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Abstract

This study investigates the computational pro-
cessing of euphemisms, a universal linguis-
tic phenomenon, across multiple languages.
We train a multilingual transformer model
(XLM-RoBERTa) to disambiguate potentially
euphemistic terms (PETs) in multilingual and
cross-lingual settings. In line with current
trends, we demonstrate that zero-shot learn-
ing across languages takes place. We also show
cases where multilingual models perform better
on the task compared to monolingual models
by a statistically significant margin, indicating
that multilingual data presents additional oppor-
tunities for models to learn about cross-lingual,
computational properties of euphemisms. In a
follow-up analysis, we focus on universal eu-
phemistic “categories” such as death and bodily
functions among others. We test to see whether
cross-lingual data of the same domain is more
important than within-language data of other
domains to further understand the nature of the
cross-lingual transfer.

1 Introduction

Euphemisms are a linguistic device used to soften
or neutralize language that may otherwise be harsh
or awkward to state directly (e.g. “between jobs”
instead of “unemployed”, “late” instead of “dead”,
“collateral damage” instead of “war-related civilian
deaths”). By acting as alternative words or phrases,
euphemisms are used daily to maintain politeness,
mitigate discomfort, or conceal the truth. While
they are culturally-dependent, the need to discuss
sensitive topics in a non-offensive way is universal,
suggesting similarities in the way euphemisms are
used across languages and cultures.

This study explores whether multilingual mod-
els take advantage of such similarities when pro-
cessing euphemisms. We use the multilingual
transformer model XLM-RoBERTa-base (Conneau
et al., 2020), or “XLM-R”, as our deep learning
model, and work with four languages (Mandarin

Chinese, American English, Spanish, and Yorùbá)
that encompass a diverse range of linguistic and
cultural backgrounds. In our experiments, we focus
on the euphemism disambiguation task, in which
potentially euphemistic terms (PETs) are classified
as euphemistic (1) or not (0) in a given context
(e.g., “let go” may mean “fired” in some contexts,
but not all in other contexts). Models are trained on
labeled data from a single, or multiple languages,
and evaluated separately on all four languages.

Our contributions are as follows: (1) We aug-
ment existing Chinese and Spanish datasets started
by Lee et al. (2023) and perform additional anal-
yses (Section 3). (2) We run classification experi-
ments and find cases of cross-lingual transfer (i.e.
a model trained on one language can classify in-
stances in another language), as well as an overall
performance improvement when training models
on multiple languages versus one (Section 4). (3)
We perform a follow-up experiment in which we
find signs that the cross-lingual transfer may be
related to euphemistic category (Section 5). These
results suggest that XLM-R picks up on “knowl-
edge” about euphemisms which it can not only
transfer, but also synergize across languages.

2 Related Work

In recent years, there has been growing interest in
computational approaches to euphemism detection
in the natural language processing (NLP) commu-
nity. Felt and Riloff (2020) introduced the recogni-
tion of euphemisms and dysphemisms using NLP,
generating near-synonym phrases for sensitive top-
ics. Zhu et al. (2021) proposed euphemism de-
tection and identification tasks using masked lan-
guage modeling with BERT. Gavidia et al. (2022)
created a corpus of potentially euphemistic terms
(PETs). Lee et al. (2022b) developed a linguisti-
cally driven approach for identifying PETs using
distributional similarities. BERT-based systems
that participated in a shared task on euphemism

875



Lang TotalEx EuphEx NonEuphEx TotPETs AmbPETs α

EN 1952 1383 569 129 58 0.415
ZH 2005 1484 521 110 36 0.635
ES 1861 1143 718 147 91 0.576
YO 1942 1281 661 129 62 0.679

Table 1: Statistics of multilingual datasets used for the euphemism disambiguation experiments.

disambiguation showed promise (Lee et al., 2022a).
Keh (2022) experimented with classifying PETs
unseen during training. Lee et al. (2023) perform
transformer-based euphemism disambiguation ex-
periments, exploring vagueness as one of the prop-
erties of euphemisms.

Other existing work has explored the multi-
lingual and cross-lingual transfer capabilities of
large language models (LLMs). Choenni et al.
(2023) found that multilingual LLMs rely on data
from multiple languages to a large extent, learn-
ing both complementary and reinforcing informa-
tion. Shode et al. (2023) found cases where transfer
learning from out-of-language data in a particular
domain performed better than same-language data
in a different domain.

3 Multilingual Corpus of Euphemisms

For our data, we use the multilingual Mandarin
Chinese (ZH), American English (EN), Spanish
(ES), and Yorùbá (YO) euphemism datasets cre-
ated by Lee et al. (2023). In these datasets, text
examples containing PETs are annotated by native
speakers with a 0 or a 1 (i.e. a euphemistic or
non-euphemistic usage of the PET). We modify
the datasets to become similar to one another in
two ways: Firstly, Yorùbá lacked “boundary to-
kens” to the left and right side of PETs, so we
add them in where possible; for some examples
(∼25%), the PET tokens were sometimes sepa-
rated due to Yorùbá word order, so multiple pairs
of “boundary tokens” were added for these exam-
ples. Secondly, to balance the number of examples
in each language, we augmented the Mandarin Chi-
nese and Spanish datasets. Using the guidelines
from the original paper, native speakers (who were
co-authors) added more PETs (40 for Chinese and
67 for Spanish) and examples (453 for Chinese
and 900 for Spanish) to obtain the final euphemism
corpus used for this paper1. See Table 1 for the
updated metrics.

1https://github.com/pl464/
euph-detection-datasets/tree/main/EACL_2024

As can be seen, while the number of exam-
ples are fairly balanced across languages, there
are still two main differences. One is the num-
ber of ambiguous PETs; i.e. PETs which have
both euphemistic and non-euphemistic usages in
the dataset. Higher numbers of ambiguous PETs
and examples may contribute to a higher “degree of
difficulty“ for classification. Two, we additionally
contribute interrater agreement metrics for the Man-
darin Chinese, Spanish, and Yorùbá datasets. We
recruited 2 native speakers to annotate a random
subset of 500 examples from each dataset and then
compute Krippendorf’s alpha (Hayes and Krippen-
dorff, 2007), α, following the example of (Gavidia
et al., 2022) who obtained an alpha of 0.415 for
the English dataset. The results can be found in the
last column Table 1. We believe these two differ-
ences may correlate with the “degree of difficulty”
in classifying each dataset.

4 Multilingual and Cross-lingual
Experiments

4.1 Methodology
For our experiments, we use XLM-R-base, a multi-
lingual transformer model pre-trained on multiple
languages, including Mandarin (ZH), English (EN),
and Spanish (ES), but not Yorùbá (YO) (Conneau
et al., 2020). We experiment with fine-tuning XLM-
R on euphemism data from multiple languages
(when multiple languages are present in the training
data, we refer to this as “multilingual”) versus one
(“monolingual”). For each test run, we randomly
sample 1800 examples from each language and use
a 80-10-10 split to create training, validation, and
test sets. We create the multilingual train/val sets
by combining and shuffling the train/val data from
multiple languages (e.g., the training set for the 4-
language setting consists of 5760 examples– 1440
of each language). The test sets are held constant
across all settings so that we can observe the impact
of including multiple languages during training.

Our non-default fine-tuning parameters were:
batch size=16, learning rate=1e-5, max epochs=30,
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and early stopping patience=5. We performed 30
test runs for each training setting (e.g. ZH, ES+EN,
etc), each time using the best trained model (be-
fore early stopping) for inference on the test set;
using 4 NVIDIA Tesla A100 GPUs, fine-tuning
30 times took approximately 6 hours for each lan-
guage present in the training set.

4.2 Results

The results of these experiments are in Table 2. The
values shown are averaged Macro-F1 scores across
the 30 runs2. Note that for each cell in the table, the
row shows the training language(s) (“All” refers to
training on all four languages), while the column
shows the test language. For example, the average
Macro-F1 score when training on Chinese data but
testing on English data was 0.653. A majority-class
baseline is provided. Additionally, the colored cells
indicate cases where the language of the test set
appeared in the training set.

Firstly, as expected, the performances of the
monolingual models tested on the same language
(green cells) are significantly better than the base-
line. We noted the unusually high performance of
Chinese (0.895), which was also the dataset with
the smallest range of PETs. So, we followed up by
repeating the monolingual fine-tuning experiments,
but restricting the data in each language to cover ex-
actly 52 PETs spanning 815 examples. The results,
shown in Appendix A, show much more balanced
results, suggesting that performance is impacted by
the range of PETs present in the data.

Secondly, we observed an extent of zero-shot,
cross-lingual learning taking place with the mono-
lingual models (white cells). For instance, the
English-on-Chinese score was 0.607, and Spanish-
on-English was 0.639. In general, there appeared
to be similar interactions between Chinese, English,
and Spanish, with scores ranging from 0.535-0.653.
By comparison, the monolingual models performed
poorly on Yorùbá, with scores ranging from 0.300-
0.384. The monolingual Yorùbá models, too, did
not perform very well on the other languages, al-
though not as poorly (0.383-0.417). This suggests
something transferable between Chinese, English,
and Spanish, but not as much for Yorùbá, possibly
due to language-specific factors (i.e. Yorùbá eu-
phemisms differ significantly from the others) or
the fact that XLM-R was not pre-trained on Yorùbá
data. Interestingly, we observed slightly higher

2Standard deviations generally ranged from 0.02-0.04.

cross-lingual scores when replicating the experi-
ments at a smaller number of examples (1500), the
results of which are shown in Appendix B. Fur-
ther testing is needed to investigate the relationship
between data size and cross-lingual performance.

Lastly, we observed that the performances of
the multilingual models were generally higher than
those of the monolingual models. The boldfaced
values in each column indicate the best setting for
that test language, which was always multilingual.
We observe more specific trends in the “bilingual”
(blue) and “trilingual” (purple) results: for Chinese,
the English data contributes the most, and vice
versa; Spanish benefits from all other languages,
but more so Chinese and English; Yorùbá mostly
benefits from English. For each test language, we
assess the statistical significance between the best
(boldfaced) multilingual scores and the monolin-
gual scores by computing the paired t-test value
(p=0.05) across the 30 test runs. The resulting
t-test values are as follows: Chinese, 0.0011; En-
glish, 6e-7; Spanish, 0.0047; Yorùbá, 0.074. From
this, we conclude that the effect of including data
from all 4 languages was statistically significant
for Chinese, English and Spanish, but not Yorùbá.
Further, the varying “contributions” across differ-
ent language combinations suggests that specific
language relationships come into play when per-
forming multilingual euphemism disambiguation.

Train
Test ZH EN ES YO

Baseline 0.426 0.416 0.381 0.394
ZH 0.879 0.653 0.535 0.300
EN 0.607 0.765 0.567 0.381
ES 0.613 0.639 0.752 0.384
YO 0.417 0.407 0.383 0.790
ZH+EN 0.897 0.804 0.508 0.397
EN+ES 0.650 0.781 0.764 0.416
ES+YO 0.605 0.630 0.758 0.794
ZH+ES 0.884 0.670 0.764 0.377
EN+YO 0.616 0.772 0.602 0.802
ZH+YO 0.881 0.646 0.585 0.795
ZH+EN+ES 0.898 0.805 0.775 0.389
EN+ES+YO 0.647 0.783 0.772 0.791
ZH+EN+YO 0.899 0.801 0.555 0.794
ZH+ES+YO 0.885 0.664 0.778 0.778
All 0.895 0.792 0.776 0.793

Table 2: Average Macro-F1s for the multilingual and
cross-lingual experiments
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5 Experiments with Euphemistic
Category

Motivated by the question “what is the nature of
the cross-lingual knowledge being learned about
euphemisms?”, we ran a follow-up experiment
in which we looked at specific euphemistic cat-
egories3. We created test sets of examples in
which we isolate a single language and a sin-
gle category, out of a possible 4 categories that
had a substantial number of examples in each
dataset: physical/mental attributes (ATTR), bod-
ily functions/parts (BODY), death (DEATH), and
sexual activity (SEX). Then, we compare two
different training settings: (1) training only on
same-category, but out-of-language examples (“SC-
OOL”), and (2) training only on same-language,
but out-of-category examples (“SL-OOC”). For all
language-category scenarios, there were always
fewer SC-OOL examples than SL-OOC, so we
used the maximum number of SC-OOL examples
available, down-sampled for the SL-OOC exam-
ples, and used a random 90-10 split to create train-
ing and validation sets. More detailed metrics re-
garding the number of examples can be found in
Appendix C. We use the same parameters as in 4.1,
except we increased the early stopping patience
to 10 (due to having smaller datasets) and only
perform 10 runs for each setting.

In Table 3, we show the differences in average
Macro-F1 scores between the SC-OOL and SL-
OOC settings. That is, positive values (green) in-
dicate that the SC-OOL setting performed better,
whereas negative values (red) indicate the oppo-
site; e.g. for the test set containing Chinese ATTR
euphemisms, training on English, Spanish, and
Yorùbá ATTR euphemisms yielded an average F1
of 0.088 points higher than when training on Chi-
nese euphemisms from other categories. We ob-
served that SC-OOL examples performed better
than SL-OOC in 7 out of the 16 language-category
scenarios. While this is interesting, since we would
expect that training on same-language examples
should generally perform better, there are no obvi-
ous patterns with either language or category (ex-
cept perhaps that Spanish did not generally ben-
efit from SC-OOL examples). Despite this, the
results suggest the overall possibility that examples
which contribute cross-lingual understanding are
related by semantic category. More testing, par-
ticularly with specific language combinations and

3All PETs were assigned categories in the datasets.

categories, may reveal more definitive cross-lingual
results. Additionally, the full tables of Macro-F1
scores for each setting (which can be found in Ap-
pendix D) show that the overall scores were low.
This indicates the overall challenge of classifying
examples with PETs not seen during training, even
to the extent that out-of-language examples could
outperform within-language examples.

Lang ATTR BODY DEATH SEX
ZH +0.088 +0.083 -0.026 -0.094
EN -0.038 +0.034 -0.288 +0.069
ES -0.007 -0.303 -0.019 -0.097
YO +0.12 +0.042 +0.011 -0.094

Table 3: Differences in Macro-F1 scores on category-
specific test sets between the “SC-OOL” and “SL-OOC”
settings.

6 Conclusions and Future Work

In this study, we investigate the multilingual and
cross-lingual capabilities of multilingual transform-
ers for euphemism disambiguation. We found
cases of zero-shot, cross-lingual learning, and that
fine-tuning on multiple languages yields statisti-
cally significant improvements for Chinese, En-
glish, and Spanish. This indicates that multilingual
approaches may work as a method of data aug-
mentation, which would be particularly useful for
data-scarce figurative language tasks (especially for
low-resource languages). The results also suggest
that some of these patterns are language-specific,
and dependent on training settings. More work is
needed to test other training parameters (e.g. num-
ber of examples) and languages from a variety of
families.

While it is hard to answer the question “what
exactly is being learned about euphemisms cross-
lingually?”, we found preliminary evidence that
part of the answer may relate to euphemisms’ se-
mantic category. Exploring this question further is
left to future work, which may be important from
both a linguistic and computational perspective.

Limitations

While the terms “Chinese” and “English” were
sometimes used for brevity, the Chinese data
used in this study only included Mandarin data,
while the English data only includes American En-
glish. (However, the Spanish and Yorùbá data are
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from a variety of dialects.) Additionally, XLM-
R is taken to be representative of other trans-
former/multilingual deep learning models, and the
impact of XLM-R’s pre-training scheme was not
investigated. We did not conduct a thorough search
for hyperparameters (which were selected mostly
based on prior work), and limited computational
resources prevented experimentation with other
(larger) multilingual language models, such as
XLM-R-large.
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A Experiments Balanced for PETs

The results below show the monolingual models’ performances when the number of unique PETs in
the sampled data for each setting was held constant (52 PETs spanning 815 examples). Fine-tuning
parameters were the same, except for early stopping patience, which was set to 8 (instead of 5) due to
the smaller datasets sometimes needing more epochs to converge. 30 runs were still performed for each
setting. As can be seen, the performance of the monolingual Chinese (ZH) model on the Chinese test sets
is now more similar to the others, though there are still differences between languages which were seen in
the main experiments (e.g. Spanish-on-Spanish performance being the lowest; Chinese and Yorùbá being
the highest).

Train
Test ZH EN ES YO

ZH 0.749 0.594 0.611 0.363
EN 0.548 0.727 0.589 0.370
ES 0.561 0.615 0.710 0.445
YO 0.365 0.353 0.358 0.752

Table 4: Average Macro-F1s for the monolingual models when examples are constrained to the same number of
PETs in the data

B Experiments with a Smaller Number of Examples (1500)

The results below show the monolingual models’ performances when a fewer number of examples were
used for train-val-test splits than the main experiments (1500 vs. 1800). Fine-tuning parameters were the
same, and 30 runs were performed for each setting. While the monolingual models’ performances on the
same languages (green cells) were generally lower, some of the zero-shot, cross-lingual performances
(white cells) were higher than those in Table 2.

Train
Test ZH EN ES YO

ZH 0.847 0.664 0.571 0.338
EN 0.615 0.756 0.609 0.420
ES 0.600 0.628 0.716 0.398
YO 0.411 0.417 0.401 0.767

Table 5: Average Macro-F1s for the monolingual models using 1500 examples per test
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C Numbers of Examples in the Euphemistic Category Experiments

The tables below show the number of examples used in the test sets for each language/category setting in
the follow-up study on euphemistic categories.

Lang ATTR BODY DEATH SEX
ZH 157 324 451 501
EN 573 83 348 89
SP 311 258 105 111
YO 151 584 459 637

Table 6: Metrics for the Euphemistic Category Experiment Test Sets

The tables below show the number of examples sampled for the training and validation sets for each
language/category setting.

Lang ATTR BODY DEATH SEX
ZH 1035 925 912 837
EN 619 1166 1015 1249
ES 881 991 1258 1227
YO 1041 665 904 701

Table 7: Metrics for Euphemistic Category Experiments Train/Val Sets

D Actual Performances of the SC-OOL and SL-OOC Tests from the Euphemistic
Category Experiments

The averaged F1s for each language/category scenario using the SC-OOL training sets are shown below.

Lang ATTR BODY DEATH SEX
ZH 0.598 0.588 0.564 0.420
EN 0.602 0.438 0.556 0.650
ES 0.541 0.431 0.458 0.495
YO 0.489 0.560 0.432 0.484

Table 8: Average Macro-F1 Scores for the “SC-OOL” experiments

The averaged F1s for each language/category scenario using the SL-OOC training sets are shown below.

Lang ATTR BODY DEATH SEX
ZH 0.510 0.505 0.591 0.515
EN 0.640 0.404 0.650 0.582
ES 0.548 0.733 0.477 0.592
YO 0.367 0.518 0.421 0.578

Table 9: Average Macro-F1 Scores for the “SL-OOC” experiments
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