias detection and ethical considerations (Boluk-
basi et al., 2016; Gonen and Goldberg, 2019; Ali
et al., 2022).
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Figure 1: Demonstration of conventional explanation
methods and our proposed PromptExplainer. Conven-
tional methods generally apply the linear operation to at-
tentions and/or gradients to generate explanations, while
PromtExplainer utilizes MLM head to disentangle token
representations to explain language models.

Explanation methods generally gain insights into
the decision-making process of language models
by assessing the significance of each of the in-
put tokens in relation to specific class labels or
tokens. Various explainability methods, such as
attention-based (Bahdanau et al., 2015; Abnar and
Zuidema, 2020) and gradient-based (Wallace et al.,
2019; Atanasova et al., 2020; Chefer et al., 2021;
Ali et al., 2022) approaches, have been developed.
These methods generally employ linear approx-
imation as shown in Figure 1a. For example,
the attention-based method, attention rollout (Ab-
nar and Zuidema, 2020), presumes that attention
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weights for input tokens are linearly combined or
propagated across layers to simulate the behavior
of transformers. Gradient-based methods (Wallace
et al., 2019; Atanasova et al., 2020; Chefer et al.,
2021; Ali et al., 2022), on the other hand, explain
models by approximating the model’s nonlinearity
through local linear approximations near specific
input tokens, leveraging Taylor’s expansion theo-
rem. Nevertheless, the error resulted from linear
approximation may be non-negligible when the
language model possesses a substantial scale and
the task involves considerable complexity. The ap-
proximation error can be propagated and magnified
across layers. As we will show in this paper, linear
approximation may lead to accentuating irrelevant
tokens. To avoid using linear approximation, we
may have to seek solutions from a different per-
spective, instead of using the conventional gradient
or attention-based methods.

Typically, language models undergo pretraining
through the masked language modeling (MLM)
task (Devlin et al., 2019; Liu et al., 2019; OpenAI,
2022; Touvron et al., 2023). In this process, the
MLM head adeptly captures the complex dependen-
cies among token representations to predict missing
words. Aligning NLP tasks with the MLM task and
utilizing powerful pretrained components, such as
the MLM head, have demonstrated effectiveness
in the paradigm of prompt-based learning (Ding
et al., 2021; Schick and Schütze, 2021; Cui et al.,
2022; Hu et al., 2022). Inspired by these studies,
we propose to align the interpretation process with
the MLM task to yield more accurate explanations
in this paper.

To this end, we propose a novel explanation ap-
proach called PromptExplainer: Explaining Lan-
guage Models through Prompt-based Learning, as
illustrated in Figure 1b. This approach adopts
prompt-based learning to synchronize the expla-
nation process with the MLM task and capitalize
on corresponding components to produce explana-
tions. The PromptExplainer leverages the MLM
head to disentangle the token representations into
the explainable embedding space whose dimension-
ality equals the vocabulary size, with each dimen-
sion corresponding to a specific token. Addition-
ally, it employs the verbalizer to extract discrimi-
native features relevant to class labels to generate
class-dependent explanations.

The proposed PromptExplainer offers several ad-
vantages. Firstly, it aligns the explaining process
with the pertaining objectives of language mod-

els and eliminates the need for linearity assump-
tions. Secondly, it requires only a few lines of
code for implementation and can be seamlessly in-
tegrated into existing prompt-based models without
any additional parameters. To the best of our knowl-
edge, we are the first to propose the utilization of
prompt-based learning to interpret language mod-
els. Extensive experiments (in §4) demonstrate that
PromptExplainer surpasses state-of-the-art (SOTA)
explanation methods by a substantial margin.

2 Related Work

Existing approaches to explaining language mod-
els can be classified into attention-based, gradient-
based, and perturbation-based methods. The
generated explanations fall into either the class-
dependent category (specific to each class label)
or the class-agnostic (only based on the input and
model) category.

In attention-based methods, utilizing vanilla
attention weights in attention modules to inter-
pret model decisions (Bahdanau et al., 2015) is a
straightforward approach. However, this method’s
reliability and effectiveness diminish when applied
to Transformer architectures (Wiegreffe and Pinter,
2019), commonly used in language models (De-
vlin et al., 2019; Liu et al., 2019; OpenAI, 2022;
Touvron et al., 2023). To capture Transformers’
intricate nonlinearities, attention rollout (Abnar
and Zuidema, 2020) linearly combines attention
weights across layers. Additionally, attention flow
(Abnar and Zuidema, 2020) views attention propa-
gation as a max-flow problem in the pairwise atten-
tion graph. Typically, attention-based explanations
are considered to be class-agnostic.

Gradient-based methods employ backpropaga-
tion gradients to determine the significance of each
token. The integrated gradient (Wallace et al.,
2019) and input gradients (Atanasova et al., 2020)
have been proven effective in various models and
domains. Another approach, termed as generic at-
tention explainability (GAE) (Chefer et al., 2021),
integrates attention gradients along with gradients
from other network components.

It is worth noting that layer-wise relevance prop-
agation (LRP) (Bach et al., 2015) has also been
used to measure the relative significance of each
token (Voita et al., 2019; Chefer et al., 2021). Ali
et al. (2022) discovers that LRP could encounter
difficulties in identifying the input feature contri-
butions in Transformers due to the intricate Atten-
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tionHeads and LayerNorm. To address the prob-
lem, they modify the current propagation rule to
adhere to the conservation rule, which mandates
that scores assigned to input variables and forming
the explanation must sum up to the network’s out-
put. LRP-XAI is the SOTA in delivering the most
effective class-dependent explanations.

A few perturbation-based methods have been
proposed, which utilize the input reductions (Feng
et al., 2018; Prabhakaran et al., 2019) to deter-
mine the most relevant parts of the input by ob-
serving changes in model confidence or Shapley
values (Lundberg and Lee, 2017). Contrastive ex-
planations (Lipton, 1990; Jacovi et al., 2021; Yin
and Neubig, 2022), which focus on identifying the
causal factors influencing a model’s output choice
between two alternatives, have emerged in the last
two years. It is a different task so we do not com-
pare the contrastive methods to our proposed ap-
proach.

3 Method

3.1 Overview

Task formulation Interpreting language mod-
els involves evaluating token saliency for class-
dependent or class-agnostic explanations and high-
lighting each token’s importance for a specific
class label or the overall decision process. Our
method belongs to the first type that generates
class-dependent explanations. Formally, denote
X = (x1, x2, ..., xn) as an input sequence of
length n, and C = (c1, c2, ..., cp) as the class la-
bels in the dataset. Our objective is to generate
an explanation Ei = (e1, e2, ..., en) that signifies
the importance of each token in classifying X into
class ci.

Framework We directly integrate our proposed
method within the prompt-based learning frame-
work to explain language models under the clas-
sification task. As illustrated in Figure 2, prompt-
based learning formulates the text classification
task into a masked language modeling problem by
enveloping the input sequence X with a template to
form a cloze question. The language model (LM)
encoder is then used to derive all tokens’ repre-
sentations H ∈ Rn×d, where d is the dimension.
We then utilize the MLM head to project H as the
distribution over the vocabulary in the embedding
space. Finally, a verbalizer V is employed to asso-
ciate certain tokens in the vocabulary with the label
space, resulting in predictions and explanations for

each class.

3.2 Motivation: MLM head and verbalizer as
interpreter expert

In this section, we first demonstrate that the MLM
head can project all input token representations as
a distribution over the vocabulary in the embedding
space. Subsequently, we elucidate why these dis-
tributions have the potential to replace traditional
attentions or gradients as a new medium for ex-
plaining model decisions.

Conventional methodologies allow only the
<mask> token to be processed by the MLM head
to elucidate sophisticated contextual information
and then make predictions. While adept at unrav-
eling complex and agnostic representations, the
practicality of utilizing this MLM head to decode
unmasked token representations remains an unan-
swered query. To answer this question, we give
a comprehensive analysis and empirical results in
Appendix A, with key findings summarized below.

1. The MLM head exhibits consistent decod-
ing properties for both masked and un-
masked token representations.

2. The MLM head can project all input
tokens—both <mask> and unmasked to-
kens—into distributions over the vocabu-
lary in the embedding space, yielding in-
terpretable results that align with model pre-
dictions. Specifically, within this space, each
dimension corresponds to a unique token in
the vocabulary, and the values therein repre-
sent the predictive probabilities of all possible
tokens at a given position.

3. In the context of MLM, the projected distri-
butions can be understood as representations
based on the current token and its surrounding
contextual information. These distributions
reflect the predictive likelihood of all tokens
within the vocabulary. Consequently, these
distributions can be interpreted as the to-
ken’s contributions to the prediction pro-
cess.

In addition to the MLM head, the verbalizer is
utilized as another indispensable component for
generating language model interpretations. Vari-
ous verbalizer types, including manual (Schick and
Schütze, 2021), soft (Hambardzumyan et al., 2021),
prototypical (Cui et al., 2022), and knowledgeable
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Figure 2: Overview of the classification operation, architecture, PromptExplainer (explanation operation), and
an explanation example. The token representations obtained from the language model are disentangled into
the explainable embedding space through the MLM head. Subsequently, the verbalizer is employed to extract
discriminative features that exhibit a strong correlation with the classification results, enabling the generation of
explanations. The given example demonstrates this process, where ti and ci denote the i-th disentangled feature and
discriminative feature, respectively. A deeper red color indicates a higher explanatory weight.

(KPT) (Hu et al., 2022) verbalizers, help pinpoint
effective label words to align model outputs with fi-
nal predictions in prompt-based learning. Thus, the
verbalizer is also integral in identifying discrim-
inative vocabulary tokens that ultimately impact
model decision-making, aiding in the generation of
explanations.

In light of preceding observations and analysis,
we articulate two phases of our PromptExplainer:
first, utilizing the MLM head to disentangle token
representations, and second, employing the ver-
balizer to extract discriminative features, thereby
enabling explanation generation.

3.3 Feature disentanglement

From a feature engineering perspective, the MLM
head is pre-trained to project token representations
as the token distributions over the vocabulary that
exhibits similar characteristics to disentangled fea-
tures. Firstly, the projected features (i.e., distribu-
tions) can be viewed as individual factors, each
of which represents a unique token within the vo-
cabulary. Secondly, the features possess semantic
interpretability, as each feature signifies the corre-
lation with a predefined token in the vocabulary.
Therefore, these projected features can be regarded
as disentangled features in an explainable latent
space. Formally, the MLM head Mh projects to-

kens representations H into the disentangled space
by

HV = Mh(H) ∈ Rn×V (1)

where V is the vocabulary size.
Two phenomena can be observed in the token dis-

tributions over the vocabulary HV of the unmasked
tokens. Firstly, the token with the highest proba-
bility is the token itself, which is equivalent to an
exam with known answers. This observation also
demonstrates that the disentangled features can re-
tain their own information. Secondly, the predicted
distribution is not a one-hot distribution; rather, it
allows for the presence of certain possibilities for
other tokens as well. These probabilities, based on
the current token, represent the occurrence of other
tokens and can thus be viewed as contributions
of the current token to the occurrence of other
tokens. Hence, the disentangled features function
as correlations among tokens, influencing the clas-
sification outcomes and facilitating the generation
of informative explanations.

3.4 Discriminative feature extraction

In prompt-based text classifiers, a verbalizer is com-
monly utilized to establish connections between
classes and label words. Similarly, the verbalizer V
is also applied to extract discriminative features in
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HV . At this stage, the selected features in <mask>
form the model’s final predictions, acting as dis-
criminative features that guide its decision-making.
Accordingly, we choose these features from all the
tokens to generate explanations. Formally, the dis-
criminative features HD for all the tokens can be
obtained by using the verbalizer V:

HD = V(HV ) ∈ Rn×p (2)

where p indicates the number of classes and only
the features in V that potentially impact the classi-
fication are extracted. These extracted logits depict
the correlation of each token with the class labels.

3.5 Explanation generation
To determine the contribution of each token to class
labels, we begin by applying softmax normalization
to derive the correlation between each token and
the class labels:

HS = Softmax(HD) (3)

Subsequently, the explanations for class ci can be
acquired by extracting the correlation of each token
with the target class using Equation 4.

Ei = HS [:, ci] (4)

3.6 Implementation
Recently, prompt-based learning has become preva-
lent in executing NLP tasks. Our PromptExplainer,
adaptable to most prompt-based learning frame-
works, leverages the original pretrained LM head
as the MLM head. Given the variance of verbaliz-
ers across different prompt-based text classifiers,
we directly employ the identical verbalizers from
the classifiers to interpret their predictions. Con-
sequently, our PromptExplainer can be seamlessly
integrated into existing prompt-based frameworks
with only a few lines of code implementing Equa-
tions 1 to 4. Detailed instructions and code are
available in the supplementary materials.

4 Experiments

Following previous research (Schnake et al., 2022;
Ali et al., 2022), we evaluate the PromptExplainer’s
effectiveness based on qualitative and quantita-
tive explanation faithfulness experiments. Four
text classification datasets, diverse templates and
verbalizers are utilized in the experiments. We
adopt RoBERTa-large (Liu et al., 2019) as our
primary model, owing to its widespread use in

Dataset # Class Test Size Template
AG’s News 4 7600 A <mask> news: x
DBPedia 14 70000 [ Topic : <mask>] x

Yahoo 10 60000 A <mask> question: x
IMDB 2 25000 It was <mask>. x

Table 1: The statistics and templates of each dataset. x
indicates the input text.

prompt-based learning and superior performance
in text classification (Ding et al., 2021; Schick and
Schütze, 2021; Cui et al., 2022; Hu et al., 2022).
We also provide experimental results on BERT (De-
vlin et al., 2019) in Appendix B to verify PromptEx-
plainer’s performance on various language models.

4.1 Verbalizer

In our main experiments, which involve both quan-
titative and qualitative evaluations, we use current
SOTA verbalizer KPT (Hu et al., 2022), which in-
tegrates label words from external resources. The
model parameters precisely adhere to the recom-
mendations in KPT. We report the results using
the tuned language model in the 5-shot setting 2.
For detailed model parameters, please refer to (Hu
et al., 2022).

4.2 Datasets and templates

We conduct experiments to assess various ex-
planation methods on three topic classification
datasets: AG’s News (Zhang et al., 2015), DBPedia
(Lehmann et al., 2015), Yahoo (Zhang et al., 2015);
and one sentiment classification dataset: IMDB
(Maas et al., 2011). We adopt commonly used
templates in previous studies to perform prompt
addition. Detailed information on the datasets and
templates is shown in Table 1.

4.3 Baselines

We compare our proposed PromptExplainer
with SOTA explanation methods, including both
gradient-based and attention-based approaches.

We average the attention to <mask> across dif-
ferent heads in the last layer (A-Last) (Hollenstein
and Beinborn, 2021) and also consider the attention
Rollout(Abnar and Zuidema, 2020), which high-
lights the layerwise structure of deep Transformer

2Prompt-based classifiers are extensively utilized in low-
data regimes, such as few-shot settings. With a mere 5%
difference in classification accuracy between 1-shot and 20-
shot as illustrated in KPT, we only report explanation results
for 5-shot trained models for each dataset. The results and
patterns are similar for other shots, such as 10-shot and 20-
shot. We run experiments using 24GB NVIDIA A5000.
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models beyond raw attention head analysis.
We further evaluate Gradient × Input (GI), as

employed in (Denil et al., 2014; Shrikumar et al.,
2017; Atanasova et al., 2020). Another competi-
tive baseline, Generic Attention Explainability
(GAE) (Chefer et al., 2021), integrates attention
gradients with gradients from other network seg-
ments. LRP-XAI (Ali et al., 2022), designed to
ensure that LRP-based methods adhere to the con-
servation axiom by altering propagation in layer
normalization and attention heads, is the current
SOTA.

4.4 Quantitative evaluation

Method A
G

’s
N

ew
s

D
B

Pe
di

a

Ya
ho

o

IM
D

B

A-Last 71.5 78.0 42.0 84.9
Rollout 63.0 65.8 35.1 77.1

GI 69.3 70.7 37.6 78.1
GAE 72.6 79.9 43.7 86.0

LRP-XAI 71.2 78.6 43.3 87.6
PromptExplainer 76.5 82.6 46.0 87.8

Table 2: Activation probability (%). A higher probabil-
ity is better and indicates that adding the most relevant
nodes strongly activates the correct model prediction.

Method A
G
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D

B

A-Last 0.265 0.308 0.536 0.167
Rollout 0.415 0.468 0.684 0.192

GI 0.274 0.298 0.553 0.251
GAE 0.260 0.277 0.509 0.152

LRP-XAI 0.253 0.290 0.542 0.181
PromptExplainer 0.231 0.242 0.500 0.143

Table 3: Pruning MSE. A lower MSE is better and
indicates that removing less relevant nodes has little
effect on the model prediction.

Following previous research (Schnake et al.,
2022; Ali et al., 2022), we validate various explana-
tion techniques using an input perturbation strategy,
prioritizing the most or least significant input to-
kens. Our evaluation of explanatory faithfulness
encompasses two tasks, each correspondingly eval-
uated using specific metrics: activation probability
and pruning mean squared error (MSE):

• Activation Task: All input tokens are initially

Figure 3: Evaluation of explanations using input pertur-
bations on AG’s News

removed. Tokens are then progressively added
(10% interval), ordered from most to least rel-
evant. The ground-truth class’s output proba-
bility, namely the activation probability, is
observed. A higher activation score means a
more accurate explanation.

• Pruning Task: All the input tokens are re-
tained initially. Tokens are then successively
removed (10% interval) in order from least to
most relevant. The pruning mean squared
error (MSE) between the predictions of the
unpruned model and the pruned outputs is cal-
culated. A lower MSE value means a more
faithful explanation.

Note, in the activation task, we begin with a
sentence comprised solely of <unk> tokens. Con-
versely, in the pruning task, we progressively sub-
stitute tokens with <unk> tokens. These evalua-
tion settings align with those used in prior studies
(Schnake et al., 2022; Ali et al., 2022). To ensure
a fair comparison, we employ the official codes of
the baselines and subsequently generate explana-
tions using the attentions and/or gradients from the
same trained prompt-based model.

Table 2 and Table 3 present the average results
on various datasets for the activation and pruning
tasks, respectively. It can be observed that our
proposed PromptExplainer substantially surpasses
other baselines by a significant margin. The un-
derperformance of Rollout and GI indicates the
ineffectiveness of its presumed linear attention
and weight propagation across the 24 layers in
RoBERTa.

Figure 3 illustrates the activation and pruning
curves for the AG’s News dataset. From the ac-
tivation curve, it is evident that the performance
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GAE
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Figure 4: Visualization of the attribution scores assigned
to each word in a sentence from the Yahoo dataset with
the label “artist”. The intensity of the red color deepens
as the explanatory weight increases, highlighting the
significance of each word.

of PromptExplainer, LRP-XAI, and GAE starts to
decline after a specific point. This is because most
of the discriminative tokens are included at that
point. As additional tokens are added, they may
be misleading and introduce noise to the model,
thereby inducing a performance drop. The inflec-
tion point’s occurrence substantiates the explana-
tion’s faithfulness. Regarding the pruning curve,
PromptExplainer consistently achieves the lowest
MSE in most cases, further corroborating its ef-
fectiveness. The improvement brought by Promp-
tExplainer can be attributed to the effective align-
ment with the MLM objective and utilization of
the robust MLM head, which allows for a deeper
understanding of the language model’s behavior.

4.5 Qualitative evaluation

In this subsection, we will qualitatively examine
the explanations generated by different methods.
Figure 4 illustrates the extracted explanations using
various methods. In the provided sentence, two key-
words are directly linked to the class label “artist”.
The first keyword is the name of the singer, “Ivan
Parker”, whom the RoBERTa-large model recog-
nizes as an artist. Several methods, including A-
Last, Rollout, LRP-XAI, and PromptExplainer, are
capable of identifying this information. Regarding
the second keyword, “singer”, which demonstrates
the highest correlation with the “artist” label, only
our proposed PromptExplainer is able to recog-
nize it. It is also important to mention that most
baseline methods often prioritize the inserted tem-
plate, overlooking the practical meaning conveyed
by the sentence. We provide additional examples
in Appendix C to verify the PromptExplainer’s su-
periority in capturing, identifying, and recognizing
essential keywords for accurate classification and
analysis purposes.

4.6 Effects of prompt templates and
verbalizers

To verify the applicability of PromptExplainer to
other prompt-based learning frameworks, we con-
duct supplementary experiments. The variations
among different prompt-based models mainly lie in
their templates and verbalizers. Therefore, we ex-
amine the performance of PromptExplainer across
different templates and verbalizers to validate its
generalization capability.

4.6.1 Different template results

Template ID Template
1 A <mask> news: x
2 x This topic is about <MASK>.
3 [ Category : <MASK> ] x
4 [ Topic : <MASK> ] x

Table 4: Different templates for AG’s News. x indicates
the input text.

We carry out experiments on AG’s News using
various templates presented in Table 4 to assess
the generated explanations by PromptExplainer. It
is important to mention that all templates yield
comparable classification accuracy, ensuring a fair
comparison. The activation and pruning results are
displayed in Table 5. Every template contains dis-
tinct words. Template 2 differs in its position com-
pared to the other templates. Activation probability
and MSE show slight variations among templates.
These results demonstrate PromptExplainer’s ro-
bustness, indicating its successful application to
diverse prompt-based learning frameworks with
varying templates.

Template ID 1 2 3 4
Activation probability 76.5 75.8 76.6 76.2

Pruning MSE 0.231 0.241 0.224 0.235

Table 5: Experimental results of different templates on
AG’s News.

4.6.2 Different verbalizer results
In our previous experiments, we mainly use the
KPT verbalizer. This study evaluates PromptEx-
plainer against other advanced verbalizers to gauge
its effectiveness: (1) manual verbalizer (Ding et al.,
2021) that relies on manually chosen label words
for each class. The number of label words is set to
1, 10, and 30; (2) prototypical verbalizer (Cui et al.,
2022), which constructs verbalizers automatically
by learning class prototypes from training data.
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Table 6 and Table 7 display the results obtained
with different verbalizers. PromptExplainer demon-
strates its effectiveness and wide applicability by
achieving the best results in most cases. When em-
ploying a manual verbalizer with a single word per
class, PromptExplainer ranks second. However, by
augmenting the number of label words (e.g., 10 or
30 per class), PromptExplainer emerges as the top
performer. The performance of PromptExplainer
improves as the number of label words per class
increases. This phenomenon can be attributed to
the fact that disentangled features may contain not
only token-label correlation but also other factors,
such as position and syntactic information. By ex-
panding the label words for each class, the diversity
of word part-of-speech (POS) is enhanced, thereby
reducing biases that arise from syntactic and posi-
tional factors.
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A-Last 68.9 73.4 61.7 66.9 71.5
Rollout 60.5 62.4 54.1 60.3 63.0

GI 65.3 70.0 58.7 64.4 69.3
GAE 69.4 74.5 62.5 67.1 72.6

LRP-XAI 70.7 73.5 62.3 69.1 71.2
PromptExplainer 69.6 76.2 64.8 70.7 76.5

Table 6: Activation probability (%) using various ver-
balizers.

Verbalizer M
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PT

A-Last 0.447 0.289 0.361 0.482 0.265
Rollout 0.623 0.482 0.490 0.614 0.415

GI 0.468 0.340 0.384 0.510 0.274
GAE 0.439 0.298 0.348 0.476 0.260

LRP-XAI 0.445 0.314 0.368 0.478 0.253
PromptExplainer 0.442 0.278 0.345 0.438 0.231

Table 7: Pruning MSE using various verbalizers.

4.7 Other analysis
Significance of this study: While large language
models (LLMs) have recently garnered signifi-
cant attention, conventional LMs like BERT and
RoBERTa remain indispensable for classification
tasks. This is primarily due to two key reasons.

Firstly, LLMs typically demand substantial com-
puting resources or incur high API costs, resulting
in slower response times compared to traditional
LMs. Secondly, certain open-sourced LLMs still
underperform RoBERTa in classification tasks. For
instance, in a 1-shot text classification task on AG’s
News, BLOOM-176B (Scao et al., 2022), LLaMA-
33B (Touvron et al., 2023), and LLaMA-65B (Tou-
vron et al., 2023) achieved accuracies of 79.6%,
76.4%, and 76.8%, respectively (Ma et al., 2023),
whereas RoBERTa, as reported in 2022 (Hu et al.,
2022), achieved 83.7%. These figures underscore
the significance of conventional language models,
emphasizing the need to understand these models
further and thus the importance of our proposed
PromptExplainer.

Extension to LLMs: Our proposed PromptEx-
plainer primarily leverages the concept of using
MLM head to interpret token representations in
the vocabulary space. However, it cannot be di-
rectly used to interpret autoregressive LLMs. This
limitation arises from the fact that traditional LMs
are based on masked language modeling, while au-
toregressive LLMs rely on next-word prediction.
Consequently, the representations projected by the
MLM head in RoBERTa reflect the probability of
the current token based on bidirectional contextual
information, whereas LLMs’ LM head representa-
tions signify the probability of the next token based
on all preceding tokens. This disparity hinders the
direct application of PromptExplainer to LLMs.
Nevertheless, the concept of using the LM head to
interpret LLMs holds promise and is a potential av-
enue for future research, which we leave as future
work.

5 Conclusion

In this paper, we present PromptExplainer, a
method for explaining language models through
prompt-based learning. Our approach aligns the
interpreting process with the MLM objective and
leverages the MLM head to disentangle token rep-
resentations, creating an explainable feature space.
We then utilize the verbalizer to extract discrimi-
native features to generate explanations. Extensive
experiments demonstrate the superior performance
of PromptExplainer. In future work, we intend to
extend the core concept of PromptExplainer, which
involves leveraging the LM head to provide ex-
planations for model decisions, to LLMs such as
GTPX (OpenAI, 2022).
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6 Limitations

There are several limitations in our work. Firstly,
the disentangled features encompass not only the
correlation with label words but also other informa-
tion, such as positional and syntactic information,
which could impact the token-label correlation,
therefore affecting the explanation faithfulness, as
discussed in §4.6.2. How to effectively distill the
explanatory information from these disentangled
features poses an important question. Additionally,
as discussed in §4.7, when adapting the PromptEx-
plainer concept for autoregressive LLMs, certain
modifications are necessary due to differences in
their pretraining objectives.

Ethics Statement

This work introduces PromptExplainer, a method
designed to explain language models using prompt-
based learning. It requires only a few lines of
code for implementation and can be seamlessly
integrated into existing prompt-based models. All
experiments conducted in this study utilize publicly
available datasets and codes. To facilitate future
reproduction without unnecessary energy consump-
tion, we will make our codes openly accessible.
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A Analysis: How Can MLM Head
Deocde Token Representations?

In this section, we explore if the MLM head can de-
code unmasked token representations and analyze
the characteristics of these decoded representations,
providing the theoretical groundwork for our pro-
posed PromptExplainer.

Homogeneity of <mask> token and unmasked
tokens. All input tokens, including the <mask>
token and unmasked tokens, are encoded within
the same latent space and processed by identical

attention blocks within the language model. Conse-
quently, in the feature space, the encoded <mask>
representation and all other unmasked tokens co-
exist within the same space, demonstrating homo-
geneity.

While residing in the same latent space, the
meaningfulness of employing the MLM head to
decode unmasked representations raises questions.
To address this, we visualize results to gain insights
into the decoding impact of the MLM head on un-
masked token representations.

We first wrap the input sentence “I really en-
joy this movie”with a template “It was <mask>”,
which is widely used in prompt-based learning.
Subsequently, we feed this constructed sentence
into RoBERTa-large to observe how its represen-
tations evolve across the various layers. Specifi-
cally, we input all token representations, including
both the <mask> token and unmasked tokens, into
the MLM head for projection into the embedding
space. The resulting distribution over the vocab-
ulary signifies the likelihood of filling in the re-
spective positions. We then identify the token with
the maximum probability at each position. These
results are visually depicted in Figure 5a.

Firstly, it is noteworthy that all token represen-
tations can be effectively decoded into meaning-
ful predictions by the MLM head. For instance,
the representation of “movie”can be projected as
“comic”and “film”in intermediate layers. Concern-
ing the <mask> token, it is amenable to projec-
tion as “superb”and “fun”in the intermediate layers
through the MLM head.

Secondly, the predictive probability for un-
masked tokens in the final layer is consistently
accurate, meaning that the tokens with the high-
est probability consistently correspond to the in-
put tokens themselves. This discovery underscores
the fact that each token’s representation inherently
contains self-information and can be successfully
comprehended by the MLM head.

Thirdly, we proceed to visualize the ranking of
the ultimately-predicted (target) token by the MLM
head at each layer, as illustrated in Figure 5b. It
becomes evident that the ranking of the target to-
ken progressively ascends through the layers as the
MLM decoding process advances. This progres-
sion follows an approximately monotonic pattern.

Expanding on this, the projected distribution for
each token shares the same dimensionality as the
vocabulary size. Each dimension corresponds to
a unique token in the vocabulary, with its value
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(a) Visualization of MLM-decoded token with the maximum probability at each layer.

(b) Visualization of the ranking of the target token at each layer.

Figure 5: Visualization of using the MLM head to decode all input tokens at each layer.

representing the probability of occurrence. This
underscores the interpretability of the embedding
space.

In line with the MLM objective, the distribution
at a specific position can be primarily attributed
to the inclusion of the input token at that position.
Consequently, this distribution can be leveraged
to assess the individual contribution of each input
token to the overall predictive likelihood across the
entire vocabulary.

Drawing from the preceding analysis, we can
succinctly summarize our key findings as follows:

1. The MLM head exhibits consistent decod-
ing properties for both masked and un-
masked token representations.

2. The MLM head can project all input
tokens—both <mask> and unmasked to-
kens—into distributions over the vocabu-
lary in the embedding space, yielding in-
terpretable results that align with model pre-
dictions. Specifically, within this space, each
dimension corresponds to a unique token in
the vocabulary, and the values therein repre-
sent the predictive probabilities of all possible
tokens at a given position.

3. In the context of MLM, the projected distri-
butions can be understood as representations
based on the current token and its surrounding
contextual information. These distributions

reflect the predictive likelihood of all tokens
within the vocabulary. Consequently, these
distributions can be interpreted as the to-
ken’s contributions to the prediction pro-
cess.

B Experiments on BERT-large

Table 8 and Table 9 present the results on various
datasets for the activation and pruning tasks on
BERT, respectively. It can be observed that our pro-
posed PromptExplainer substantially outperfroms
other baselines by a significant margin on BERT.

Method A
G

’s
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D
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ho

o

IM
D

B

A-Last 59.7 75.5 36.4 67.6
Rollout 50.0 66.2 28.2 64.1

GI 51.8 61.6 28.0 59.9
GAE 63.4 76.1 37.2 72.4

LRP-XAI 58.3 73.4 32.0 68.6
PromptExplainer 65.1 79.2 38.6 74.4

Table 8: Activation probability (%) on BERT. A higher
probability is better and indicates that adding the most
relevant nodes strongly activates the correct model pre-
diction.
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Method A
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B

A-Last 0.343 0.260 0.573 0.250
Rollout 0.512 0.502 0.684 0.247

GI 0.418 0.386 0.638 0.289
GAE 0.291 0.268 0.561 0.210

LRP-XAI 0.347 0.278 0.592 0.239
PromptExplainer 0.274 0.247 0.534 0.186

Table 9: Pruning MSE on BERT. A lower MSE is better
and indicates that removing less relevant nodes has little
effect on the model prediction.

C Additional Qualitative Results

The keywords associated with the class “company”
in Figure 6a are “Kooga”, “clothing company ”,
and “established”. Among the methods used, only
LRP-XAI and PromptExplainer accurately iden-
tify all three keywords. Moving on to the second
example presented in Figure 6b, the terms “Inc”
and “company” are directly associated with its la-
bel “company”. In this case, only GI and Prompt-
Explainer successfully grasp these two keywords.
Regarding the third example in Figure 6c, where
the key phrase “photographer and author” plays a
crucial role in classifying the sentence as “artist”,
PromptExplainer is the sole method that notices
and comprehends the significance of the entire
phrase. Lastly, considering the final example il-
lustrated in Figure 6d, the keywords “member” and
“Ohio House of Representatives” allow for the clas-
sification of this example as “politics”. Remark-
ably, only LRP-XAI and PromptExplainer exhibit
the capability to recognize these two keywords. In
summary, these four examples collectively serve as
compelling evidence of the remarkable effective-
ness of our proposed PromptExplainer.
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A-Last
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GI

GAE

LRP-XAI

PromptExplainer

(a) Visualization of the attribution scores assigned to each word in a sentence tagged with “company”.

<s> [ Topic : <mask> ] Agami Systems. Agami Systems Inc. was a network storage company headquartered in Sunnyvale California. </s>A-Last
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GAE
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PromptExplainer
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(b) Visualization of the attribution scores assigned to each word in a sentence tagged with “company”.
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(c) Visualization of the attribution scores assigned to each word in a sentence tagged with “artist”.

<s> [ Topic : <mask> ] June Kreuzer. June Kreuzer is a former member of the Ohio House of Representatives. </s>A-Last

Rollout
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GAE
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(d) Visualization of the attribution scores assigned to each word in a sentence tagged with “politics”.

Figure 6: Examples for qualitative results.
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